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We introduce a family of bounded repulsive potentials, which we call the cut ramp potential, obtained by
cutting a linear ramp potential at different heights. We find that for the uncut ramp potential the system shows
a region of anomalous re-entrant melting (a negative slope of the melting line in the temperature-pressure
phase diagram), with waterlike anomalies in the same pressure range. At high pressure the melting line
recovers a positive slope, a feature that we associate with the formation of clusters of particles separated by a
more or less density-independent distance, the cluster separation, which is approximately equal to the ramp
width 0. As the ramp is cut at lower and lower heights, the region of anomalous behavior shrinks and
eventually disappears while at the same time the formation of clusters becomes more favored, as it is ener-
getically less unfavorable for particles to “climb up” the ramp. We relate the occurrence of anomalous behavior
to the reduced efficacy of the soft repulsive length scale with increasing pressure. The clustering phenomenon
partially restores this efficacy, giving rise to an approximately constant distance o between the clusters. Our
results may be useful to better understand the phase behavior of macromolecules as well as that of substances

with nondirectional interactions that are capable of displaying liquid polymorphism.
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I. INTRODUCTION

Soft core potentials have a long history of being used to
model isostructural critical points in crystals [ 1-4], polymor-
phism of crystal phases [5-7], liquid-liquid phase transitions
(LLPTs) [6,8-15], polymorphism in glasses [16—-19], and
anomalous thermal expansion of liquids at low temperatures
[6,9,10,17,20-29]. All these phenomena can be associated
with the existence of two competing local structures: an ex-
panded structure characterized by large open spaces between
particles, and a collapsed structure in which particles are
spaced more closely. The expanded structure is the result of
quantum mechanical interactions between particles, interac-
tions that differ depending upon the material. For example,
in water the expanded structure is caused by four-
coordinated hydrogen bonds that build a first coordination
sphere of only four molecules [13,30-43], while in simple
liquids, such as argon, the first coordination sphere consists
of approximately twelve particles arranged in a closely
packed configuration. Accordingly, water has much more
empty space between molecules than argon and its density
can be significantly increased by increasing the pressure
which distorts the hydrogen bond structure and increases the
number of particles in the first coordination sphere [21]. This
distortion is associated with an increase in entropy and hence
with a density anomaly (due to the Maxwell relation),
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where ap is the thermal expansion coefficient.
The collapse of the open structure under pressure leads at
low temperatures to two distinct glassy states: low-density

amorphous solid and high-density amorphous solid, which
transform into one another by pressurizing and depressuriz-
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ing. This transformation between two glassy states is associ-
ated with hysteresis [16,19,44].

The interplay between two local structures at intermediate
temperatures above the glass transition may lead under cer-
tain conditions to their spatial segregation and hence to a
LLPT, the existence of which is hypothesized in water based
on computer simulations [45] and the extrapolation of the
heat capacity [46]. A direct observation of the LLPT has
been made in yttrium aluminum garnet (Y;AlsO,,) [47,48].
The LLPT associated with the transformation from molecu-
lar to polymeric liquid has been theoretically predicted [49]
and experimentally observed in liquid phosphorus [50,51].

There is a growing body of evidence, both experimental
and computational, that LLPTs and polymorphic glasses may
exist at high temperatures and pressures in group-IV ele-
ments like silicon [52-54] and germanium [55-58], certain
molecular compounds such as silica (SiO,) [59-61], ionic
salts such as BeF, [62], but also in molten Al,03-Y,05 [47]
and in triphenyl phosphite [63]. While some systems are
characterized by weakly directional interactions [64], in
triphenyl phosphite the dominating interaction is expected to
be nondirectional, since the substance consists of a simple
organic molecule with a small dipole moment and no ten-
dency to form hydrogen bonds [65]. Hence it is possible that
liquid polymorphism may also occur in materials character-
ized by nondirectional interactions. This possibility is sup-
ported by a recent observation of a transition between two
amorphous polymorphs in CessAlys, a metallic glass with
nondirectional bonds, in which the transition is caused by
pressure-induced f-electron delocalization [66].

There is indirect experimental evidence for a LLPT in
sulfur [67-69], selenium [70], and some molecular liquids
[48,71,72]. Ab initio computer simulations suggest that
LLPTs may exist in hydrogen [73-75] and nitrogen [76] at
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high pressures and temperatures. Since the direct experimen-
tal observation of LLPT is often difficult, its existence can be
hypothesized based on observation of other experimental
features of the system which are usually associated with a
LLPT, e.g., the melting line maximum, the presence of rich
crystal polymorphism [21], the presence of density or diffu-
sivity anomalies, or an increase in heat capacity or compress-
ibility when cooled.

A LLPT can occur with or without anomalies, depending
on the nature of the soft repulsion. In particular, it was found
that for potentials with a hard core softened by a repulsive
linear ramp [the hard core plus linear ramp (HCLR) poten-
tial] the LLPT is associated with anomalies [6], while the
LLPT occurs without any anomalous behavior when the soft
repulsion consists of a square shoulder [12,77-79]. The pos-
sibility that a LLPT may occur disjointed from anomalies
was recently supported by the experimental study of triph-
enyl phosphite, where in association with the LLPT the heat
capacity shows no anomalous behavior [63] and a density
increase is expected upon cooling.

Liquid anomalies and polymorphism, although caused in
different materials by different chemistry, have similar phys-
ics: namely all substances above have large open spaces be-
tween particles that collapse under pressure. Thus we need a
tractable, universal model that can determine whether these
features and phenomena are related or exist independently.
The simplest model that satisfies these conditions is a spheri-
cally symmetric potential that has two distinct length scales:
a soft core o, which creates a low-density structure at low
pressure, and a smaller hard core o, which creates a high-
density structure.

