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Real-space renormalization group for kinetic gelation
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We investigate percolation of branching monomers by computer simulation. A Monte Carlo renormali-
zation scheme similar to that of Reynolds et al gives effective critical exponents v for the correlation
length. We compare the behavior of that exponent in two and three dimensions. Also, the exponent ratio

v/v is estimated from finite-size scaling.

In Kkinetic gelation, the formation of bonds between
neighboring monomers is controlled, at least partly, by the
motion of initiators (radicals) which move between the
two-functional and multifunctional polymerizable molecules.
Once a bond is formed, it can never be destroyed in irrever-
sible gelation; the functionality of a molecule is the max-
imum number of bonds it can form with its neighbors.

This irreversible kinetic gelation process has been recently
investigated with the help of computer simulation by several
groups.!”” One of the results was that in three dimensions
the critical exponents seemed?® roughly consistent with
those of random percolation theory,® whereas in two dimen-
sions the exponent y for the ‘“‘susceptibility” X (i.e., the
second moment of the cluster size distribution, related to
the so-called mean cluster size or weight-average degree of
polymerization) seemed to change drastically.*#® The aim of
the present work is to check these results by using the same
method and the same model in both two and three dimen-
sions.

Our method is analogous to the large-cell real-space
renormalization-group (RSRG) Monte Carlo simulations of
Reynolds and co-workers.” We made, however, some
changes to adjust it to the present kinetic gelation model.
For random percolation,’ one has large lattices with up to
10 independently occupied or empty sites. Thus one
changes the concentration p of occupied sites (or bonds) un-
til one has found the percolation threshold p, with the
desired accuracy. (At p. an infinite cluster appears, and X
diverges.) For Kinetic gelation, one has to take into account
memory effects and thus needs to construct one bond after
the other in the system. Then it is more convenient to
monitor the variation of the mean cluster size X during this
process and to determine the gel time # as that time at
which X has reached its maximum value. This method of
determining p, may, in fact, have certain advantages over
the spanning cluster check used in previous applications of
the Monte Carlo renormalization group. Several rules were
used by Reynolds er al.® to detect a spanning cluster and the
RG yielded results (for a given cell size) which were depen-
dent on the rule. Here, as in the case of the Monte Carlo
simulation of the Ising model with periodic boundary condi-
tions (where the magnetization is always nonzero), we mon-
itor the susceptibility and use its peak to determine p.. This
rule is independent of the direction in which the largest
cluster spans the cell. To each time ¢, there corresponds a
critical concentration p,. (In order to ensure observation of
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the maximum X and rule out spurious fluctuations we have
waited until X has decreased by at least 15% from its max-
imum value in three dimensions while in two dimensions
the process was continued until no further growth was pos-
sible.)

From then on our method is completely analogous to that
of Reynolds et al:® From about 10° runs we determine the
average threshold (p.) and its fluctuation W7Z= (p?)
— (p.)?, both of which depend on the linear dimension L of
the lattice. For large systems, the distribution of the thresh-
old values approaches a Gaussian!® proportional to
expl — (p.— (p.))¥2W2], with a maximum approaching
(1/~27W.). Renormalization-group arguments then give’

1/v(L) =In(N2w W.)~YInL )

for the effective size-dependent correlation-length exponent.
Moreover, one expects® !!

1/v(L) =1/v() +const/InL +O(L~?) . 2

Thus in a plot of 1/v(L) vs 1/InL one expects the data to
follow asymptotically a straight line with an intercept equal to
the true exponent v =v(). This relation can also be made
plausible by finite-size scaling: If the width W, of the
threshold distribution varies as L ™!/ apart from corrections
to scaling, then In(const X W;)/InL has to follow Eq. (2).

We used a triangular lattice in two and a simple cubic lat-
tice in three dimensions considering only monomers with
functionality four. In addition, a fraction ¢; of lattice sites
was occupied by radicals which could diffuse randomly
among the lattice sites if bonds were possible. Each radical
formed a string of permanent bonds along its track. More
details of the model and its chemical applications are given
in Refs. 2, 3, and 5.

