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We propose a deterministic model of diffusion-limited aggregation (DLA), based on the concept
of an infinite hierarchy of voids connected by narrow channels. This hierarchical model reproduces
many features of DLA: (1) The growth-site probability distribution shows multifractal behavior, (2)
the minimum growth probability decreases with size L as Inp,,,(L)~ —(InL)? and (3) the max-

imum growth probability scales as p,,,(L)~L o

Diffusion-limited aggregation' (DLA) has become im-
portant for describing a wealth of diverse physical, chem-
ical, and biological phenomena.? Despite many ingenious
attempts,”> no completely satisfactory understanding of
DLA has emerged. For example, although there exist al-
ready many models of DLA structure, only the recent pa-
per of Mandelbrot and Vicsek* qualitatively predicts the
multifractality of the growth-site probability distribution
(GSPD) and the behavior of the minimum growth proba-
bility, but the latter prediction seems to disagree with re-
cent simulations.” Here we propose a hierarchical model
of DLA which can be solved analytically for the GSPD
and for the minimum growth probability; we shall see
that all the predictions of the hierarchical model are in
accord with recent simulations of DLA.

To define the model, we begin with a triangle, two sides
of which have length L [Fig. 1(a)]. In the first generation
of this model, we replace this triangle with the generator
[Fig. 1(b)] of edge L. The generator consists of n nested
subtriangles with edges L,L,,...,L,. The edge of the
largest subtriangle L, is aL, that of the next largest L, is
a’L. We continue this process until we are at the level of
an individual pixel, so that the number of triangles n is
fixed by the equation L,=a”"L =1 (we call this the
minimum size restriction).® Therefore the maximum
value of n is —InL/Ina.

Since the total edge of the generator is the sum of
edges of all the subtriangles,

n l —a n

L=y L;=aL

(1)

For n >>1, L =~aL /(1—a); hence we choose a to be 1.
The second generation’ [Fig. 1(c)] is obtained by replac-
ing all the subtriangles in the first generation with genera-
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tors of edges L /2,L /2% ...,L /2" with the minimum
size restriction. Third and higher generations are ob-
tained by the analogous construction, and we continue to
form higher and higher generations until we reach a
“final stage” for which the edge of the largest triangle be-
comes 1 [Fig. 1(d)]. The concept of open voids connected
by narrow channels derived direct support from visual
examination of DLA clusters (cf. Fig. 2). In examining
photographs of DLA from the perspective of identifying
voids and channels, one must focus on that portion of
DLA that is finished growing; Coniglio and co-workers®
found that a large fraction of DLA is still growing
(roughly the region with r > R, where R, is the radius of
gyration).

To study the fractal and multifractal® properties of this
hierarchical model, we place the vertex O at the origin
and release a random walker at the perimeter of an
infinitely large circle. If the random walker touches a
perimeter site of the triangle, it sticks to that site. We
want to calculate the probability p;, (termed the
growth probability) that the random walker sticks to the
perimeter site i.

We will first present an analytic approach for calculat-
ing p;, and then we check the results of the argument by
direct numerical simulation. We introduce the following
notation. Let the index i, label the voids present in the
first generation [Fig. 1(b)], so that i; =1 denotes the larg-
est void, i, =2 the second largest, and so on until i, =n
denotes the smallest void. Note that n=InL/In2, since
the edge of the smallest subtriangle is 1. For the voids
created in the second generation [Fig. 1(c)], we require
two indices i, and i/,. The maximum of i, is n —i,, due
to the minimum size restriction. For the voids created in
generation g, we require g indices (iy,i,,...,7,). Now
the maximum of iy is n —i; —i, —

* —i, . This itera-
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FIG. 1. A solid triangle with angle 0 and side L, (b) the gen-
erator of the present hierarchical model, (c) the second genera-
tion this model, and (d) the final stage. The final stage can be
generated in a simpler fashion using the construction shown in
(e). However, in the text we used a more complicated generator,
which is more appropriate for the analytic derivation presented.
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FIG. 2. Off-lattice DLA cluster of mass 100000 (courtsey of
Meakin). Indicated by small circles are some of the key chan-
nels through which a random walker must pass in order to
reach the set of perimeter sites in the deepest “fjords” (it is
among such sites that the quantity p,, will be found).

tion will terminate when all the triangles become of edge
1, which will occur after n generations. To see this, we
note that in generation g, the edge of the largest triangle
is L /29=2"/29=2""9, which becomes 1 when g =n.