In principle, the hard core diameter o, can approach zero,
as in the Gaussian core potential [22]. These models with
go— 0 typically possess a rich crystalline polymorphism
and, under certain conditions, exhibit liquid anomalies and
re-entrant melting [negative slope of the melting line
Tmer(P)]. Since softening of strongly repulsive interactions
through the addition of a soft repulsion proved essential to
observe anomalous behavior, we focus here on the soft com-
ponent of core-softened interactions. We investigate the rela-
tion between anomalies and melting behavior in systems
where the interparticle interaction consists of only a finite
soft repulsion. Specifically, we introduce a family of
bounded repulsive interaction potentials obtained by cutting
the linear ramp potential at different heights.

In the context of microscopic interactions of atomic sys-
tems, these bounded potentials are unphysical; the strong re-
pulsion at short distances (related to the Pauli exclusion prin-
ciple) always prevents full particle overlap in a true
microscopic interaction. However, if one considers interac-
tions among macromolecules, effective interactions may re-
sult in a bounded repulsion that allows the particles to “sit on
top of each other,” imposing only a finite energy cost for a
full overlap [80,81].

In Sec. IT we describe the model. In Sec. III we outline the
simulation method used to map out the phase diagram. In
Sec. IV we present our results and in Sec. V we discuss our
conclusions.
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II. SOFT CORE BOUNDED REPULSIVE INTERACTION
POTENTIAL

Bounded repulsive potentials were proposed to model ef-
fective interactions in polymers, dendrimers, and microgels
[80]. Two kinds of melting behavior have been reported for
such potentials.

(a) Re-entrant melting, i.e., the melting line displays a
local temperature maximum 7,,,, in the temperature-pressure
phase diagram, followed by a region where the melting line
has a negative slope (as, e.g., in the Gaussian core model
[22,82,83]). If one would increase the pressure of such a
liquid, initially at a very low pressure and at a temperature
slightly lower than 7,,,,, then one would observe the liquid
to first crystallize and then re-enter the liquid phase at higher
pressure.

(b) Crystallization into a clustered solid at arbitrarily high
temperatures, with a positively sloped melting line (as, e.g.,
in the penetrable sphere model [84]). In this case, the inter-
action varies slowly enough at small interparticle distances
to allow for particles to overlap, thus giving rise to an effec-
tive attraction that promotes aggregation—the solid can al-
ways lower its free energy by allowing for multiply-occupied
sites.

A criterion for such cluster formation was derived [85] on
the basis of a mean field analysis, valid at large densities. If
the Fourier transform U(Q) of the interparticle potential is
everywhere positive (called Q*-type interactions in [85]) the
system displays behavior (a), while if U(Q) attains negative
values (called Q*-type interactions in [85]) the system dis-
plays behavior (b). The reason is that if U(Q) has negative
values, the mean field structure factor

1
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may diverge at any T for densities above py=—T/U(Q,),
where Q, is the value for which U(Q) attains its negative
minimum. Since S(Q) can be interpreted as the density re-
sponse function to an infinitesimal external field (on the basis
of the fluctuation-dissipation theorem), a diverging value of
S(Q) signals an instability, and thus the system is expected to
freeze at arbitrarily high temperatures, for all p=p,. This
means that the melting line has no temperature maximum,
and therefore there is no re-entrant melting. As concerns wa-
terlike anomalies, these have been found in the Gaussian
core model [86,87], a typical Q*-type system, while no
anomalies were reported for Q*-type systems such as the
penetrable sphere model (PSM) [84] or the “generalized ex-

ponential model of index 4 (GEM-4) [88,89].
We consider here a family of bounded interactions ob-
tained by cutting a repulsive linear ramp at different heights

[Fig. 1(a)],

(1-MU,, for r = oy
Ury=y( =rlo)U,, for o, <r<o (3)
0, for r = oy,

where A= o,/ 0.
For A=0 the potential in Eq. (3) corresponds to the uncut
repulsive linear ramp, whereas for A >0 it possesses a flat
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FIG. 1. (Color online) The family of potentials we introduce in
this paper. (a) The cut ramp potential. For N = o,/ o1 =0 the poten-
tial U(r) corresponds to the uncut ramp potential, while for A — 1 it
can be assimilated to the penetrable sphere interaction. (b) Fourier
transform of the cut ramp potential for A=0, 0.25, and 0.5; the lines
corresponding to A=0 and A=0.25 are indistinguishable on the
scale of the figure.

region where the repulsive force vanishes for r=o,. As A
increases the flat top gets larger and larger, and when A — 1
the potential approaches that of the penetrable sphere model
[84]. All the potentials of the family described by Eq. (3)
belong to the Q*-type interaction class [Fig. 1(b)], so clus-
tering is expected [behavior (b)], at sufficiently large particle
densities.

III. METHODS

Throughout this paper we use reduced units in terms of
length o, and energy U,. For temperature we use T~
=kgT/U,, for pressure P*EPO"?/UI, and one time unit
equals o \m/ U, seconds. Here kj is the Boltzmann constant
and m the mass of one particle.

For our simulations we use an implementation of the dis-
crete molecular dynamics (DMD) algorithm. With DMD a
continuous potential is approximated by a discrete potential
made up of a series of steps [17,90,91]. For example, we
approximate the potential of Eq. (3) by a series of small
steps, each with length Ar=0.010 and height AU=0.01U,.
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The advantage of DMD is that it is event-driven and usually
runs faster and/or is more stable than regular molecular dy-
namics (MD), especially at low densities. A regular MD
simulation solves the equations of motion by numerical inte-
gration, which leads to numerical errors. In order to keep
these errors as small as possible to prevent the system from
becoming unstable, a small time step is to be used, causing
the computer simulation to require more time.

