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Abstract – We study how spatial constraints are reflected in the percolation properties of
networks embedded in one-dimensional chains and two-dimensional lattices. We assume long-
range connections between sites on the lattice where two sites at distance r are chosen to be
linked with probability p(r)∼ r−δ. Similar distributions have been found in spatially embedded
real networks such as social and airline networks. We find that for networks embedded in two
dimensions, with 2< δ < 4, the percolation properties show new intermediate behavior different
from mean field, with critical exponents that depend on δ. For δ < 2, the percolation transition
belongs to the universality class of percolation in Erdös-Rényi networks (mean field), while for
δ > 4 it belongs to the universality class of percolation in regular lattices. For networks embedded
in one dimension, we find that, for δ < 1, the percolation transition is mean field. For 1< δ < 2,
the critical exponents depend on δ, while for δ > 2 there is no percolation transition as in regular
linear chains.

Copyright c© EPLA, 2011

Complex networks have attracted considerable atten-
tion in the last decade [1–12]. It has been realized that
networks provide a very useful way to describe and better
understand the collective behavior of complex systems
composed of a large number of interacting entities. There
are two network classes of particular interest: Erdös-Rényi
(ER) random graphs [13] and Barabasi-Albert (BA) scale-
free networks [14]. In ER networks, the distribution of the
degrees k (number of links) of the nodes is a Poissonian
(P (k)∼ λk/k!, where λ is the average degree), while in BA
scale-free networks, the distribution follows a power law,
P (k)∼ k−γ , with γ typically between two and three. Both
classes have interesting topological properties, consider-
ably different from those of regular lattices. Both exhibit
the “small world” effect meaning that their topological
diameter increases slowly, either logarithmically or double
logarithmically, with the system size [9,10].
When studying the properties of networks it is usually

assumed that spatial constraints can be neglected.

(a)E-mail: li.daqing.biu@gmail.com

This is probably true for certain networks such as the
WorldWideWeb (WWW) or the citation network where
the real (Euclidean) distance does not play a role. In
contrast, the spatial distance does play a role in the
Internet [15,16], airline networks [17,18], human travel
networks [12,19], wireless communication networks [20]
and social networks [21,22], which are all embedded in
two-dimensional space. It has recently been shown that
these spatial constraints are important and in certain
cases can significantly alter the topological properties of
the networks [23–32].
In this letter, we study the robustness of spatially

constrained networks embedded in one or two-dimensional
space, by analyzing their percolation properties. Percola-
tion is important since it can shed light also on epidemic
spreading [33] and immunization strategies [34]. Here, we
focus on spatially embedded ER networks where lattice
nodes are connected to each other with a probability
p(r)∼ r−δ, where r is the Euclidean distance between
the nodes. The choice of a power law for the distance
distribution is supported from findings in several real
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complex networks, such as the Internet [15,16], airline
networks [17,18], human travel networks [12,19] and other
social networks [21,22,25].
Here, we are interested in studying how in model

networks δ influences the percolation properties of the
embedded networks, such as the percolation threshold qc,
the size of the largest cluster M , its dependence on the
system size (number of nodes N) and the cluster size
distribution ns at qc. When the networks are embedded
in two-dimensional space we find that, for 2< δ < 4, the
percolation properties show new intermediate behavior
different from mean field with critical exponents that
depend on δ. For δ < 2, the percolation belongs to the
universality class of percolation in ER networks (mean
field), while for δ > 4 it belongs to the universality class
of percolation in two dimensional lattices. For networks
embedded in linear chains we find that, for δ < 1, the
percolation properties are the same as mean field, while for
1< δ < 2, we find new percolation exponents that depend
on δ. For δ > 2, there is no percolation transition, as in
normal one-dimensional systems. We like to note that
analogous δ regimes were found in these systems also for
the dependence of the shortest path on N [28].
We focus on embedded networks where each node has

roughly the same number of k links. To construct these
networks we follow the algorithm presented in [28]. The
nodes of the embedded network are the sites of a given
regular lattice. First, we choose a node i randomly and
assume that it is connected by k links to other k nodes.
For one of those links, we select a length r with probability
φ(r) (φ(r) = cp(r) = cr−δ for the linear chain and φ(r) =
crp(r) = crr−δ for the square lattice where c is determined
from the normalization condition). There are Nr nodes at
the selected distance r from node i, and we pick randomly
one of them and connect it to node i. As a result, k− 1
links of node i are not assigned yet. Next, we repeat this
process for another randomly chosen node, where again
we establish one link. We continue this process where at
each step one of the remaining links is connected, until
all links are assigned or no more links can be assigned.
Finally, we remove the rare multiple connections. Due to
the generation process, the nodes of the final network
do not all have the same degree, but the degree follows
a narrow distribution with a mean k̄ that depends on
both k and δ. In the two-dimensional case, k= 4 produces
networks with 3.6< k̄� 4 for all δ, while in one dimension,
k= 4 produces networks with 3.1< k̄ < 4 for all δ < 2.
Next we study the percolation properties of these

embedded network models. To this end, we randomly
remove a fraction q of nodes and measure the size of the
largest and second largest cluster as a function of q. The
percolation transition qc is estimated as that value of q
where the second largest cluster on the network reaches a
maximum. In fig. 1 we present four examples of the largest
cluster (“giant component”) at the percolation transition
for networks embedded in a square lattice, for δ = 1.5,
δ= 2.5, δ= 3.5 and δ= 4.5. By inspection one can see

