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Abstract – Social interaction between individuals constantly affects the development of their
personal opinions. Previous models such as the Deffuant model and the Hegselmann-Krause
(HK) model have assumed that individuals only update their opinions after interacting with
neighbors whose opinions are similar to their own. However, people are capable of communicating
widely with all of their neighbors to gather their ideas and opinions, even if they encounter a
number of opposing attitudes. We propose a model in which agents listen to the opinions of all
their neighbors. Continuous opinion dynamics are investigated in activity-driven networks with a
tolerance threshold. We study how the initial opinion distribution, tolerance threshold, opinion-
updating speed, and activity rate affect the evolution of opinion. We find that when the initial
fraction of positive opinion is small, all opinions become negative by the end of the simulation. As
the initial fraction of positive opinions rises above a certain value —about 0.45— the final fraction
of positive opinions sharply increases and eventually equals 1. Increased tolerance threshold δ is
found to lead to a more varied final opinion distribution. We also find that if the negative opinion
has an initial advantage, the final fraction of negative opinion increases and reaches its peak as the
updating speed λ approaches 0.5. Finally we show that the lower the activity rate of individuals,
the greater the fluctuation range of their opinions.

Copyright c⃝ EPLA, 2018

Introduction. – When people face a social issue, such
as which candidates to support, which research fields to
pursue, or what kind of drink they would like, they will
express their attitudes or opinions either consciously or
unconsciously [1,2]. Individuals’ opinions are shown in
books, newspapers, TV, online social networks, or any
other social media [3,4]. Generally, people spread opinions
in their social networks by interacting with others [5,6].
The collective social behavior of large communities of in-
dividuals, such as culture dissemination, rumor spread-
ing and the dynamics of opinion formation are widely
studied using the concepts and methods of statistical
physics [7–10]. Network science provides a very effective
method to explore the collective social behavior [11–15].

Opinion dynamics is one of the social-dynamics prob-
lems that can be closely related to physical problems. In

(a)E-mail: handunsir@ujs.edu.cn

everyday life, almost all social interactions are affected and
shaped by attitudes or opinions. Opinion dynamics mod-
els can be classified into discrete and continuous opinion
dynamics models. In some models, opinions are repre-
sented by a discrete variable which can take two values: 0
or 1. Examples include the Sznajd model [16], the voter
model [17], and the Galam majority-rule model [18] which
are similar to the Ising spin model in statistical physics.
Two famous continuous opinion models are the Deffuant
model [19] and the Hegselmann-Krause model [20] in
which individuals’ opinions distribute in a real space from
0 to 1 and agents only interact with people whose opinion
is close to their own under a given confidence level. All
of these traditional opinion models evolved in static net-
works. However, not only do the opinion dynamics tak-
ing place on a network control the network structure, but
the network structure also influences the dynamics [21,22].
Kozma and Barrat studied how an adaptive network of
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interacting agents and the agents opinions influence each
other [23]. Grauwin and Jensen investigated the opinion
dynamics on a dynamic network where the agents are able
to break their links and rewire them at random [24]. Li
et al. researched the adaptive network models of collec-
tive decision-making in swarming systems [25]. Fu and
Wang studied co-evolutionary dynamics of opinions and
networks; the results showed that the diverse opinions
disappear in a population in which all individuals share
a uniform opinion when the model parameter exceeds a
critical value [26].

Agents typically have ongoing relationships with oth-
ers and interact with peers selected from the related
agents [27]. The structure of these relationships plays an
important role in social dynamics, and networks can be
used to describe these relations (social networks) [28,29].
The social influence and interaction behavior between in-
dividuals constantly affect their opinions [30,31]. As we
know, the interaction between individuals cannot be a con-
tinuous process, for instance, one person attends a party
or meets friends once a week or even once a month; that is
to say, an individual’s activity is an intermittent process
in which the individual communicates with others at some
time and does not communicate with others at any other
time. Here, we derive an analytical network for the study
of opinion dynamics specifically devised for a class of time-
varying networks, namely activity-driven networks. In re-
cent years, there have been extensive research efforts in
activity-driven networks that evolve on a time scale com-
parable to the time scale of the diffusion process taking
place on the network [32]. The activity-driven structure of
link activations affects the network dynamics from disease
contagion to information diffusion. Therefore, the tempo-
ral variation in network connectivity patterns and the on-
going dynamic processes are usually coupled in ways that
still challenge our mathematical or computational model-
ing [33,34].