To estimate growth probabilities for the voids created
in the first generation, consider again Fig. 1(b). In order
for a random walker to reach the bottom of void i, it
must pass through i, voids. The probability II(L) of
passing voids of edge L scales as II(L)~L ~7.'° There-
fore the probability to reach the bottom of void i, is the
product of the probabilities to pass through all i, voids,

pi (L)=poL "Ly7" -~ LT

=po(L/2) N (L7277 - (L2 " .

Here p, is the probability to reach the entrance of the
void i} =1. Therefore the growth probability in the void
iis

iy it #1072

pi (L)=p,L (3)

h

One can also calculate the distance of void i, from the

vertex O, projected along the side O 4 (or OB). As shown

in Fig. 1(b), the largest void lies between L /2 and L, the
second largest lies between L/4 and L/2. In general,

(i)
Tl it 4)

h

where r(i,) is the distance between a point in void i, and
the vertex O (along the side O 4).

Having obtained the growth probabilities for the voids
created in generation 1, we now proceed to consider a
void created in the generation g. We now label each void
by g indices (iy,i,, ...,i,). For example, in Fig. 1(c) the
generation ¢g=2 is shown and the new voids are
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represented by the set (i,i,). In order for a random
walker to reach this void, it must pass through a specific
sequence of other voids. Specifically, it must first reach
void (i;,—1), then proceed to void (i;,i;—1), to

(iy,i5,i3—1), and so on until it finally reaches void
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Here II[x —y] is the probability to reach void y for the
random walker starting at void x, which is obtained by

noting that the transition probability
I[(i, —1)—(i;,i, —1)] is the probability to pass through
the sequence of  voids (i, 1)—(i},2)—(i},3)

(iy,iy, .. .,i,).  Therefore the growth probability —...—(i},i;—1). Since the edge of the void (i,,i,) is
Pi,,...... (L) for this void is /2" +'v
,,,,, 1,
(L)=p _ . .o _
p’l‘z’“'v’q( ) pzl I(L)H[(ll 1)_’(’1»12 1)] :(L/211+1)’Y(L/2l!+2) (L/21+'z l)—y
XTIy, i, =)= (i, ip,i3—1)]x « - :(L/zil)77(1241)2}/[2(5*1)/2 ’ 6)
X[y, dy, .00 ig = 1) . S
Similarly, since the edge of the void (iy,i5,...,i,) is
—iy,iy, -y ig)] . 5 Lt T
J
M[Giy,ip, oo iy = D —=li,iy, .oy, — 1]
:(L/ZII-HZ*» +1p/|+1)7y(L/2i1+12+ - +ipp*l+2)'*‘y L. (L/211-412+ +ipﬂl+iq*l)_y
(L/2l} tiyt o +ip71)'7“p 2)lp(lﬂ 1/2 ) (7)
Substituting (7) into (5), we find
p,l lz,lbl’iq(L):L‘7(1'1—l)zyil(il~l)/2(L/2i1)"y(lz—l)zyiz(iz—l)/Z
X(L 2/ 2y T T Dy iy — 2 Ly tet iy Tl +1/2
g, T g Dyl iy T D i iy DG b )l D Gy ]
Xzy[il(i]—l)+i2(izvl)+~--+iq(1q+l)]/2' ®)
[
We can also calculate the distance of void (iy,i5,...,i,) normalization condition 3 ,p;, = 1.