δ=1.5, ER, Giant Component δ=2.5, ER, Giant Component

δ=3.5, ER, Giant Component δ=4.5, ER, Giant Component

Fig. 1: (Color online) Giant component of ER networks
embedded in a square lattice at the percolation threshold with
δ= 1.5, 2.5, 3.5 and 4.5. As δ increases, the giant component
has less long-range connections and becomes more affected by
the constraints of the embedding space.

Fig. 2: (Color online) Size of the largest cluster M (black)
and the second largest cluster S2 (red) as a function of the
removed fraction of nodes q for several values of δ. The
vertical scales refer to M . For better visibility, we rescaled S2
by appropriate factors. For networks embedded in a square
lattice (upper 4 panels), the size of the second largest cluster
reaches a maximum value at qc = 0.75, 0.70, 0.60, and 0.41 for
δ= 1.5, 2.5, 3.5, and 4.5, respectively. For networks embedded
in linear chains (2 lower panels), qc = 0.27 and 0.17 for δ= 1.5
and 1.75, respectively.

three qualitatively different structures appearing in the
giant component. For δ= 1.5 and 2.5, there is a large
number of long links which are responsible for the connec-
tivity of the largest cluster. For δ= 3.5 the giant compo-
nent is made up from several localized subgraphs which
are connected to each other by few long links. Finally, for
δ= 4.5 the giant component is made by local short-range
connections only, similar to site percolation in lattices.
To obtain qc, we measure the size M of the largest clu-

ster and the size S2 of the second largest cluster (fig. 2)
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Table 1: Critical exponents and thresholds for ER networks
embedded in square lattices (upper table) and linear chains
(lower table).

δ τ df/d (eq. (1)) df/d (eq. (2)) qc
4.5 2.05 0.94 0.95 0.41
3.5 2.16 0.86 0.86 0.60
3.3 2.21 0.82 0.83 0.62
3.0 2.36 0.75 0.74 0.66
2.8 2.38 0.71 0.72 0.68
2.5 2.48 0.69 0.68 0.70
1.5 2.50 0.66 0.66 0.75

δ τ df/d (eq. (1)) df/d (eq. (2)) qc
1.75 2.11 0.90 0.90 0.17
1.50 2.35 0.74 0.74 0.27

as a function of q, see fig. 2. When approaching qc
from below, the fraction of nodes in the largest cluster
approaches zero, but the size of the second largest
cluster reaches a maximum value [35]. Accordingly, by
determining the size of the second largest cluster, we can
determine the value of qc. Table 1 shows the values of
qc for different values of δ. For δ= 4.5, qc = 0.41 is very
close to the known value of site percolation in the square
lattice, qc = 0.407, while for δ= 1.5, qc = 0.75 is very close
to the known result qc = 1− 1/k̄ for percolation in ER
networks. For smaller δ values, the network contains more
long-range connections. As a consequence, it becomes
more robust against node removal, and qc increases.
Next we analyze the critical exponent that determines

how at criticality the sizeM of the giant component scales
with the number of nodes N of the original network.
Figure 3 shows, in a double-logarithmic presentation,
M vs. N in networks embedded in a square lattice and in a
linear chain, for several δ values and several values of q in
the vicinity of qc. The figure shows that only at criticality
there exists a power-law relation (straight line in the log-
log plot) while above and below qc the curves bend up and
down, respectively. This feature is a characteristic of the
percolation transition [35]. The fact that there is a strict
power law only at qc can also be used to determine qc quite
accurately. Since at qc the largest cluster is expected to be
a fractal, we obtain

M ∼N
df
d , (1)

where df is the fractal dimension of the percolation
cluster [35] and d is the dimension of the embedded
network. Table 1 summarizes our results for df/d. We
find that in the square lattice for δ < 2, the networks are
not influenced by the spatial constraints and show mean-
field–like behavior, with df/d∼= 0.66 as expected for ER
graphs (df/d= 2/3) [9,13]. For δ > 4, where long-range
connections are very rare, the networks are organized
locally and df/d= 91/96≈ 0.95 as for regular two-
dimensional lattices [35]. In the intermediate regime

Fig. 3: (Color online) Size of the largest clusterM as a function
of N for different values of δ and different fractions of removed
nodes: squares (q > qc), circles (q= qc) and triangles (q > qc).

Fig. 4: The values of df/d at criticality for different values of δ
in ER networks embedded in square lattices. The dashed line
is only a guide for eyes. For δ > 4, the percolation properties
belong to the universality class of square lattice (df/d= 91/96),
while, for δ > 2, they belong to mean-field result (df/d= 2/3).