In the case of a discrete potential U(r) made up of steps
Uy,uy, ..., U, there is no need for numerical integration be-
cause a particle simply moves in a straight line with a con-
stant velocity as long as r is such that U(r) is constant. A
“collision event” occurs when the distance r between two
particles crosses one of the step boundaries. The main task in
a DMD simulation is to calculate when the next collision
occurs, and update the velocities of the particles involved
after such an event. The new velocities are obtained from a
simple calculation using the classical conservation laws for
energy and momentum. For this reason DMD does not suffer
from integration errors as the trajectories can be calculated to
a precision bound only by the computer hardware. A draw-
back of the DMD algorithm is that it is more complex than
basic MD. Furthermore, a lot of extra memory is needed to
keep track of all the collision events. However, with modern
day computers, the necessary memory has become less of a
concern.

For all simulations with fixed particle number, constant
volume, and constant temperature (NVT), we use the Ber-
endsen thermostat to keep the system at a constant tempera-
ture, and for all NPT simulations an additional Berendsen
barostat is used to keep the pressure constant. The implemen-
tation for DMD differs slightly from that for regular MD, but
the algorithm [92] is the same. To keep the temperature near
a value of T}, we periodically calculate the kinetic tempera-
ture 7 of the system and then rescale the velocity of each
particle by a factor of [1+(T,/T—1)]"2. The thermal coef-
ficient k has a value between zero (thermally isolated sys-
tem) and one (zero thermal resistance between the system
and a heat reservoir at Tj). In regular MD the velocity is
rescaled at fixed time intervals which are usually a multiple
of the simulation time step Az. Because DMD is event-driven
there is no fixed time step, so we rescale the velocities after
a certain number of collisions has occurred. In our simula-
tions this number is always a multiple of &, the total number
of particles in the system.

We follow a similar procedure for the Berendsen barostat
in DMD. In this case we rescale the box size in order to keep
the pressure constant. We allow the width, length, and height
of the box to change independently of each other, using as
parameters dx/dP,, dy/dP,, and dz/dP,. To keep the pres-
sure near a value of P, we calculate the average pressure of
the system and then change the width by a factor of 1—-(P,
—Px)dd—;. The length and height are rescaled in a similar fash-
ion.

The system that we consider in our paper has a good heat
conductance, and for this reason the type of thermostat has
not been a main concern. Sometimes the Berendsen thermo-
stat can lead to problems; one basically takes heat out of the
entire system, and if the heat is produced in one particular
place, e.g., on a crystal-liquid boundary, then this particular
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place may obtain a higher temperature than the rest of the
system, which can lead to artifacts. We have checked the
temperature distribution of the system and found that it is in
fact quite uniform and we observed no artifacts from the
applied thermostat.

To explore the phase diagram of the family of potentials
considered, we perform NVT simulations with 4000 particles
in a cubic box of various sizes together with periodic bound-
ary conditions. We first equilibrate each state point for a
period of at least 700 time units, followed by a data taking
period of about 2100 units of time. We use the Berendsen
thermostat with a thermal coefficient of k=0.01, and we res-
cale the velocity after every N collisions. After the trajecto-
ries of the particles are collected, we calculate the diffusion
coefficient D, using

A+ =) P
D =1lim .
P 6t

(4)

The notation (---), indicates an average taken over all par-
ticles and all time ¢’, with 700 <¢' =2800.

We analyze the melting line by performing simulations
done at constant pressure and temperature (NPT). We locate
the melting line by simulating a system that starts with one
half being liquid and the other half being in the solid state.
For each value of N\ considered in this paper the crystal lat-
tice is fcc, so the initial solid state is always chosen to be an
fcc crystal. If at a given pressure P the crystal grows, then
the temperature T lies below the melting temperature 7.
But if the liquid grows, 7 must lie above T,.;;. To prepare the
initial state of half liquid/half solid, we first prepare an fcc
crystal in the shape of a long box (its height twice as large as
its width and length), containing 5600 particles with none of
them overlapping. Since cluster formation is strongly related
to the density, and thus the pressure, it is important to ensure
that the fcc crystal has the number of clusters corresponding
to the particular pressure P at which we are trying to find the
melting temperature. This we accomplish by first melting
half of the crystal at this pressure, and then making it recrys-
tallize. Subsequently, we melt and recrystallize the other
half. Additional local melting and recrystallization can be
used to prevent grain boundaries from forming, to obtain a
homogenous crystal with the correct amount of clustering.
Localized melting can be done by replacing the interaction
potential by a weaker potential, within a certain region of the
box. Once the crystal has melted in this region, we restore
the original potential. To ensure recrystallization, the initial
state of half liquid/half solid must be prepared at a tempera-
ture slightly below 7.

After the crystal is placed at approximate thermal equilib-
rium with the liquid, with the liquid-crystal interface perpen-
dicular to z axis, we perform production runs for several
values of T in the vicinity of T}, Figure 2 shows the varia-
tions of the potential energy as a function of time. If the
potential energy increases, the liquid grows, so T> T, By
extrapolating U,,(7) for different temperatures and looking
at the slope of those curves, we are able to estimate the value
of T, for a given pressure.
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FIG. 2. Potential energy vs time, to help determine the melting
temperature T}, for the A=0 cut at pressure P*=1.12. Shown here
is the potential energy Upy(r) for temperatures T~
=0.0360,0.0365,0.0370,0.0375 (from bottom to top) for a box
with 5600 particles, starting as an fcc crystal. After a short equili-
bration period, at *=70 half the crystal is melted by temporary
lowering the interaction potential for the particles in the center of
the box. At *=100 the interaction potential is restored and the
simulation is allowed to run till #*=3500. Considering the slope of
Upoi(?) one can determine if either the liquid or the crystal is grow-
ing. The lowest temperature (bottom graph) crystallizes completely
before the simulation ends; the nearly constant potential energy
indicates the system has reached equilibrium. Similarly, the system
at the highest temperature is seen to liquefy completely near ¢*
=1500. The melting temperature at this pressure is estimated to be
T ,=0.0367.

melt

For all simulations concerning the melting line, we set
k=1 for the Berendsen thermostat and perform velocity res-
caling every N collisions. The volume is rescaled after every
10N collisions, with dx/dP,=dy/dP,=0 and dz/dP_=3.75
X 107 (reduced units); i.e., the width and length of the box
are fixed, and we only allow the height to vary. Simulations
run for at least 3500 time units, and we apply periodic
boundary conditions, as before.