[projected on the OA (or OB) side] from the vertex O.
We already obtained this distance for ¢ =1, which is (4).
From Fig. 1(c), we find for general g the result
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2 R
)

2 42 g e
Piyinsis, ..o

L
<2 g2 TRy

q

42 TR 9)

Next we join together several hierarchical structures to
form a pattern that has some similarity to DLA. For ex-
ample, in Fig. 3, we connect five wedges (where the angle
between the edges of each wedge is =2 /5), since the
off-lattice DLA typically has approximately five or six
arms. We now want to calculate the growth probabilities
for the perimeter sites. In the preceding section, we cal-
culated the p, inside the voids, but we did not consider
the sites on the external perimeter. One can partition the
external perimeter into two parts, “lines” (AB,BC, .. .)
and “tips” (A,B, ...). The growth probability along the
lines was defined to be p,, which we will determine below.
The growth probabilities on the tips are obtained by us-
ing the known relation p, (L)~poL “mn where
a i, ~7/(m+6)."" Thus we obtain all the growth proba-
bilities in terms of p, and p, can be determined from the

For a given L(=2"), we numerically calculate (8) for
qg=1,2,...,n. Here, one must be careful about the num-
ber of growth sites. There are 29 ! voids having the

same index (il,iz,...,iq). Furthermore, the edge of
ity +d

these vonds -, is L/2! 7, which have
3L /2 hr v growth sites. We consider two ways to
A
E B
0
D C

FIG. 3. Five wedges (with 6=27/5) connected in such a
fashion to resemble DLA.
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include this degeneracy. First, we consider only the
growth site at the entrance to each void, ignoring all the
other growth sites in the void. From these growth proba-
bilities, we calculate the multifractal spectrum. We also
calculate the multifractal spectrum as follows. Since the
random walker must pass through a series of narrow
channels, there may be a large difference in growth prob-
abilities for different voids. On the other hand, there is
little variation of growth probabilities inside the same
void. Therefore we assume that all the growth sites in-
side the same void have the same growth probabilities, so
we multiply the growth probability p,—lv,-z,””,q(L) by a

degeneracy factor 3x2" TR T e fing
the multifractal spectrum obtained by both of these pro-
cedures to be qualitatively similar. Therefore we present
the results obtained by considering only one growth site
per void.

Consider the moments of the probability distribution

{p:i},

ZB,L)=3 pAL). (10a)

(i) First, we discuss the case 8> 0. Figure 4(a) is a log-
log plot of Z(B,L) versus L for Bf=0,1,2,3,4, with
6=2m/5. Since we find fairly good linear behavior over
two decades of L, we conclude that Z(B3,L ) scales as a
power law, so the exponent F(S3,L ) defined by

Z(B,L)=L FBL) (10b)

becomes independent on L for L >>1. This linear behav-
ior is also confined by plotting successive slopes of Fig.
4(a).

(i1) Next, consider the case f<0. There are deviations
from the power-law behavior, as shown in Fig. 4(b).
Furthermore, the deviation becomes larger as f3 increases.
This deviation can be understood from the fact that
Pmin(L) decays faster with L than a power law. Indeed,
from Eq. (3), we obtain

Inp ;. (L)~ —(InL)? . (11)

The prediction (11) of the hierarchical model is supported
by recent calculations on DLA aggregates.” Thus the
negative moments cannot scale, and there is a phase tran-
sition at 8, =0.10:12.13

Having established that the negative moments do not
scale, we now demonstrate that the positive moments of
the GSPD display multifractality. For a multifractal,
F(B,L) must be a nonlinear function of . Since
F(B=1,L)=0 by normalization, it is customary to define
Dg(L) through the relation F(B,L)=(8—1)Dg(L). Thus
a test for multifractality is to see if Dg(L) is constant: if
Dg(L) is not constant, then F(B,L) cannot be a linear
function in B. To see this, note that Dy=d, where d is
the fractal dimension so for our model Dy;=In3/In2. On
the other hand, we know that D_=ga,_,, which is
m/(m+6) (#3/In2).

