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The organization of real networks usually embodies both regu-
larities and irregularities, and, in principle, the former can be
modeled. The extent to which the formation of a network can be
explained coincides with our ability to predict missing links. To
understand network organization, we should be able to estimate
link predictability. We assume that the regularity of a network
is reflected in the consistency of structural features before and
after a random removal of a small set of links. Based on the
perturbation of the adjacency matrix, we propose a universal
structural consistency index that is free of prior knowledge of
network organization. Extensive experiments on disparate real-
world networks demonstrate that (i) structural consistency is
a good estimation of link predictability and (ii) a derivative algo-
rithm outperforms state-of-the-art link prediction methods in
both accuracy and robustness. This analysis has further applica-
tions in evaluating link prediction algorithms and monitoring sud-
den changes in evolving network mechanisms. It will provide
unique fundamental insights into the above-mentioned academic
research fields, and will foster the development of advanced in-
formation filtering technologies of interest to information tech-
nology practitioners.
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Understanding the organization of real networks is a long-
standing challenge in many branches of science (1). Al-

though some mechanisms have already been accepted as primary
driving forces in network organization, including homophily
(2–4), triadic closure (5–7), preferential attachment (8–10),
reciprocity (11), and social balance (12), one or two of these
mechanisms cannot provide a complete explanation; i.e., link
formation in real-world networks is usually driven by both reg-
ular and irregular factors, and only the former can be explained
using mechanistic models. This intrinsic network complexity
presents us with the question of how to estimate what portions
of a real network can be categorized as regular, in other words,
to what extent the link formation in network is explicable.
This question brings to mind the link prediction problem in

which the set of observed links in a network is used to estimate
the likelihood that a nonobserved link exists (13). The extent to
which the network formation is explicable coincides with our
capacity to predict missing links (14, 15). On the one hand, an
effective link prediction algorithm provides strong evidence of
the corresponding mechanism(s) of network organization, e.g.,
effectiveness of common-neighborhood-based methods indi-
cates the significance of triadic closure (16, 17). On the other
hand, a better understanding of network organization should
be transferable to a good link prediction algorithm, e.g., the
prior assumption of hierarchical organization of networks can
be directly applied to the design of a prediction algorithm
(18). In this sense, the precision of a link prediction algorithm
tells us the extent to which the link formation in network can be
explained by this algorithm. However, different algorithms
provide different precisions in same network (see Table 1, the
precisions of seven link prediction (LP) methods on 10 net-
works) and thus the precision only reflects the link predictability
associated with a specific algorithm, not the intrinsic feature of
the network itself.

Predictability is usually defined as the possible maximum
precision of a prediction algorithm (19). However, this kind of
definition is not suitable for link prediction since a real net-
work’s link predictability under such definition should be 1 be-
cause their nonobserved links are almost always distinguishable
(see Materials and Methods). In this paper, link predictability
indeed characterizes the inherent difficulty of prediction that
does not depend on specific algorithms, and our fundamental
hypothesis is that missing links are difficult to predict if their
addition causes huge structural changes, and thus network is
highly predictable if the removal or addition of a set of randomly
selected links does not significantly change the network’s struc-
tural features. Accordingly, we propose a so-called “structural
consistency” index that is based on the first-order matrix per-
turbation, which can reflect the inherent link predictability of
a network and does not require any prior knowledge of the
network’s organization. We also propose a structural perturba-
tion method for link prediction that is more accurate and robust
than the state-of-the-art methods.

Structural Consistency
Consider a simple undirected network GðV ;EÞ where V is the
set of nodes and E is the set of links. The given network can be
represented by an N ×NðN = jV jÞ adjacency matrix A, where the
element Aij = 1 if nodes i and j are connected and Aij = 0 oth-
erwise. We randomly select a fraction pH of the links to con-
stitute a perturbation set ΔE, while the rest of the links E−ΔE
constitute the set ER. Denote by AR and ΔA the corresponding
adjacency matrices; obviously, A=AR +ΔA. Since AR is real
symmetric, it can be diagonalized as
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AR =
XN

k=1

λk xk xTk ; [1]

where λk and xk are the eigenvalue and the corresponding or-
thogonal and normalized eigenvector for AR, respectively.
We consider the set ΔE as a perturbation to the network AR

and construct the perturbed matrix via first-order approximation
that allows the eigenvalues to change but fixes the eigenvectors.
We first consider the nondegenerated case without any repeated
eigenvalues (see SI Appendix, Case of Degenerate Eigenvalues, for
the case with degenerate eigenvalues). After perturbation, the
eigenvalue λk is corrected to be λk +Δλk and its corresponding
eigenvector is corrected to be xk +Δxk. Left-multiplying the
eigenfunction

