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We present an analytic solution of the growth-site probability distribution for a family of hierarchical
models for the structure of diffusion-limited aggregation (DLA) clusters. These models are characterized
by self-similar voids that are delineated by narrow channels. The growth-site probability distributions
for all the models are shown to have the same form, n(a,M)~exp{—(A4 /InM)[a—ayM)]*}, where
n(a,M)da is the number of growth sites with a < —Inp, /InM <a+da, p; is the growth probability at
site i, M is the cluster mass, ay(M)=B InM, and A, B are constants. We find the same form of the distri-
bution for all members of the family of models, suggesting the possibility that it is a consequence of the
channels and self-similar voids, and is independent of other details of the model. Our result is in accord
with the recent calculations for DLA clusters by Schwarzer et al. [Phys. Rev. A 43, 1134 (1991)].
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I. INTRODUCTION

Diffusion-limited aggregation [1] (DLA) has become
important for describing a wealth of diverse physical,
chemical, and biological phenomena [2]. Despite many
ingenious attempts [2,3], no completely satisfactory un-
derstanding of DLA has emerged. One of the central
problems is to understand how such a nontrivial pattern
emerges from a simple set of rules for the growth. The
dynamics of DLA, for a given cluster, can be described
by the set of growth probabilities {p;}, where p; is the
probability that site i will grow next [4].

There have been several attempts to measure and un-
derstand the distribution of p; and its lower cutoff p;,
[4-8]. However, the issue is still far from being settled.
For example, the mass dependence of p;, is very contro-
versial. There are suggestions of exponential [6], power-
law [7], and an “intermediate” behavior [8(a)]
Pumin ~¢Xxp[ —(InM)?]. Each of these forms can be related
to a possible fjord structure. The exponential form [6]
corresponds to narrow channels of length M? with 8> 0,
while the power-law form [7] corresponds to wedge-type
fjords. The “intermediate” behavior [8] can be explained
in terms of a structural model of DLA, which has self-
similar voids connected by channels [8(a),9].

The scaling form of the growth-site probability distri-
bution {p;} is also of interest. Trunfio and Alstrégm [6],
Mandelbrot and Evertsz [6], and Schwarzer et al. [8(b)]
proposed different types of possible behavior.

Here we shall propose a family of models designed to
capture some of the essentials in the structure of DLA.
These models, whose key ingredients are narrow channels
and self-similar voids, are generalizations of the model
presented in Refs. [8(a)] and [9]. We find an analytic
solution of the growth-site probability distributions for
the entire family of models. This distribution is found to
have the same form as that of DLA clusters measured by
Schwarzer et al. [8(b)], n(a,M)~exp[— A(InM) ¥«
—BInM)"]. Here, n(a,M)da is the number of growth
sites with a < —Inp; /InM <a-+da. The two exponents
(y=2%0.3,6=1.3%0.3) used by Schwarzer et al. [8(b)]
to characterize the distribution, are found for the present
model to be 2 and 1, respectively. Furthermore, these ex-
ponents are universal, i.e., they are the same for the entire
family of models. It is possible that the form of the dis-
tribution and the exponents are determined only by the
presence of the channels and self-similar voids, indepen-
dent of further details of models. The agreement between
the distribution (and its exponents) of DLA and the mod-
els provides further support for the void-channel descrip-
tion of the structure of DLA.

The present paper is organized as follows. We define
the family of models in Sec. II, and derive the recursion
relation for the distribution in Sec. III. In Sec. IV, we
calculate the growth-site probability distribution from
the recursion relation, while a brief summary is given in
Sec. V. Finally, we discuss different variants of the model
in the Appendix.
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II. MODEL

The model is defined as follows. The first generation
[Fig. 1(a)], which consists of three wedges, is the genera-
tor of the model. In order to get the next generation, we
replace every wedge in the first generation with the gen-
erator [Fig. 1(b)]. The third generation is outained by re-
placing every wedge in the second generation with the
generator [Fig. 1(c)]. In general, one can obtain genera-
tion n by replacing all the wedges generation n —1 with
the generator.