Table I gives details of our computer runs on a Control
Data Corporation Cyber 76 computer and an IBM 3081
computer. Figure 1 shows the effective reciprocal ex-
ponents 1/v(L) in two and three dimensions for various c;.

We see that the data do not follow a straight line for the
lattice sizes L investigated; but there is some evidence to
suggest a monotonic decrease of 1/v(L) with increasing L.
The three-dimensional v may approach the random percola-
tion value 0.88 £0.01® for L — «. The two-dimensional
results are ambiguous: For ¢;=0.3. and 0.2 the extrapola-
tion to large L indicates a value near that for random per-
colation (v==-:—). For smaller initiator concentration ¢; the
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TABLE I. Details of computer runs. One sample for L =200 and ¢;=0.01 in two dimensions took about
1.5 sec on the Control Data Corporation Cyber-76 computer. N is the number of statistically independent
runs made for each L and each initiator concentration c;.

d=2 C’1=0.01 d=2 C1=0.2 d=3 CI=0.01 d=3 CI=0005
L N L N L N L N
30 5000 30 1000 10 3000 10 3000
50 5000 50 1000 15 3000 15 3000
70 5000 70 1000 20 2000 20 3000
100 1500 100 500 25 2000 25 2000
150 1500 150 250 30 800 30 1500
200 1000 200 135 35 800 35 1000
250 1700 300 110 40 500 40 800
300 1000 50 500 50 800
400 900 60 300 60 800
600 352 75 800
700 720 90 765
900 200

same possibility is not ruled out but the data suggest some
deviations (v =1.4 for ¢;=0.1 and v=1.6 for ¢;=0.01) if
we treat the last few data on the largest samples as asymp-
totic. We have also analyzed our data through finite-size
scaling,

APC(L) = IPC(L) _'Pc(°°)| ~L_1/Vf(L/§) .

Thus, (i) for v, (trial value) =v, a plot of Ap.(L) vs L~
should yield a straight line; (ii) a graph of InAp.(L) vs InL
is drawn for various trial values [pi(e0)] of p.(c0). A
straight line, whose slope is —1/v, is obtained for
pé(e0) =pc(o).

Analysis of the three-dimensional results - with these
methods indicates that v is 0.90 £0.03 while in two dimen-
sions we find that v=1.56 £0.05 for ¢;=0.01. These
results are compatible with our Monte Carlo renormalization
group. One may have, however, a complicated crossover,
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FIG. 1. Variation of the effective correlation length exponent
1/v(L) with 1/InL, where L is the linear dimension of the lattice.
The number on each set of data is the initiator concentration c;.
The asymptotic value for random percolation is marked by arrows
in two (bottom) and three (top) dimensions. Error bars ~ sym-
bol size.

as function of ¢;, between the universality class of random
percolation for large ¢; and a single-cluster growth process
for small ¢;, The accuracy of the present data is not good
enough to allow a quantitative study of such a crossover, as
was done, for example, by Gouker and Family for another
percolation problem.!? We have not ruled out that v may be
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FIG. 2. Variation of the ‘‘susceptibility’’ X with system size L at
the size-dependent gelation threshold; the symbols correspond to
the same ¢; as in Fig. 1. The slope in this log-log plot gives y/v; for
random percolation its values are 1.792 in two and about 2.0 in
three dimensions.
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a continuously varying function of c;; thus careful, accurate
calculations of » for various values of ¢; are required to
answer this question.

We also looked at the value of X as a function of L at the
percolation threshold of the finite sample. It should vary as
L" according to finite-size scaling. Figure 2 shows X, in
accord for three dimensions (y/v ==2.1) with the results of
Herrmann, Lander, and Stauffer,? while in two dimensions
vy/vis 1.79 at ¢;=0.2 to about 1.83 at ¢;=0.01. We, there-
fore, conclude that although v and hence y, is a function of
¢; (the nature of the function to be determined), y, and
hence the fractal dimensionality appears to be independent
of ¢; for the range of ¢; investigated.

To summarize: Our results are in accord with random
percolation exponents for the three-dimensional Kinetic
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gelation model but allow for nonrandom percolation values
in two dimensions for small initiator concentrations c;.
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