�
AR +ΔA

�ðxk +ΔxkÞ= ðλk +ΔλkÞðxk +ΔxkÞ [2]

by xTk and neglecting second-order terms xTkΔAΔxk and Δλk xTkΔxk,
we obtain

Δλk ≈
xTkΔAxk
xTk xk

: [3]

This formula is reminiscent of the expectation value of the first-
order perturbation Hamiltonian in quantum mechanics. Using the
perturbed eigenvalues while keeping eigenvectors unchanged, the
perturbed matrix can be obtained,

~A=
XN

k=1

ðλk +ΔλkÞ xkxTk ; [4]

which can be considered as the linear approximation of the given
network A if the expansion is based on AR.
The eigenvectors can well reflect network structural features

(20). If the perturbation does not significantly change the
structural features, the eigenvectors of the observed matrix AR

(i.e., xk) and those of the matrix AR +ΔA (i.e., xk +Δxk) should
be almost the same. If so, according to Eq. 4, ~A should be very close
to AR +ΔA. Therefore, given a network A, we first randomly
remove a group of randomly selected links ΔE, and then we
perturb the remaining part AR by ΔE to obtain the perturbed
matrix ~A via Eq. 4. If the network is highly regular, the random
removal ΔE will not sharply change the structure features, and
thus A and ~A should be close to each other. To measure this
quantitatively, we rank all of the links in set U −ER in descending
order according to their values in ~A, where U is the universal set
of links. We denote EL the set of top-L ranked links, where
L= jΔEj, namely, the number of links in the perturbation set.

Then the links in ER together with the links in EL construct the
perturbed network, which is usually different from ER +ΔE. The
structural consistency σc is defined as the fraction of common
links between ΔE and EL, as

σc =

��EL ∩ΔE
��

jΔEj : [5]

Fig. 1 shows how to calculate the structural consistency of a sim-
ple network, with a summary of detailed procedure presented in
SI Appendix, Six Steps to Calculate σc.

Structural Perturbation Method
The perturbation method used to determine the structural con-
sistency can be applied to predict missing links. Link prediction
aims at estimating the existence likelihood of nonobserved links
based on the observed topology (13). The simplest framework of
link prediction is similarity-based algorithms (16) in which each
pair of nodes, x and y, is assigned a similarity score sxy. All
nonobserved links are ranked according to their scores, with an
assumption that links with higher scores have higher existence
likelihoods (see mathematical description of LP problem as well
as the accuracy metrics in SI Appendix, Link Prediction Problem).
Under this framework, the entries of ~A can be considered as the
similarity scores assigned to links. For example, in Fig. 1, if we
want to predict one missing link of given network A by using the
structural perturbation method (SPM), we will rank all of the
nonobserved links (i.e., the links corresponding to 0 in matrix A)
according to their scores in ~A; then the top one is the link (3,8).
The feasibility of SPM is based on the strong correlation between
independent perturbations (see SI Appendix, Table S1), which
indicates that the missing links, which are considered as un-
known information, can be recovered by perturbing the network
with another set of known links (i.e., ΔE).
Consider an undirected network GðV ;EÞ: To test the algo-

rithm’s accuracy, the set of links, E, is randomly divided into two
parts: (i) a training set ET , which is treated as known infor-
mation, and (ii) a probe set (i.e., validation subset) EP, which is
used for testing and can be considered as missing links. No in-
formation in the probe set is allowed to be used for prediction.
Obviously, ET ∪EP =E and ET ∩EP = 0=. Our task is to uncover
the links in the probe set based on the information in the
training set.
Notice that, in this task, the training set ET plays a similar role

to the observed network A, and to obtain the perturbed matrix ~A,
we randomly select a fraction pH of links from ET as perturbation
set ΔE. Then, by perturbing ET −ΔE with ΔE, we obtain ~A
through Eq. 4. The final average prediction matrix h~Ai is
obtained by averaging over 10 independent selections of ΔE. By
ranking all of the nonobserved links (i.e., links in U −ET) in