In this paper, we consider a family of generators [10]
defined by two indices (b,/). Here b is the linear size,
and / the number of “empty layers” of the generator [Fig.
2(a)]. For example, the generator of Fig. 1(a) is labeled as
(2,0). Since ! cannot be larger than b —2, for each value
of b there are b —1 models with /=0,1,2,...,6—2. In
Fig. 2(b), we show all the generators with b =2-4. How-
ever, these two indices do not uniquely determine the
structure. For example, consider two generators in Fig.
2(c). These two structures are distinct, but have the same
indices (4,0). The structure does not only depend on
(b,1), but also on the way the wedges are connected.
However, we will later show that the growth-site probabil-
ity distribution is uniquely determined by the two indices,
which implies that the two structures in Fig. 2(c) have the
same growth-site probability distribution.

We now define the growth-site probability distribution.
One launches a particle from a circle whose radius is
much larger than the linear size of the model. The parti-
cle performs a random walk until it steps on one of the
perimeter sites of the cluster. The growth probability p;
at perimeter site i is defined as the probability that the
random walker steps on site / for the first time. The
growth-site probability distribution [4] is the histogram
of p; for a given cluster. In order to simplify the calcula-

\<>/ (a)

(b)

(c)

FIG. 1. Construction of the (2,0) model: (a) the generator
and the first generation of the model, (b) the second generation,

and (c) the third generation.

tion, we assume that the growth probability along the top
line of the cluster p, is constant. Here, we set p,=1 [11].
We also assign one growth site for the smallest wedge.

We consider three variants of the model, differing on
how to approximate growth sites at “larger wedges.” By
“larger wedges,” we mean the wedges whose linear size is
larger than unity. The wedge of linear size 2 at the center
in Fig. 1(b) is an example of a larger wedge. In variant
A, the growth sites at larger wedges are ignored. In vari-
ant B, we assign one growth site for a wedge, regardless
of the size of the wedge. In variant C, the number of
growth sites is proportional to the linear size of the
wedge. Since we find no difference for the scaling form of
the growth-site probability distribution among the three
variants, we present in detail only variant A4 in the body
of this paper. The other variants are discussed in the Ap-
pendix.

(a)
X
(2,00
(3,0) (3,1
(4,0) 4,1 (4,2)
(b)
(c)

FIG. 2. The generator of the (b,/) model. (a) The generator
is defined with the linear size b and the number of empty layers
1. (b) All the possible generators with b=2-4. (c) Two genera-
tors that have the same index (4,0) but different structures.
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III. RECURSION RELATIONS

In this section, we derive a recursion relation for the
growth-site probability distribution. Consider the (2,0)
model again (Fig. 1). The growth-site probability distri-
bution in generation n , D,‘,Z’O)(x), is defined as

D,(,Z’O)(x dx =N,

where N represents the number of perimeter sites with
x =x; =x +dx and x; = —Inp;.

For the first generation [Fig. 1(a)], there are three
wedges. The p; at the outer two wedges is p, by
definition. The p; at the inner wedge is simply a product
of py and the transition probability from the outer wedge
to the inner wedge. The transition probability scales as
L~™/%*D where L and 6 are the length and angle of the
wedge, respectively (see, e.g., Harris and Cohen [7], and
also Ref. [9]). Since the transition probability is
1 (L=1), p; at the inner wedge is also 1. Therefore,
D0 (x)=38, .

The second generation [Fig. 1(b)] consists of three gen-
erators. The growth-site probability distribution at the
outer two generators is identical to D{>%(x). Since the
transition probability to the inner generator is 2~ ("/0+ D),
the distribution at the inner generator is D'*>®[x —(m7/
6+ 1)In2]. Here we assume that the width of the channel
is independent of n. This is not a stringent assumption,
since the entire calculation is still valid if the width of the
largest neck w scales as w~M® provided a<1/d;,
where M is the mass of the aggregate [9]. After rescaling
the variable x =x6/(7+6)In2, we get a simple recursion
relation D% (x)=2D{*(x)+D{®%(x —1). The first
term is due to the two generators at the outer side, and
the second term is due to the generator at the inner side.
In the same way, one can derive the recursion relation be-
tween D\*%(x) and D{%%(x),

|

D»N(x)=2ID"! (x)+(b—1)D>") (x)+(b—1—1)D

n—1 n—1

+ - +2D N [x —(b—1—2)n—1)]+D

with the initial condition D{®"(x)=[(b—1)b—1+1)/
2+2118, . Also, x is rescaled as x0/(7+6)Inb. The re-
cursion relation for the total number of growth sites is

NPD=[(b—INb—1+1)/24+20 N&E 4)

n—1

Since the linear size of the system L %" satisfies the re-
cursion relation L\®"=pL %!) the fractal dimension of
growth site dg‘b’” is

N (5D
bh— i DN,
d.>"= 1

n—o InL{®D

_In[(b—I)}b—1+1)/2+2]]
Inb ’

(5)

n—1

O x—(b—1—1)n—1)], ®

n—1
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FIG. 3. The growth probability at a wedge is a function of
how many wedges one must pass through to reach the top.
Therefore p, =p,t, p. =p,t?, where t is the transition probabili-
ty between nearest wedges.