IV. RESULTS

We calculate the liquid-solid coexistence line of a system
of particles interacting through the potential defined in Eq.
(3) for different values of \ (Fig. 3). Unlike the bounded
potentials studied up to now, we find that for small A the
melting behavior of this model combines melting features
typical of Q*- and Q*-type interactions. Let us consider the
case A=0, for example. At small pressures the melting line
rises with a positive dT/dP slope, as one could expect, since
in this dilute regime the potential is essentially impenetrable.
As the pressure increases, the soft nature of the repulsion
comes into play. The melting line bends and passes through a
maximum in temperature, followed by a region with a nega-
tive slope where re-entrant melting occurs. In this region, the
solid melts into a denser liquid when we increase the pres-
sure at a constant temperature (Fig. 4). At higher pressure the
slope recovers a positive value, and runs to higher tempera-
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FIG. 3. (Color online) Liquid-solid melting line in the P-T plane
for the cut ramp potential with A=0, 0.25, 0.33, and 0.5. Axes are in
reduced units: P*=Po/U, and T*=kgT/U,. The region of anoma-
lous re-entrant melting (a negative slope of the melting line) is
clearly visible for A=0.

tures and pressures. Given the bounded nature of the poten-
tial, the observed behavior suggests that at high pressures
(where the melting line has positive dT/dP slope) the system
crystallizes into a clustered solid.

For A larger than A\ .~ 0.28 the melting line has a positive
dT/dP slope everywhere, a behavior similar to typical
Q~-type interactions such as the PSM or the GEM-4. The
slope of the melting line becomes steeper and steeper as A
gets larger. In fact, as \ increases, the flat top of the potential
becomes larger and larger, and the interparticle potential be-
comes increasingly similar to the penetrable sphere model
interaction.

In order to relate melting behavior and cluster formation,
we investigate the formation of aggregates of particles. As a
measure to quantify clustering we adopt the average number
N, of neighbors of a particle within a distance smaller than
the first minimum ry (with ro=< o) of the radial distribution
function (see Fig. 5)

2 y @)
/ 7/
// 7/
- 2
// /
1.8 s v /
= e
2 / e
(o)
Ster /
] /
€ / /
g / K O-—-Ocrystal (A=0)
14 N—A liquid (A=0)
e ——e crystal (A=0.25)
A—a liquid (A=0.25)
190 | -——» crystal (A=0.5)
: — liquid (A=0.5)
0.6 0.8 1 1.2 1.4 1.6 1.8

p*

FIG. 4. (Color online) Particle density of the crystal and liquid
on the melting line, for the cut ramp potential with A=0, 0.25, and
0.5. For A=0 and P* roughly between 0.9 and 1.3 the liquid phase
is denser than the coexisting solid.
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r/c,

FIG. 5. (Color online) Explanation of how we determine the
amount of clustering. Shown here is the radial distribution function
g(r) for the uncut ramp potential (\=0,,/o;=0). Both graphs refer
to the liquid state at 7"=0.035. To quantify the amount of cluster-
ing, we calculate the average number of neighbors N within a
distance rq, the first minimum of g(r), i.e., Ny= [(M4mr’pg(r)dr,
where ry= 0. The corresponding region is indicated by the shaded
area.

ro
Ny= J 4arr?pg(r)dr, (5)
0

where p=N/V is the particle density.

We calculate N on the melting line for both the liquid
and solid state, and show the results in Fig. 6. We find that at
fixed pressure, N, depends sensitively on the value of A,
being larger for potentials with a wider flat top (large \).
This is consistent with the reduced repulsion around r=0
which favors the formation of clusters of particles. For a

;  O—-Ocrystal (A=0)

I ~—Aliquid (A=0)

/ o ——e crystal (A=0.25) |

! a—aliquid (\=0.25)
-——» crystal (A=0.5)
— liquid (A=0.5)

1.2 1.4 1.6 1.8
p*

FIG. 6. (Color online) Average number of neighbors N, within
a distance smaller than the first minimum of g(r). Results are shown
for temperatures on the melding line (both the liquid and solid state)
for the cut ramp potential with A=0, 0.25, and 0.5. In most cases
the clustering is higher for the solid state, except for A=0 in the
pressure range corresponding to the anomalous region.
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given N, N, increases with the pressure, though the exact
behavior depends on the value of N. For small A (i.e., N
=\.) no clustering occurs on the first portion of the melting
line, and the phenomenon becomes important only when the
melting slope becomes positive again after the local mini-
mum in the melting line. For larger A however, cluster for-
mation is already significant at low pressures (Q*-type inter-
action behavior) and N, attains large values rapidly. Values
of N close to one correspond to a system with double oc-
cupancy in which particles aggregate to form dimers. At high
pressures N may assume even larger values (especially for
large \) as more and more particles sit on top of each other.
For a given A, N is generally larger in the solid state, with
the exception of those regions where re-entrant melting oc-
curs. This is particularly evident for A=0, where in the pres-
sure range corresponding to re-entrant melting, N, is larger
in the liquid, which is denser than the coexisting solid (Fig.
4).