Table 1. Link prediction accuracy measured by precision on the 10 real networks

Precision Jazz Metabolic Neural USAir Food web Hamster NetSci Yeast Email Router

SPM 0.677 0.354 0.168 0.451 0.561 0.469 0.334 0.166 0.158 0.357
CN 0.506 0.137 0.095 0.374 0.073 0.061 0.329 0.109 0.149 0.027
AA 0.525 0.190 0.105 0.394 0.075 0.061 0.334 0.121 0.150 0.026
RA 0.541 0.267 0.104 0.455 0.076 0.054 0.541 0.090 0.148 0.027
Katz 0.546 0.147 0.107 0.379 0.181 0.108 0.370 0.061 0.149 0.120
HSM 0.326 0.100 0.073 0.216 0.249 0.202 0.303 0.081 0.134 0.309
SBM 0.410 0.197 0.143 0.335 0.460 0.275 0.177 0.122 0.094 0.176

We compare our method, SPM, to six well-known methods presented in Materials and Methods. For each real
network, 10% of its links will be randomly selected to constitute the probe set, and the rest of the links
constitute the training set. Prediction accuracy is measured by precision. We set pH = 0:1 for SPM. For the
parameter-dependent Katz index, the present results correspond to the optimal parameter subject to the highest
precision. The highest value for each network is in boldface.

2326 | www.pnas.org/cgi/doi/10.1073/pnas.1424644112 Lü et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424644112/-/DCSupplemental/pnas.1424644112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424644112/-/DCSupplemental/pnas.1424644112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424644112/-/DCSupplemental/pnas.1424644112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424644112/-/DCSupplemental/pnas.1424644112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424644112/-/DCSupplemental/pnas.1424644112.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1424644112


decreasing order according to their scores given by h~Ai, we select
the top-

��EP
�� links and see how many of them are in the probe set.

This ratio is called “precision,” which is used to quantify the
performance of the algorithm (21). A summary of detailed pro-
cedures can be found in SI Appendix, Five Steps to Calculate Pre-
diction Accuracy of SPM.
We compare the structural perturbation method with six

widely applied link prediction algorithms, including four simi-
larity-based indices: the common neighbors (CN) index (16), the
Adamic-Adar (AA) index (22), the resource allocation (RA)
index (17, 23), and the Katz index (24). We also use two likeli-
hood methods: the hierarchical structure model (HSM) (18) and
the stochastic block model (SBM) (25). See Materials and
Methods for the six baseline algorithms. Table 1 shows the pre-
diction accuracy of the 10 real-world networks (see Materials and
Methods and SI Appendix, Table S2, for the description and basic
statistics of the data), measured by precision [see SI Appendix,
Table S3 for the results measured by another metric called AUC:
the area under the receiver operating characteristic curve (26);
see the definition in SI Appendix, Link Prediction Problem, Eq. 5].
The highest value for each network (in each column) is in
boldface. Overall, SPM outperforms all other baseline algo-
rithms including such state-of-the-art methods as the RA index,
HSM, and SBM. In addition, SPM is the most robust method for
disparate networks; i.e., although, in a few cases, its performance
is not the best, it is always very good. In contrast, all six baseline
algorithms give very poor predictions for some networks. In
addition to the effectiveness of SPM, we can efficiently obtain an

approximate result by sampling large-scale networks (see dis-
cussion in SI Appendix, Applying to Large Networks).
Notice that the random division of ET and EP is relevant to the

prediction of missing parts of networks, such as protein−protein
interaction networks where the known interactions are even
fewer than unknown interactions (27). In addition to the pre-
diction of missing links in static networks, LP algorithms can also
predict future links in evolving networks, such as friendship
recommendations in online social networks. In such issues, to
evaluate the algorithmic performance, observed links should be
divided according to their birth times: Elder (90%) and younger
(10%) links constitute ET and EP, respectively. We have also
tested LP algorithms in three real evolving networks (see Mate-
rials and Methods and SI Appendix, Table S2); as shown in Table
2, SPM still performs the best.