D*9x)=2D{*%(x)+D*%(x —n+1) . (1)

n—1

We can also derive the recursion relation for the total
number of growth sites N\>°. Since generation n con-
sists of three generations n —1,

NZO=3N20 (2)

We next derive a similar recursion relation for the gen-
eral model (b,!). Consider wedges a,b,c inside the gen-
erator (4,0), as shown in Fig. 3. The growth probabilities
at the wedges p,, p,, and p, are p, times the products of
transition probabilities between wedges. For example,
Pa=Po> P»=Dot, and p,=pot%, where t is the transi-
tion probability to nearest-neighbor wedges (where
t~L~(™%*1Y) Note that the growth probability of a
wedge depends on the number of wedges it has to go
through in order to reach the top of the cluster. Also,
this number is independent of the way that the wedges
are connected to each other. Therefore, the growth prob-
ability of a generator is uniquely determined by the in-
dices (b,!), as claimed before.

The growth-site probability distribution for the (b,])
model can be determined from the following recursion re-
lation:

(x—=n+1)+(b—1—2)D%) (x —2n+2)

which is the same as the fractal dimension of the cluster,
and is a function of b and /.

IV. CALCULATION OF D>!(x)

In this section, we calculate D\>"(x ), starting from the
recursion relation (3). We first consider the (2,0) model,
which has the simplest structure among the family. Then
we will extend our results for the (2,0) model to the arbi-
trary (b,!) case.

Define the generating function G\*” for the distribu-
tion D{>(z) as

GPN(z)= 3 D{PP(x)z* . (6)
x=0
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When we multiply (1) by z*, and sum over x, we obtain

G2%z)=(2+2z""1)G{*%(z). Combining this relation
with the fact that G(IZ’O)(Z )=13, we obtain
n—1
G2%z)=3 [ (2+2z9 . (7
i=1
The order of G\*%(z) is n(n —1)/2, and since x = —Inp,

it follows from (6) that Inp_,, = —n(n—1)/2~ —(InL ).

A. Connection to partitions

Next we derive a relation between D >%(x) and a cer-
tain type of partmon [12]. Equation (7), combined with
(6), gives 32_oD\>V(x)z*=3X2" "'[[7Z}(14+1z'). The
product in this expression can be expanded to 2" !
terms. Every term in the expansion is a product of n —1
components, and each component can be either 1 or %zi.
If we define an index I; for the ith term as

[ = 0, the ith component is 1
i~ |1, the ith component is z'/2 . ®)

_ n—1
Then a term can be expressed as 2 2“11’ 20 h
Therefore, the coefficient of z* term is
St 2 " ((1,2,. . .,n—1}<1,m,x). Here p({S}

=<d,m,x) is the number of partitions of x with m com-
ponents, drawn from a set {S}, and every member of the

set cannot be drawn more than d times. We now
arrive at the desired relation D>%(x)=3
x2"7Isn 4 27"mp({1,2,...,n—1}<1,m,x). The es-

sential reason for this connection with partitions lies in
the fact that the growth probability is a function of the
products of void area the random walker must pass
through in order to reach a site.

Having established the connection with partitions, one
may be tempted to evaluate D\>?(x) using residue cal-
culus, exactly the way Hardy and Ramanujan obtained
the unrestricted partition function [13]. In order to
evaluate the contour integral, they used a key relation—
the inversion formula. However, this relation is known
only for the infinite product, which sets a limitation in
this direction for calculating D>%(x ).