In general, the density (pressure) regime at which cluster-
ing sets in depends on the relative balance between the re-
pulsive force around the particle core and that at r=0, which
can be understood through the following qualitative argu-
ment. Consider a uniform arrangement of particles at densi-
ties just large enough so that the particles only begin to touch
with each other. Moving two particles closer implies an en-
ergy cost (that is smaller as A increases and the potential gets
flatter), but at the same time, reducing the number of nearest
neighbors yields an entropy gain, which gets larger as the
average interparticle distance decreases. For large N cluster-
ing is favored already at very low densities, whereas for
small N\ only at sufficiently large densities it is energetically
convenient to move two particles closer such that cluster
formation occurs.

The possibility of having the behavior of both Q*-type
systems and Q*-type systems at the same time makes the cut
ramp model particularly suited for exploring the relationship
between melting, cluster formation, and waterlike anomalies.
We find that this model exhibits both density and diffusion
anomalies (Fig. 7). The region where the density anomaly
occurs [delimited at high temperature by the temperature of
maximum density (TMD) line] as well as the region of dif-
fusion anomaly [delimited by the loci of diffusivity maxima
and minima (DM)] are localized approximately in the same
pressure range where re-entrant melting is found to occur.
Another anomalous feature is the behavior of the isothermal
compressibility, which increases upon cooling between the
lines of maximal and minimal compressibility. The part of
the low-density branch with a positive slope corresponds to
the compressibility minima, while the high-density branch
with dP/dT>0 and the low-density branch with dP/dT <0
correspond to the compressibility maxima. As in water and
other liquids with a density anomaly, the isothermal com-
pressibility line crosses the TMD line at both the point of its
largest and its lowest temperature (there where the slope
dP/dT is infinite), which is consistent with the mathematical
properties of the second derivative of the equation of state
[93]. As shown by the behavior of the isoclustering lines, the
number of clusters increases with increasing the pressure at
constant temperature. On the other hand, the amount of clus-
tering decreases (though much less sensitively) upon increas-

PHYSICAL REVIEW E 81, 031201 (2010)

ing the temperature while keeping the pressure constant. The
latter statement follows most clearly from Fig. 7 by noting
that as one moves along a constant pressure path the isoclus-
tering lines corresponding to lower and lower values of N
are successively crossed as 7 is increased. As \ increases, the
isoclustering lines move toward lower pressures, as follows
from the reduced repulsion at small 7. At the same time, the
anomalous region progressively shrinks and vanishes for A
just slightly larger than A\, (Fig. 8), a phenomenon also ob-
served in [29] for a different model.

A valuable insight into the relationship among waterlike
anomalies, melting behavior, and cluster formation is pro-
vided by the analysis of the structural properties. Figure 9
shows a snapshot of a liquid/crystal system at P*=1.2 and
T°=0.35 for the uncut ramp potential on the melting line.
The fcc structure of the crystal is clearly visible and overlap-
ping particles have been highlighted with a red color. To
obtain a more quantitative analysis, we calculate for the un-
cut ramp potential (A=0) the structure factor S(Q) for sev-
eral pressures at a constant temperature slightly larger than
the maximum melting temperature 7}, ~0.039. As shown
in Fig. 10, with increasing pressure the system becomes at
first more and more structured: all peaks go up while their
position shifts slightly toward larger Q. This trend, related to
the formation of the solid at low densities comes to a halt
approximately at P, where P, is the pressure corre-
sponding to the maximum melting temperature 7,,,,. Increas-
ing the pressure further, brings us in the pressure range cor-
responding to re-entrant melting where S(Q) remains
essentially unaltered, both in the heights of the peaks and in
their positions. This pressure range lies roughly between
P*=0.8 and 1.2, where P*= 1.2 corresponds to the inflection
point of the melting line. Finally, as we increase the pressure
even further, we approach the high-density clustered solid
and S(Q) shows a remarkable increase of its first peak, and a
less significant increase of the second one. For pressures
where the liquid is supercooled (above P*=~1.45 for T~
=0.040) the second peak also undergoes a topological modi-
fication, with a shoulder growing on top of it, while its po-
sition remains essentially unaltered.

This behavior is completely different from what has been
reported up to now for bounded potentials that exhibit re-
entrant melting. For example, in the GCM (a typical system
with a Q*-type interaction) as pressure increases in the range
0 to P, all peaks of S(Q) go up, signaling that the system
is undergoing an ordering process associated with the forma-
tion of the solid region at low densities. When the pressure
increases further, all of the peaks decrease in height as the
system becomes more and more disordered. With increasing
P the positions of the peaks shift toward larger Q, which is
consistent with closer spacing of particles resulting from the
loss of efficacy of the soft core [83,87]. On the other hand, in
typical systems that undergo clustering and where the melt-
ing line runs monotonically to high 7 and P (such as, e.g.,
the GEM-4 system, which can be considered the continuous
analogous of the PSM), one finds that as P is isothermally
increased, S(Q) becomes more and more structured while the
positions of the peaks remain unaltered. This is related to the
crystallization of the liquid, where the system forms a lattice
with a lattice constant that is independent of the density [89].
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FIG. 7. (Color online) Phase diagram with isoclustering lines for the cut ramp potential with A=0, 0.25, and 0.5. The isoclustering lines
shown refer to the liquid phase (simulated deep into the supercooled liquid region), and run from N4=0.9 at the top (thin orange line) to
N4=0 at the bottom (thin magenta line), in steps of 0.1. The line with Ny3=0 is omitted for A=0.5. The thick solid red line is the melting line,
which displays re-entrant melting where the slope dP/dT is negative. The black solid and black dashed lines are the TMD and DM lines,
respectively. The loci of isothermal compressibility extrema are represented by the thick blue dashed line. The thick dot-dashed green line
represents the mean-field instability line py=—7/U(Q,) above which the liquid becomes unstable and freezes, according to Eq. (2). The MFT
instability line is exact in the limit of high density, so it is expected to be close to the melting line only at high pressures. In the case of A=0.5
the pressures considered are lower than for the other values of N, which explains the larger discrepancy. Axes are in reduced units: P*

=P}/ U, and T*=kT/U,.