Link Predictability
We first consider the structural consistency of modeled networks
and show the validity of σc as an index for link predictability. In
the Erdös−Rényi (ER) network (28), each pair of nodes is
connected with probability p. If p is finite and the network size N
goes to infinity, the spectral density adjacency matrices in ER
networks obey the Wigner semicircle law and the eigenvectors
are distributed isotropically at random (29, 30). The first-order
perturbation of the eigenvalues is thus also random, leading
to low structural consistency values. Given an ER network
GðN; pÞ, we randomly select a fraction pH = 0:1 of the links (we
have tested that σc is not sensitive to the specific value of pH ;
see SI Appendix, Fig. S3), and determine the average structural
consistency hσci as a function of N for different p. Fig. 2A shows
how the structural consistency decreases with the network
size in a power-law-like relationship and tends to the random
chance p · pH=ð1− p+ p · pHÞ in the thermodynamical limit,
supporting the intuition that fully random networks are un-
predictable, which is also in accordance with the previous

Fig. 1. An illustration of how to calculate the structural consistency. In the first plot, the blue dashed links constitute the perturbation set ΔE= fð5;8Þ,ð6; 9Þg
(corresponding to ΔA), while the solid links constitute the set ER (corresponding to AR). The second plot shows the adjacency matrix A of the given network,
where the number in each square is the corresponding value of the matrix element. The black and blue squares represent the links in ER and ΔE, respectively.
To calculate the consistency, we perturb AR with ΔA. The perturbed matrix ~A is shown in the third plot, from which we derive the perturbed network in the
fourth plot, where the red dashed lines are outcome links selected by ranking all links in U− ER in descending order according to their corresponding values in
~A. Since there are two links in ΔE, then L= 2, and the set EL = fð3; 8Þ,ð6;9Þg. In this case, only one of the two blue links is recovered by perturbation; then we
have σc = 0:5.

Table 2. The precision of link prediction on three real-world
temporal networks

Networks CN AA RA Katz HSM SPM

Arxiv 0.021 0.022 0.026 0.033 0.020 0.085
Facebook 0.021 0.024 0.041 0.022 0.007 0.051
Enron 0.032 0.033 0.027 0.033 0.008 0.033

Each network is of size N = 4,000, that sampled from the original net-
works by using the random-walk method (see SI Appendix). The best-
performed entries are emphasized in bold. We set pH = 0:1 for SPM and
for the parameter-dependent Katz index; the present results are obtained
under the optimal parameter subject to the highest precision. The results of
SBM are not included due to the high computational complexity.

Table 3. Pearson correlation coefficients (CC) between precision
and structural consistency on the 10 real networks

CN AA RA Katz HSM SBM SPM

CC 0.493 0.476 0.495 0.698 0.870 0.819 0.938
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report about the very low link prediction accuracy on ER
networks (31).
We next consider the Watts−Strogatz (WS) networks (32)

with controllable randomness. A WS network GðN; k; qÞ starts
from a ring of N nodes where each node connects to its k nearest
neighbors. With a probability q, each link is replaced by another
link that joins two randomly chosen nodes. When q= 0, the
network is a deterministic ring, and when q= 1, it is fully random.
Fig. 2B shows how σc decreases with the rewiring probability q,
indicating once again that higher irregularities (i.e., randomness)
will result in lower predictability.
The above experimental results on modeled networks affirm

the rationale behind the proposed index σc. We next turn our
attention to real-world networks, whose predictabilities cannot
be controlled as WS networks. We thus compare the structural
consistency with the prediction accuracy from representative
link prediction algorithms. Table 3 shows how the prediction
precision is positively correlated with structural consistency σc
for all six baseline algorithms, indicating that σc can, to some
extent, reflect the link predictability of real networks. In addi-
tion, the precision values of algorithms that account for the
global organization principles are approximately linearly cor-
related with the structural consistency (as indicated by >0.8
Pearson correlation coefficients in Table 3; see also Fig. 3),
suggesting that the structural consistency is indeed a good in-
dicator of whether the network is organized by some perceptible
regulations. The results also show us that the missing links in
networks with higher structural consistencies are easier to dig
out using link prediction algorithms.