B. Gauss polynomial

We take a different approach to obtain D\*%(x). We
first use the Cauchy identity [12] to expend G\>%(z),

n
2"y

i=0

G20(z)= HECRRE ©)
Here, [ ;’] is the Gauss polynomial, which is defined
as [1]“‘(2) /(2)(z), —;, and (z),=(1—2z)(1—2z2)(1
—z3) - (1=2z"). In order to calculate the distribution,
one has to know the coefficient C}(k) of the z* term for
the Gauss polynomial [}]. Some properties of C; J(k) are
known: (i) [}] is a j(n —j)th- order polynomial in z. (ii)
[71is rec1proca1 Cilk)=Cl(n—k). (i) [7] is unimodal.
There exist m such that

CIHO)SCH1)=Ci(2)< -+ SCl(m)=Cl(m +1)

>Cl(m+2)= -+ >2Cl(jn—j* .

(i) [}], =y =n!/jin—j)!
One can define a “normalized” Gauss polynomial g/(z)
as

J(n—j)

! .
/j!(nnij)!E 2, ket 00

=0

gio)= |"

Here we use the work ‘“normalized,” since

Jz=1)= 2’(” o/ci(k)=1. Roughly speaking, the
coefficient cj(k) is a symmetric function of k around
Jj(n—j)/2, with the maximum at the middle. Also, the
total area under the curve, 3,c/(k), is unity. When we
substitute (10) into (9), and use a Gaussian approxima-

tion for the binomial coefficient 27 /n!/jl(n—j)
~exp[ —9/4n(j—n /3)?], we obtain
G(ZO) 2 exp _%( —’1/3)2 g’{(z)zj(j'U/Z .

(11

In order to get further information for ¢/(k), we calcu-
late the first two moments from the normalized Gauss
polynomial g} (z),

(1)=1,

(kY=1ljn—j),

(k2 ):ljz(n—j)
=(k)+Ljtn—j)n+1),

+5in—j)n+1)

where ( 4)=3,ci(k)A,. Since we know the average,
and the width of the distribution {(k—(k))*)
=j(n—j)n+1)/12, we can now construct a Gaussian

T T T T T T T
10 ﬂ
8 — : Eq. (13) q
[ : Exact Numbers 1
= 6F .
?J:
:E
4+ i
2k 4
0 — ......... ...... | | ) ......._.,... -
0 100 200 300 400 500 600 700

k

FIG. 4. Gaussian approximation for the coefficient of Gauss
polynomial. The solid line is the Gauss approximation (13) for
the exact numbers (marked by open circles) of cj(k) with
n =100 and j =50.
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approximation for the normalized Gauss polynomial:

2 1/2
)~ | — e
A e TPy
_[k—jn—)j)/2]
Xexp | —6 (r 10— (13)

In order to check the validity of this approximation,
we calculate Cj(k) using the recursion relation [12],
(21=[","14+z""™[ 2] In Fig. 4, we plot exact values
of CJ(k) and their Gaussian approximation [the right-
hand side of (13) multiplied by n!/j{(n—j)!] for n =50
and j=25. We emphasize that without using any adjust-
able parameters, we find good agreement between the two
values. Also, we find similar agreement for other values
of n and j.

C. Calculation of D{*»%(x)

Using the Gaussian approximation for c/(k), we now
proceed to evaluate the summation (11). Substituting (13)
into (11), we find

G,**Nz)~ 3 exp —%(j—n/mz
i=0 hn
[x—j(n—j)/2]
X _

ECXP 6 (n+1)j(n—j)
X zXzJU l)/2 (14)
]
zexp[-9n~3(x_,,2/6)z]zx a<3

zexp [9B /(9+B)]n"~

> exp[—
X

G(Z,O)(z )~

Bn %x—n?%/6)*)z*, a>3.

In general, the scaling form of the generating function de-
pends only on the exponent a, not on the amplitude B.
For a <3, the scaling is independent of both a and B,
since the Gaussian is strongly localized, and can be con-
sidered to be a & function. Since the maximum value of
for the Gauss polynomial is 3 (the maximum value is
n3/4), the above approximations will change, at most,
the amplitudes of the x and x? terms.

As an independent test, we calculate directly the mo-
ments of the distribution from its generating function.

J

(1)=1+,
(x)=1nn—-1),

(x))=1dn*(n—11+Ln(n—1)2n—1)=

(x3)=1n?(n—1)2(n?+3n—2)=(x )3 +3(x)(6%x ) ,

(x*)=[1n(n —1)]4+6[in(n—1)]2in(n —12n—1)+3[Ln(n—1)2n—1)]*—

=(x)*+6(8% ) (x)2+3(8% >2[1— (1/m)],

x_nZ/G)Z}Zx

(x)+ Ln(n—1)2n—1)

1039

where we dropped the constant and the power-law term
in front of the summation. By redefining the summation
index x to x —j(j —1)/2, we obtain

(x—jn—=j)/2]?