(2< δ < 4), our results indicate the existence of new
critical exponents (see also fig. 4). Figure 3 (lower panels)
indicates, that a similar intermediate regime 1< δ < 2
exists also in linear chains, where df/d= 0.74 and 0.9 for
δ= 1.5 and 1.75, respectively.
Next, to support these results, we apply an independent

approach to evaluate df/d by analyzing the cluster size
density distribution n(s) at criticality, see fig. 5. The
cluster size distribution is defined such that n(s)ds is the
probability to find a cluster with size between s and s+ds.
At criticality, n(s) is expected to scale as n(s)∼ s−τ [35],
where

τ = 1+
d

df
. (2)
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Fig. 5: Density distribution n(s) of cluster sizes multiplied by
s at criticality for different values of δ.

Accordingly, by measuring the exponent τ (slopes in
fig. 5), we obtain an independent evaluation of df/d.
The results are shown in table 1 and are in very good
agreement with the values obtained from eq. (1). For
networks embedded in a square lattice, with δ < 2, we
obtain the classical mean-field value τ = 2.5 known for
ER networks [35]. For δ > 4, we obtain the same exponent
as for percolation in two-dimensional lattices, τ = 2.05. In
the intermediate range (2< δ < 4), the values of τ change
with δ, and new universality classes emerge due to the
competition between the spatial constraints and the long-
range connections.
In summary, we have examined the percolation transi-

tion of spatially constrained Erdös-Rényi networks, where
the distribution of the lengths of the edges follows a power
law. We find that there are three distinct regimes where
different types of percolation transitions with different
critical exponents exist. For networks embedded in a
square lattice, in the first regime (δ < 2), the giant compo-
nent is characterized by nodes connected with long links
comparable to the system size and the transition belongs
to the universality class of percolation in ER networks. In
the intermediate regime (2< δ < 4), the giant component
is comprised of localized cliques which are connected by
few long links and the critical exponents seem to change
with δ in a continuous way. Finally, in the last regime
(δ > 4) the giant component has only short-range connec-
tions and the transition belongs to the universality class
of percolation in two dimensions. For networks embedded
in one dimensional chains, also three regimes occur: For
δ < 1, the spatial constraints are not relevant and the
percolation properties are those of ER networks. For
δ > 2, there is no percolation transition as in linear chains.
In the intermediate regime (1< δ < 2), new percolation
properties are observed. Analogous effects have been
found for long-range links on fractal networks by Rozen-
feld et al. [36]. Finally, we like to note that although our

analysis has been performed on the square lattice, for
reasons of universality we expect that the results will not
change for different two-dimensional lattice or continuum
structures. Moreover, we expect that similar three regimes
will also appear for percolation in ER networks embedded
in three dimensions.

∗ ∗ ∗

We thank ONR, DTRA, Deutsche Forschungsgemein-
schaft (DFG), the Israeli Science Foundation and the
European Project EPIWORK for financial support.

REFERENCES

[1] Albert R. and Barabási A. L., Rev. Mod. Phys., 74
(2002) 47; Newman M. E. J., SIAM Rev., 45 (2003) 167;
Dorogovtsev S. N. and Mendes J. F. F., Evolution of
Networks (Oxford University Press) 2003; Boccaletti
S., Latora V., Moreno Y., Chavez M. and Hwang
D.-U., Phys. Rep., 424 (2006) 175; Dorogovtsev S. N.,
Goltsev A. V. and Mendes J. F. F., Rev. Mod.
Phys., 80 (2008) 1275; Barrat A., Barthlemy M.
and Vespignani A., Dynamical Processes on Complex
Networks (Cambridge University Press) 2008.

[2] Newman M. E. J., Watts D. J. and Strogatz S. H.,
Proc. Natl. Acad. Sci. U.S.A., 99 (2002) 2566; Newman
M. E. J., Networks: An Introduction (Oxford University
Press) 2010.

[3] Watts D. J. and Strogatz S. H., Nature (London), 393
(1998) 440.

[4] Watts D. J., Small Worlds (Princeton University Press,
Princeton, NJ) 1999.

[5] Cohen R. and Havlin S., Complex Networks: Structure,
Robustness and Function (Cambridge University Press)
2010.

[6] Cohen R., Havlin S. and ben-Avraham D., in Hand-
book of Graphs and Networks, edited by Bornholdt S.
and Schuster H. G. (Wiley-VCH) 2002, Chapt. 4.

[7] Cohen R. and Havlin S., Phys. Rev. Lett., 90 (2000)
058701.

[8] Gallos L. K. et al., Phys. Rev. Lett., 94 (2005) 188701.
[9] Bollobás B., Random Graphs (Cambridge University
Press, Cambridge) 2001.

[10] Cohen R. and Havlin S., Phys. Rev. Lett., 90 (2003)
058701.

[11] Hu Yanqing, Fan Ying and Di Zengru, arXiv:
0902.3329 (2009).

[12] Brockmann D. et al., Nature, 439 (2006) 462.
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