In light of the above considerations, the results shown in
Fig. 10 suggest that for the uncut ramp potential, clustering
in the liquid phase plays already a role at intermediate den-
sities, i.e., where re-entrant melting occurs. The insensitivity
of S(Q) to pressure in the liquid phase in the range corre-
sponding to re-entrant melting (a feature never observed up
to now for systems undergoing this kind of melting) can be
understood by considering that in this region two contrasting
effects come into play.

(i) On the one hand, there is the loss of efficacy of the soft
core, which is associated with re-entrant melting. It causes
the system to have the tendency to become more disordered,
which shows in S(Q) as a decrease of the peaks as well as a
shift of the peaks toward higher Q.

(ii) On the other hand, with further increasing pressure the
particles begin to overlap which causes S(Q) to become more

structured and, since the spacing of clusters is essentially
density independent, the peak positions remains fixed. This is
similar to what happens in Q*-type interactions.

The independence of S(Q) with respect to the pressure
suggests that in the range of pressures corresponding to re-
entrant melting the effects of the two mechanisms balance
each other, at least as far as concerning the behavior of S(Q).
In re-entrant melting the low-density solid re-melts into a
denser liquid. Usually the density increase with respect to the
solid is due to a decrease of the average interparticle distance
(related to the loss of efficacy of the repulsive length scale
effective at smaller pressures). In the ramp potential how-
ever, the density increases because particles pile up to form
clusters, while the cluster-cluster distance is essentially
fixed—as is reflected by the fact that the peaks of S(Q) do
not show a shift toward higher Q. This behavior may be
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FIG. 8. (Color online) Density anomaly region for \.=0.28.
Thin lines correspond to the isochores. The blue dashed line, drawn
as a guide to the eye, indicates the temperature of minimum/
maximum density (TMD). For \ slightly larger than X\, the anoma-
lous region shrinks to a point and disappears. Axes are in reduced
units: P*=Po/U, and T*=kgT/U,.

considered as the fluid phase counterpart of the density-
independent lattice constant that characterizes clustered sol-
ids.

As discussed above, the loss of efficacy of the soft length
scale is balanced by the formation of particle clusters. This
effect can be better appreciated by analyzing the radial dis-
tribution function g(r) (see Fig. 11). At small pressures g(r)
has a peak at r=0, and goes rapidly to zero for smaller
interparticle distances, which means that in spite of its
bounded nature, the repulsion is effective in keeping the par-
ticles apart. As P is increased, the peak at r=0 grows and at
the same time the values of g(r) inside the soft core begin to
grow, which signals that more and more particles start to
fully overlap to form clusters. As the clustering process be-
comes significant (i.e., as the soft scale becomes less and less
effective) the peak at r=0 begins to decrease. This decrease
occurs approximately in the range of pressures correspond-
ing to re-entrant melting and the anomalous region. At the
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FIG. 9. (Color online) Snapshot of the liquid/crystal system for
the uncut ramp potential (A=0) at pressure P*=1.2 and temperature
T=0.035 (on the melting line). The complete system has a size of
approximately 100 X 100 X 3607, but shown here is a thin slice of
about one o thick. The fcc structure of the crystal is clearly visible
at the ends, with the liquid phase in the center. The distance be-
tween two neighboring particles in the crystal is approximately one
0. Shown in red are the “clustered” particles (those that lie within
a distance of 0.50 of one other). This particular state point lies well
within the anomalous region where the clustering N inside the
liquid is much higher than in the crystal (see also Fig. 6).
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FIG. 10. (Color online) Structure factor S(Q) of the uncut ramp
potential (A=0) at constant temperature (7°=0.040) for several
pressures, in steps of AP*=0.0416. The red dashed line represents
S(Q) for the smallest pressure (P*=0.15), and the green dot-dashed
line represents S(Q) for the largest pressure (P*=1.72). The appar-
ent thick black line located between the red and green lines results
from the overlap of many thin black lines in the range of pressures
where S(Q) changes very little with pressure. The range of densities
considered in this figure is 0.75 to 2.05 particles/o-?. Inset: Plot of
peak heights of S(Q) versus pressure, for the first and second
maxima.

same time a new peak begins to develop inside the soft core,
at r/o;=0.1. When the melting line acquires again a posi-
tive slope, the peak at r=0 inverts its trend and begins to
increase, while the peak at small r exhibits an extremely
rapid growth and becomes larger and larger as the clustered
solid is approached.

While the “explosion” of the peak at small r can easily be
attributed to the particles overlapping, the increase of the
peak at r=0; may appear surprising at first, given that at
such regimes the soft core has lost most of its efficacy. An
explanation for this feature can be found in the nature of the
clustering phenomenon itself. Complete or near-complete
overlap of two particles is more convenient for the system
than partial overlap of several particles, i.e., when several
particles are at a distance from each other just smaller than
the soft core. This restores part of the soft scale efficacy, and
thus the height of the peak at r=o0 is found to increase.
Essentially particles in the original system are replaced by
closely aggregated dimers that interact with an effective po-
tential twice as strong as the original potential. This is typical
behavior for a Q™ potential, where the soft scale efficacy in
crystals is found to remain practically intact because of clus-
tering, resulting in an essentially density-independent lattice
constant [89].