257 iU—172
(n+1)j(n—j)

> exp
pd

[x'—j(n—1)/2)
(n+1)j(n—j)

= exp
X

We now make one more approximation, which will be
justified later. We replace (n+1)j(n —j) in the denomi-
nator of the exponential with that of the dominant Gauss
polynomial, 2n3/9 (j=n/3). Since we are interested in
the n >>1 behavior of the distribution, we also replace
n+1 and n —1 with n. Evaluating the summation over j,
we obtain

2 2

27 _n-
6

2 0) 2 exp "

which is the key result of this paper.

In the previous derivation, we make two approxima-
tions: (i) c/(k) is replaced with the Gaussian with width
[A(n,j)n ]1/2, and (ii) the amplitude A (n,j) is set to be
a constant. We test how sensitive the result (15) is to
these approximations. If we use exp[—Bn %*(x—jn/
2)?] as an approximation for cj(k), the corresponding
equations for (15) are

(16)

Consider a generating function G'(z) [and its distribution
D’(x)] defined as
z¥= [] (1+z),

ED
i=1

which has exactly the same structure as G,(,Z’O)(z), as
shown in (7). In fact, the asymptotic form for D’(x ), ob-
tained by following the same analysis, is identical to (15)
except for the amplitudes of x? and x. The first four mo-
ments of D'(x) are

n—1

G'(z)= (17)

(18)

ssn(n—1)(2n—1)(3n*—=3n—1)
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where (A4)=3,D'(x)A(x)/3,D'(x), and &x=x
—{x ). Note that these moments are the same as those
for the Gaussian distribution,

[x—-%n(n—l)]2

“(x)~exp | 12—
Ditx)~exp | =2 G )
~exp ‘%‘(X—lnz)z , (19)
n

which is the same form as (15) except for the amplitudes,
as discussed before. Thereby we establish the scaling
form for the distribution

B(Z,O)
X — n

2

3

(2,000 3\ — _
D, " (x)~exp S 4203

) (20

where 49 and B*% are amplitudes.

D. Calculation of D> (x)

We now calculate the scaling form of the distribution
for the (b,/) model, based on the result (20) obtained for
the (2,0) model. The generating function G\>”(z) can be
calculated by combining the definition (6) and the recur-
sion relation (3),

n—1
G\"2)=GP""(2) [T [21+(b
j=1

—D+(b—1—1)z/

+(b—1—2)z%
+ o207 2
where G\®?(z)=[(b—1)b—1+1)/2+21]. In (21), the

term inside the square bracket is a (b —/—1)th-order po-
lynomial of z/, and can be factorized into b —/—1 poly-

|
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nomials of order z/. From (21), the order of the polyno-

mialis (b —!—1)n(n—1)/2, so Inp ,;, ~ —(InL ).
Equation (21) can be written as
n—1b—1-1 _
GM=b+1y [T T (141,27, 22)
j=1 m=1

where ¢,, are complex numbers dependent upon b and /.
Using the Cauchy identity (9) and the Gaussian approxi-
mation for the Gauss polynomial (13), Eq. (22) becomes

b—1-1 (1+¢ )2 nt :
G(b,l)( )~ o tm . m
n 2 mI—Il ]ZkZexp 2t,.n Im 1+1,,
6(1+1¢,,)?
t,n’
nj 2
k
X km———z—m— ]z "

After evaluating the summation over j,, , we obtain

3(1+1¢,,)?
nt

b—1—1

H Zexp

=1

GP(z)~

m
m

t

2
X ——m @ 2
m 1+, ]

k

Xz ™, (24)
where we dropped the constant and the power-law terms
in front of the summation. The products over m can be

rewritten as

3(1+t,,)? t ’
(5, ) e .. / _ m _ m 2 x
Gz~ > exp|— 3 P m 2(1+t,,,)n z7, (25)
x Kk, ky_1—1 m m
where 2;(]7,(2" coky_,_, Means 3, 3, - Sk, with the restriction ¥, k,, =x. After we evaluate the multiple
summation over k,,,
5 2
n X
Gb(z Zexp YIS X_TB(M) zx . (26)
Here 4 6'=3b"1"1¢ /(1+1,, )% and
b—1—1
B®'="3 1 /(1+t,)=(b—I—D)—4b—1)b—I—1)/[2b+D)+(b—1)b—1—1)].

m=1

Therefore, the scaling form obtained (20) holds not only
for the (2,0) model but also for the entire family of models
(b,!) considered here. We emphasize that even if the
form (26) is correct, the amplitudes 4 ‘®" and B> deter-
mined above are only approximate values.