Discussion
Throughout history, human beings, from ancient prophets to
modern scientists, have attempted to make predictions. The
recent development of theoretical tools and the expanding
availability of massive databases have allowed scientists to
predict behaviors and trends, chart emergent events, and locate
missing elements of a system (33–35). In this paper, we treat
predictability as an inherent measurement of the regularities in
the organization of a networked system, and our hypothesis is
that a missing part is predictable only when it does not signif-
icantly change the structural features of the observable part. If
it does, it cannot be revealed through observation. The per-
spective of this hypothesis is that high predictability indicates
some perceptible regulative principles in the organization of
the network. Putting aside any a priori hypotheses of what this
regulative principle might be, we directly measure the struc-
tural consistency of a network by perturbing its adjacency ma-
trix and observing the change of eigenvalues provided the fixed
eigenvectors, similar to the well-known first-order perturbation
in quantum mechanics. Although we cannot determine the
maximum precision of any given link prediction algorithm, the
structural consistency σc is a good indicator of the inherent
predictability of both modeled networks and real-world net-
works. Surprisingly, by directly applying the first-order matrix
perturbation method, we achieve more-accurate link pre-
dictions than some gracefully designed methods such as HSM
(18) and SBM (25). In particular, the performance of SPM for
disparate networks is very robust; i.e., it is either the best or
very close to the best. In contrast, other algorithms can largely fail.

A B

Fig. 2. Structural consistency of modeled networks: (A) ER networks with different sizes N and connecting probabilities p; (B) WS networks with N = 1,000,
and different average degrees k and rewiring probabilities q. Each data point is averaged over 100 independent runs.

A B C

Fig. 3. Scatter plot between structural consistency and precision of SPM, SBM, and HSM. The numbers on the top of the panels are the structural consis-
tencies of the corresponding networks obtained at pH = 0:1, averaged over 10 independent runs. The error bars represent the SDs of σc . The shadows in the
background emphasize the structural consistencies of the corresponding networks. The higher σc is, the darker the corresponding shadow region is. The solid
lines are the linear fittings with slopes being equal to 0.957, 0.598, and 0.495 for (C) SPM, (B) SBM, and (A) HSM, respectively.
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For example, CN, AA, RA, and Katz indices cannot adequately
manage the food web, and the HSM poorly predicts missing links
in a metabolic network, which is not organized in a hierarchical
way. The SPM, on the other hand, does not make any a priori
assumptions about any specific organizing principles of a net-
work, and thus its predictions are consistently more robust.
Potential applications of this work are wide and can take

both theoretical and practical forms. Using structural consis-
tency values, we can determine whether a poor prediction was
caused by an inappropriate algorithm or was due to the in-
trinsic unpredictability of the network, and then estimate how
large a space is needed to improve the algorithm. For example,
the CN index does not perform well for either neural or food
webs. Because the structural consistency of a food web is much
larger than that of a neural web, we can infer that CN is not
appropriate for a food web, while the low precision of a neural
web may result from its own low predictability. Indeed, as
shown in Fig. 3, the networks largely below the fitting line are
those where the corresponding algorithm is not suitable to be
applied. For an evolving network, the structural consistency
can give a temporal estimation of whether the network becomes
more elusive or not, as well as monitor the sudden changes in
the evolving mechanisms (see SI Appendix, Monitor the Sudden
Changes of Evolving Networks with σc, for numerical experiments).
In addition, the structural perturbation method, as a straight-
forward extension of structural consistency, can be directly ap-
plied to determining the missing links in real-world networks.
This work should be of interest to academic researchers in a
variety of fields, to information technology practitioners, and to
business practitioners.