With g(r), the rise of a peak inside the soft core is a clear
indication of the interpenetration of the particles followed by
the formation of clusters. However, we observe in the uncut
ramp liquid a feature not found in other fluids that undergo
clustering (such as PSM or GEM-4): the development of
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FIG. 11. (Color online) Radial distribution function of the uncut
ramp potential (A\=0) at constant temperature (7%=0.040) for sev-
eral pressures, in steps of AP*=0.0416. The red dashed line repre-
sents g(r) for the smallest pressure (P*=0.15), and the green dot-
dashed line represents g(r) for the largest pressure (P*=1.72). The
apparent thick black line located between the red and green lines
results from the overlap of many thin black lines in the range of
pressures where g(r) changes very little with pressure. Inset: Plot of
the peak heights of g(r) versus pressure, for the first and second
maximum, as well as the “zeroth” maximum which is the peak at
r<oj.

such a peak at a nonzero distance. According to this feature,
though complete overlapping is highly probable at high pres-
sure, the most probable arrangement is one in which particles
partially overlap with their centers separated by a distance of
the order of 0.1cy. This is due to the presence in the ramp
potential of a repulsive force acting also at r=0, whereas in
the PSM or GEM-4 systems the repulsion vanishes at r=0. It
is reasonable to assume that as pressure gets higher and
higher, the position of the main peak of g(r) will move closer
to zero. Unlike the uncut ramp potential, the cut ramp poten-
tial (\>0) has no repulsive force at =0 and one may there-
fore expect a peak growing at zero distance. This is indeed
the case, as is shown in Fig. 12 for A=0.25.

The results that we have obtained illustrate for our system
the close relationship between waterlike anomalies and the
soft nature of the repulsive length scale. At pressures suffi-
ciently high such that the soft length scale loses its efficacy
[as shown by the decrease of the peak of g(r) corresponding
to the soft radius, and the rise of a new peak inside the core],
anomalous structural and thermodynamical behavior occur,
as well as re-entrant melting. At even higher pressures,
where the formation of clusters becomes dominant, cluster-
ing gives rise to an essentially persistent effective length
scale [reflected in the increase of the peak of g(r) at r=0],
thus “undermining” a basic condition for the onset of anoma-
lies.

We finally investigate the behavior of a system of par-
ticles interacting through a potential that consists of an im-
penetrable hard core surrounded by a soft core, where the
soft core is again a linear ramp [5],
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FIG. 12. (Color online) Radial distribution function of the cut
ramp potential (A=0.25) at constant temperature (7%=0.040) for
several pressures. The red dashed line represents g(r) for the small-
est pressure (P*=0.68), and the green dot-dashed line represents
g(r) for the largest pressure for which the system remains liquid
(P*=1.28). As a comparison, we have included the g(r) of the sys-
tem at pressure P*=1.61 (thin blue dotted line), which spontane-
ously crystallizes into an FCC structure. Inset: Plot of the peak
heights of g(r) versus pressure, for the first and second maximum,
as well as the “zeroth” maximum which is the peak at r=0.

0, for r= oy
Ury=y(1=rlo)U,, for oy<r<o (6)
0, for r=o.

It has been shown that the HCLR potential (Fig. 13) can
display waterlike anomalies, provided that the ratio A be-
tween the hard core radius, oy, and the total interaction
range, o, is not too large [27]. We choose A=4/7 (for
which anomalous behavior was reported [17]) and analyze
the relationship among the melting line, the anomalous be-
havior, and the structural properties.

As shown in Fig. 13, the melting line displays a positive
dT/dP slope at small pressures, consistent with the substan-
tial impenetrability of the soft ramp in the dilute regime. As
pressure increases, the soft repulsive ramp becomes less and
less effective and the melting line passes through a maxi-
mum in temperature, followed by a region where re-entrant
melting occurs. As expected, in this small-intermediate pres-
sure range the melting line of the HCLR almost overlaps
with that of the ramp potential, since the presence of the hard
core is “screened” by the soft repulsion. At higher pressures,
where the soft repulsion becomes ineffective, the HCLR po-
tential is characterized by the hard core repulsion, and the
melting line accordingly recovers a positive slope. At these
high pressures the liquid crystallizes into a rhombohedral
lattice [17], while in models with a bounded potential clus-
tering results in a complete overlap and the system crystal-
lizes into a fcc structure with multiple occupancy. The den-
sity and diffusion anomalies occur in the pressure range
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FIG. 13. (Color online) Phase diagram of the hard core plus
linear ramp (HCLR) potential. Solid red line indicates the melting
line. The black solid line and dashed lines are the temperature at
maximum/minimum density (TMD) and the diffusion extrema
(DM) lines, respectively. The thick blue dashed lines represents the
loci of compressibility extrema. Axes are in reduced units: P*
=Po‘?/U1 and T*=kgT/U,. Inset: The hard core plus linear ramp
potential U(r) as a function of the interparticle distance r.

where the HCLR system undergoes re-entrant melting, while
both anomalies are found to disappear at higher pressures
where the melting line recovers a positive slope.

As can be appreciated by comparing Figs. 7 and 13, the
phase diagram of the HCLR potential has a similar topology
as that of the ramp potential. However, the physical mecha-
nism that cause such apparently similar behavior, present
some remarkable differences. While the bounded ramp po-
tential is characterized by just one length scale, the HCLR
interaction possesses two repulsive length scales—the soft
core (effective at low P,T) and the hard core (effective at
high P,T). The turning on and off of the efficacy of these
two length scales, is made evident by the analysis of the
structure factor (see Fig. 14). As pressure increases, the first
peak of S(Q) initially increases. This peak is associated with
the larger soft radius, and its increase is in correspondence
with the formation of the solid at low density. As the pressure
is increased further, the peak decreases as the soft scale loses
its efficacy and the low-density solid re-melts. At intermedi-
ate and high pressures the second peak (related to the hard
length scale) increases more and more, which signals the
formation of a high-density solid similar to the crystal of
hard spheres. Thus the mechanism giving rise to the phase
behavior of the HCLR system is essentially based on the
presence of two length scales and on the alternation of their
efficacy with pressure.