Using the recursion relation (3), we also calculate the
numerical values of the distribution D*”(x). In Fig. 5,

we plot both the numerical values and the analytic ex-

[

pression (26) for (2,0) and (3,0) models with » =100. The
amplitudes, determined from the expressions given above,
are A 30(2,0)———%, b(z,m___% for the (2,0) model, and
AGO0O=2 BG0=2 for the (3,0) model, respectively.
Also, the maximum values are normalized to unity. One
can see a good agreement between the two, even for the
amplitudes— the position and width of the peak. We
also find good agreement for other values of b and /.
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—— : Eq. (26)
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FIG. 5. Comparison of the scaling form (26), shown in solid
lines, with the exact numbers (O) with n=100: (a) the (2,0)
model, and (b) the (3,0) model.

V. DISCUSSION AND SUMMARY

We have proposed a family of hierarchical models for
the structure of DLA. The key feature in the model is a
hierarchy of self-similar voids connected by narrow chan-
nels. In order to obtain the growth-site probability distri-
bution n(a,M), we first expand the distribution, using
the Cauchy identity, in terms of Gauss polynomials.
Each distribution for one Gauss polynomial “marginally”
overlaps with all the other terms. This allows us to

|

D (PD(x)=2ID »V(x)+(b—1D LV(x)+(b—1—1)D

n—1

resume the expansion to get a closed form for n(a,M).
Due to the “marginal” overlap, we cannot get the exact
amplitudes for the distribution. However, we find ap-
proximate values, which are in good agreement with ex-
act numerical data.

One interesting point to emerge is that the distribution
is the same (excluding amplitudes) for the entire family of
models studied here. Since the common ingredient for
the entire family is a hierarchy of self-similar “voids”
separated by narrow channels, it is possible that the form
of n(a,M) obtained here is just a consequence of the
void-channel feature, and is independent of further de-
tails of a model.

We now discuss a possible connection with ‘“real”
DLA clusters. Schwarzer et al. [8(b)] calculated n(a, M)
for off-lattice DLA clusters of M <20000, and found a
scaling form n(a,M)~exp[— A(InM) %a?]  with
¥ =2.0%0.3 and §=1.3+0.3. The family of models stud-
ied here has the same form with ¥ =2 and §=1, which is
within the confidence limits of the numerical results of
Ref. [8(b)]. This fact, together with the corresponding
agreement for p .. [8], gives additional support for the
“void-channel” distribution of DLA clusters. The
“void-channel” concept should be further tested by
studying directly the geometry of “real” DLA clusters
(see, e.g., Ref. [7]), and should be derived from the micro-
scopic growth rules.
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APPENDIX: OTHER VARIANTS OF THE MODEL

As discussed in Sec. II, we have developed three dis-
tinct variants (A, B, and C) of the model. In Ref. [9],
different variants are studied using numerical methods,
and no essential differences are found for the growth-site
probability distribution. Therefore, in this paper, we con-
centrated mostly on the most simple variant—variant A.
In this Appendix, we will present some analytic results
for the growth-site probability distribution and the num-
ber of growth sites for other variants of the model.

We start with variant B. Since we assign one growth
site for every wedge, the recursion relation of the distri-
bution D ‘,,b’l J(x ), which corresponds to (3), becomes

GD(x—n+1)+(b—1—2)D " (x —2n+2)

+ -+ 2D PN x—(b—1—2)n—1)]+D PO[x —(b—1—1)n—1)]

+(b-l—1)axyn_1+(b_l—z)sx,Z(n*I)—'_ o

“+28, (b—1-2n— 1) T Ox (b1 1)n—1) -

(A1)

"l:l(lfl)ﬁ functions are contributions from the growth sites in larger wedges. Also, the initial condition is modified to
D7 (x)=[(b—1)*+2I118, .. We define the generating function G »"(x)=3 D »/(x)z*. If we substitute this

definition to (A1), we obtain

G PU2)=G PO () + R () —b—1 .