In Fig. 5(a), we also plot the numerical values of Dg(L)
for 0 <=4 for different values of L(=2"). One can see,
especially for 0<f3<1, the nonconstant behavior of
Dg(L). In Figs. 5(b) and 5(c), we plot F(B,L) and its

min
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Legendre transform S(E,L), respectively. Note that
these multifractal spectra qualitatively resemble those
found for DLA."

In order to check the analytic argument presented
above, we generate a hierarchical structure with 6= /2
[Fig. 6(a)]l. For this structure, we employ the exact
enumeration algorithm'* to solve the diffusion equation
in order to determine the growth probabilities and the
multifractal spectrum. The free energy F(B,L) and the
entropy S(E, L) obtained are shown in Figs. 6(b) and 6(c),
respectively. It is seen that the difference between the an-
alytic results of Fig. 5 and the numerical results of Fig. 6
is decreasing as the size of the system increases. For
L=64, the difference between the analytical values of
F(B) and the numerical values is negligible. Also, the
difference between the analytic and numerical values of
both E_;, and E_,, is negligible. The difference in the
fractal dimensions [determined from the maximum of the
S(E) function] of about 10% arises from finite-size
effects. Indeed, it can be shown that both models asymp-
totically lead to the same values In3/In2.

We found that an identical hierarchical structure with
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FIG. 4. Dependence of InZ(B,L) on InL. (a) 320; 0, 0, A,
V, and @ denote 8=0, 1, 2, 3, and 4, respectively. The data
form an almost perfect straight line. (b) 3<0; 0,0, A, and V
denote B=0, —1, —2, and —3, respectively. The data deviate
from a straight line as 3 is decreased.
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FIG. 5. (a) Plot of Dg(L) for 0 < =4 with different values of
L. One can see a nonconstant behavior between 0 and 1. (b)
Dependence of F(B,L) on B for L=4,16,64. Note the good data
collapse for 8>0. (c) Dependence of S(E,L) on E determined
for L=4,16,64. The left part shows good convergence. On the
other hand, the right part is poorly convergent.

FIG. 6. (a) Clusters grown using the rule defined in the text.
Note that this becomes a hierarchical structure with 6=m/2.
(b) Free energy, obtained by numerically solving the Laplace
equation for L.=4,8,16,32,64. Notice the similarity with Fig.
5(b). (c) Numerical determination of S(E,L) for
L=4,8,16,32,64. Note also the similarity with Fig. 5(c).
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0=m/2 can be generated on the square lattice [Fig. 6(a)]
by a very simple set of growth rules. Start with a seed,
and at each time step check all the perimeter sites and
grow the site only if two conditions are satisied: (i) the
newly occupied site does not form a loop, and (ii) does
not grow towards the origin.

We also study another quantity, the radial dependence
of growth probabilities. As we see in Fig. 1(c), the largest
probability p,(L) for a given distance r from the vetex O
occurs in the voids from generation 1. We write Eq. (3)

in a continuum form [2_l’=r(i1)], and substitute into

(),

p,(L)~poexp —T%lnL In(r/L)| for L>>1.  (12)
n

This result is supported by a numerical simulation on
DLA clusters.'

4837

In summary, we have developed a hierarchical model
of DLA, which shows multifractality for positive 8. It
also predicts the “tip” behavior (p,,, is a power law) and
“fjord” behavior (p_,, has a logarithmic singularity).
The essential assumptions of this hierarchical model are
(i) the diameter of the channels increase less fast with L
than the diameter of the voids, and (ii) the number of
voids behaves as InL.!® Real DLA is of course random,
and randomness can be incorporated in the present model
by introducing randomness in the size and shape of the
voids.!”
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