A common feature of the linear ramp and HCLR poten-
tials is that in both systems re-entrant melting and anomalous
behavior can be related to the loss of efficacy of the soft
scale at intermediate densities. However, the positive dT/dP
slope of the melting line at high densities have completely
different origins. In the linear ramp it arises from the domi-
nance of the clustering phenomenon that at such regimes
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FIG. 14. (Color online) Structure factor of the hard core plus
linear ramp potential at constant temperature (7%=0.036) for several
pressures. The first peak of S(Q) decreases with increasing pressure,
and at pressures below P*~4 the first peak of S(Q) is the largest,
while the second peak is the largest above P*~4. In fact, at very
high pressures the first peak is found to disappear completely. Inset:
Plot of peak heights of S(Q) versus pressure, for the first and second
maxima.

“forces” the efficacy of the soft scale, as shown by the in-
crease of the first peak of S(Q): while the soft repulsion is
completely ineffective for particles within each cluster, the
net cluster-cluster interaction still possess a significant soft
core, keeping the cluster-cluster separation essentially
density-independent. On the other hand, in the HCLR poten-
tial [where the first peak of S(Q) disappears] the positive
slope of the melting line at high densities is the result of the
presence of an inner hard core.

The presence of a soft repulsive component in addition to
a hard core may give rise to cluster formation in core-
softened interactions, provided that the hard radius is suffi-
ciently small with respect to the soft one. For instance, the
phenomenon of cluster formation has also been observed in
the hard core plus square shoulder (HCSS) potential [94-96],
and is found to be robust upon the introduction of an attrac-
tive component of the interaction [97]. Cluster morphology
in core-softened interactions like the HCSS is considerably
more complex than is the case for bounded potentials, since
a full overlap is explicitly forbidden when there is a hard
core. Accordingly, for these types of potentials the effects of
cluster formation on the phase behavior can be expected to
be less relevant than for the bounded potentials, due to the
dominance of the hard core repulsion at high pressures.

V. DISCUSSION AND CONCLUSIONS

In conclusion, we show that the two phenomena of (a)
re-entrant melting and (b) crystallizing into a clustered solid
can be observed (at different pressures) in the same system,
this system is described by the repulsive linear ramp poten-
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tial or by a linear ramp potential cut at not too low heights.
Previously, these two phenomena have not been observed
together in the same system. For the cut ramp model, we
observe a full spectrum of waterlike anomalies in the pres-
sure range corresponding to the re-entrant melting. The
anomalous behavior tends to disappear as the ramp is cut at
lower and lower heights, thus becoming more and more
similar to the penetrable sphere interaction (A — 1). We find
the critical value for \ to be \.~0.28; we observe anoma-
lous behavior for the cut ramp potential with N <\., while
observing none for values of A larger than \,.

To relate formation of clusters of particles with the melt-
ing behavior of the liquid, we introduce the clustering pa-
rameter N, defined in Eq. (5), as the average number of
neighbors of a particle within a distance smaller than the first
minimum of g(r). The amount of clustering N, depends
heavily on the pressure and the value of \. As the pressure is
increased, N rises, and the same happens when the ramp is
cut to lower heights (i.e., increasing \).

The clustering N, shows anomalous behavior on the melt-
ing line, which is related to re-entrant melting. The “cluster-
ing anomaly” is characterized by having a higher amount of
clustering in the liquid state than in the solid state, and is
most clearly visible for A=0 in Fig. 6. Re-entrant melting
means that there exists a range of pressures for which the
melting line has a negative slope dT/dP <0. The Clapeyron
equation then tells us that

ap — Stiquid = Ssolid <0, (7)
dT  Viguia = Vsolia

and since the solid state has a higher degree of order than the
liquid state, Syquiq = Ssolia» W€ thus conclude that in exactly
the same pressure range Viiquia < Voiig» 1-€., the particle den-
sity of the liquid is higher than that of the solid. Comparing
Figs. 3 and 4 for A=0, we see that both anomalies indeed
occur in the same pressure range, namely 0.9 <P*<1.3 ap-
proximately.

Within this pressure range there is less volume per par-
ticle available in the liquid, than in the solid state. Evidently,
it is therefore to be expected that the amount of clustering is
larger in the liquid state for these pressures, simply because
there is less space available. However, this qualitative state-
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ment to explain the clustering anomaly ignores the way the
particles are distributed over the available volume, and there-
fore fails at low densities where N is small. We refer to the
case of A=0 in Fig. 4 and 6, which indicate that both anoma-
lies disappear at pressures above P*=1.3. On the other hand,
the density anomaly does not exist for pressures below P*
~(.9, while the clustering anomaly already disappears at
pressures below P*=~1.05 (where N, vanishes for the liquid
state).

In the range of pressures where re-entrant melting occurs,
the structure factor of the uncut linear ramp potential is more
or less insensitive to pressure (both in the heights of the
peaks and in their positions), a feature never reported in as-
sociation with re-entrant melting. This behavior is related to
the formation of clusters of particles, which balances the
tendency of S(Q) to get less structured in the pressure range
where re-entrant melting occurs. However, a detailed analy-
sis based on the study of the radial distribution function g(r)
makes evident that in the region where re-entrant melting
and waterlike anomalies occur, the soft length scale loses its
efficacy because of the pressure increase. The clustering phe-
nomenon eventually restores the soft scale efficacy by en-
forcing an approximately constant distance between the clus-
ters. Thus the onset of clustering weakens and eventually
overturns the very physical basis of anomalies.

Though we considered here a simplified model system,
our results may be useful to better understand the phase be-
havior of macromolecules as well as that of substances with
nondirectional interactions able to show liquid polymor-
phism [63,66].
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