(A2)

Here G {*"(z)=(b—17+2l, and f*(z)=(b+1)+(b—1—1)z"+(b—1—2)z2"+ - - - +2z6~1=Dn_Qubstituting a “tri-
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al” solution G »"(z)=h>"(2)G > z)[17=f{>"(z) to (A2), we obtain a recursion relation for function !>"(z)
(b;”(z)—b -1
h\oD(z)=p b0 (7) 4 "1 , (A3)
G (z) H f{b [)(Z
i=1
where f{®"(z)=1. The solution of (A3) is
n—1
h,(,b’”(z)=1+ 2 [f‘_(b,l)(z)_b_l]/ G(bl) Hf(bl) (A4)
i=1 j=1
Combining this with the definition of #.>"(z), we arrive at
. ] ot [Pz —b—1
G(nbl)(z):G(lb,l) Hfr(bl)z 1+ E (A5)
i=1 j=1 G(bl Hf(bl)

We now study the structure of G »”(z). The product
term outside the bracket in (A5) is exactly the generating
function of variant A. Inside the bracket, after the

leading term 1, there are series of terms
[ ‘b’(z b—11/Tk=1f2"z). The total contribution
of each term, calculated as its value at z—l
is [(b—D(b—I—1)/2+b+1]/[(b—1)Nb—1—1)/2]%

which is an exponentially decaying function of k. We can
also calculate the coefficient of the polynomial
1/TT4 = 1f2%(z). First, we use another form of Cauchy
identity [12],

ln+j—2
J

n—1 1

I

L (—ty
=0 (1+4+1¢z")

s

j=0

2 Mgn+17 (z)(—t) ,

X (A6)

where g,{+j_2(z) is the normalized Gauss polynomial
defined in Sec. IVB. We now use two approximations,

as explained in Sec. IVB, (n+j—2)/(n—2)!
~exp{ —[j—n(1+1n2¢)])*/2n}, and gl i-2(2)
~3.exp{—6(x—nj/2)*/[jn(n+j)]}z*.  Substituting

these approximations into (A6),

~ 22 —1)exp

j=0 x

n—1

I1

=y 1+

X [—L[j—n(l-HnZl‘)]2
2n

_glx=nj/2)

X A7
jan(n—+j) z (AD

Equation (A7) is similar to (16) except for the phase fac-
tor (—1)/. However, due to this factor, the summand has
an alternating sign, which causes the entire summation to
almost cancel out (a kind of ‘““destructive interference”),
resulting in the exponentially decaying contribution men-
tioned above. The coefficient of [T;—[f1>"(z)]™! can
be calculated using
b—1—1

I1

i=1

(b,ll( (A8)

n

z)= (145,27,

as shown in Sec. IV D.

Havmg obtained the coefficients for the polynomial
IT% =1L f2%(z)]7!, we now return to discuss (A5). As
noted before, the summand inside the large parentheses is
an exponentially decaying function of the summation
variable k. Therefore, the entire summation can be re-
placed with a finite number of terms. Compared to vari-
ant A, the generating function of variant B has additional
terms (the summation inside the large parentheses), and
since these terms are finite, it cannot change the asymp-
totic behavior (n — o) of the generating function. The
same argument can be applied to variant C, since the only
difference is in the coefficients of the summand inside the
large parentheses. Therefore, the scaling form of the dis-
tribution function (26) is the same for other variants (B
and C) of the model.

We conclude the Appendix by calculating the fractal
dimension for the number of growth sites. The recursion
relation for the number of growth sites N {>” for variant
Bis

NPP=[1(b—1)b—1—1)+21)N PP

n—1

+ib—I-1)b—1). (A9)
The number of growth sites N (>, which can be obtained

by using the same method to solve (A2), is
= 1

(b,1) — —B
N 4—1 b

where A=(b—I)b—1—1)/2+2] and B=(b—I)(b—
—1)/2, and N{»? =(b—1)*+2I. The number of growth
sites ﬁ 0.D for variant C can also be calculated in the
same way

(A" '[(A—1NP®"+B] (A10)

N(bl)_. N D (A11)

B

N (A—b)

Therefore, the other variants of the model have the same
fractal dimension for the number of growth sites given by
(5), which again is the same as the fractal dimension of
the cluster.
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