Materials and Methods
Maximum Precision of Link Prediction. If we define link predictability as the
maximum precision of any link prediction algorithm, then a network is of
nearly zero predictability if all nonobserved links are completely the same
(e.g., a star network). For example, a vertex-transitive (20) network is of zero
predictability since all of the nodes in the observed structure are identical
and thus missing links are also indistinguishable from nonexistent links. For
a vertex-transitive network, given any of its two nodes u and v, there is some
automorphism f such that fðuÞ= v. This extremely rigid definition from
automorphism-based symmetry makes virtually all real-world networks have
a predictability very close to 1, since the missing links can be distinguished
from nonexistent links. Because it is approximately free of graph auto-
morphisms, link predictability approaches 1 even in ER networks (36). Thus,
this rigid approach does not allow us to obtain any a useful estimation of
link predictability.

Data Description. We consider the following 10 real-world networks drawn
from disparate fields: (i) Jazz (37), a collaboration network of jazz musicians
consists of 198 nodes and 2742 interactions; (ii) Metabolic (38), the meta-
bolic network of Caenorhabditis elegans; (iii) Neural (32), the neural net-
work of C. elegans (the original network is directed and weighted; here we
treat it as a simple network by ignoring the directions and weights); (iv) US
Air (39), the US Air transportation network; (v) Food web (40), the food web
in Florida Bay during wet season; (vi) Hamster (41), a friendship network of
users on the website hamsterster.com; (vii) NetSci (42), a coauthorship net-
work of scientists working on network theory and experiment; (viii) Yeast
(43), a protein−protein interaction network in budding yeast; (ix) Email (44),
a network of email interchanges between members of the University Rovira
I Virgili; (x) Router (45), a symmetrized snapshot of the structure of the In-
ternet at the level of autonomous systems; (xi) Arxiv (46), a scientific col-
laboration network from the arXiv’s High Energy Physics C Theory (hep-th)
section; (xii) Facebook (47), a network of a small group of Facebook users;

and (xiii) Enron (48), an email communication network from employees of
Enron between 1999 and 2003. The more detailed information and statistical
features of these networks can be found in SI Appendix, Statistical Features of
Experimental Networks.

Baseline Algorithms for Link Prediction. The link prediction problem has been
a long-standing challenge in modern information science (13, 49). Its main
goal is to estimate the existence likelihood of nonobserved links based on
the known topology and node attributes. Link prediction has already
found wide applications in interdisciplinary fields, including uncovering
missing parts of social and biological networks (50–52) and recommend-
ing friends and products in online social networks and e-commerce web
sites (53–55).

For comparison, we introduce four benchmark similarity indices (13). The
simplest is the CN index (16) in which two nodes, x and y, have a higher
connecting probability if they have more common neighbors. Two improved
indices based on CN are the AA index (22) and the RA index (17, 23), both of
which assign less-connected neighbors more weight. The mathematical
expressions are

sCNxy = jΓðxÞ∩ΓðyÞj, [6]

sAAxy =
X

z∈ΓðxÞ∩ ΓðyÞ

1
logjΓðzÞj , [7]

sRAxy =
X

z∈ΓðxÞ∩ΓðyÞ

1
jΓðzÞj , [8]

where ΓðxÞ denotes the set of neighbors of node x.
Unlike the above three local similarity indices, the Katz index (24) uses

global topological information by summing over the collection of paths with
exponential damping according to path lengths, i.e.,

sKatzxy = αAxy + α2A2
xy + α3A3

xy +⋯, [9]

which can be rewritten in the compact form, when jαj< 1=λmax , as

S= ðI− αAÞ−1 − I, [10]

where I is the identity matrix, A is the adjacency matrix, and λmax is the
largest eigenvalue of A. In our experiments, we tune the parameter α to
optimize the performance of the Katz index. Notice that, since α cannot be
exactly zero, the Katz index cannot degenerate to the CN index. Even when
α is very close to zero, the performance of the Katz index can be different
from the CN index, because, under the CN index, many nonobserved links
are scored the same and thus ranked in a random way (see analysis on this
so-called degeneracy phenomenon in refs. 17 and 31); therefore the very
slight differences contributed by the latter items in Eq. 9 may result in
considerable changes in the order of nonobserved links associated with the
same number of common neighbors.

We also consider two probability methods. The HSM (18) method assumes
that many real-world networks are hierarchically organized and thus nodes
can be divided into groups and further divided into subgroups. The SBM (25)
approach is one of the most general network models. Nodes are partitioned
into groups and the connecting probability of any two nodes is only de-
termined by the groups they belong to.
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