Considering the fact that many networks are highly dy-
namical and evolve in time with opinion dynamics, we
propose a continuous opinion model and study the opinion
dynamics in activity driven networks. Some classic models
like the Deffuant model and the HK model assume an in-
dividual interacts with another agent only if their opinions
are close enough. However, people sometimes communi-
cate widely with all of their neighbors to gather their ideas
and opinions, even if they encounter a number of oppos-
ing attitudes. When someone posts a negative comment
about a stock on Facebook or Twitter, one might become
slightly more pessimistic after reading the comment even
if he previously favored the stock. Similarly, a pessimist
may become an optimist after she or he comes across a
positive comment [35]. More broadly, human cooperation
commonly results from our evolutionary struggle for sur-
vival [36]. The conformist mentality and the convergence
of thought and action can be thought of as “cooperative
behavior” to some extent. The conformist mentality is a
common social psychological phenomena [37,38], and this

phenomenon also occurs widely in opinion dynamics. In-
deed, people often follow their neighbors’ thought and be-
havior. Here we propose a continuous opinion model with
individuals’ opinions ranging from −1 to 1. At each time
step, an individual communicates with all of his neighbors
and then calculates their average opinion. If the opin-
ion difference between his current opinion and the average
opinion of his neighbors is larger than his tolerance range
or threshold, he will take his neighbors’ opinion. Other-
wise, he keeps his own opinion. Furthermore, we inves-
tigate the opinion dynamics in activity-driven networks,
and study how the initial fraction of opinion, the toler-
ance threshold, and the opinion-updating speed affect the
evolution of opinion.

Model of opinion dynamics in activity-driven
networks. – To describe more exactly the interaction
activities between individuals in real social networks, we
consider a network with N individuals, and each agent
i is characterized by an activity rate αi. The activity
rates are the ability to create contacts or interactions with
other individuals per unit time, and are assigned according
to a given probability distribution F (α). Here we adopt
heavy-tailed distributions F (α) ∼ α−γ with activities re-
stricted in the region α ∈ [ϵ, 1] to avoid divergences for
α → 0, and γ ∈ (2, 3) is the exponent [39]. At each
time step, the network starts with N disconnected nodes,
and then each individual i becomes active with probability
αi and generates m links that are connected to m other
randomly selected nodes. At the next time step, all the
edges in the network are deleted. This implies that the
connections between nodes in activity-driven networks are
non-persistent and memoryless, and the degree distribu-
tion of the integrated network at time t takes the form
Pt(k) ∼ 1

tmF [ k
tm ] [39,40].

Each individual i has a continuous opinion gi repre-
sented by a real number in the interval [−1, 1]. When
gi ∈ (0, 1], this means that individual i has a positive
opinion. Accordingly, gi ∈ [−1, 0) implies individual i
has a negative opinion. At the initial time, there are a
fraction of g0 and 1 − g0 individuals with positive and
negative opinion respectively. The initial opinion is uni-
formly distributed in opinion space; the positive opinion
is located in (0, 1] with uniform distribution g : U(0, 1),
and the negative opinion is within [−1, 0) with uniform
distribution g : U(−1, 0). As we know, the opinion of an
individual is usually affected by his or her neighbors’ opin-
ion. In activity-driven networks, at time t, we represent
the neighbor set which connects with node i as Ni(t) while
the number of node i’s neighbors is written as |Ni(t)| > 0.
Thus we can get the average opinion of the neighbors of
node i at time t by ḡi(t) = 1

|Ni(t)|
∑

j∈Ni(t) gj(t). Note
that |Ni(t)| = 0 means individual i does not have any
neighbors yet, so he also does not change his opinion at
time t. If the opinion difference between an individual
and his neighbors’ average opinion are large, due to social
pressure, this agent will change his opinion. Here we set
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an opinion tolerance threshold δ: if the opinion difference
between an individual and his neighbors’ average opinion
is less than the tolerance threshold δ, that means the opin-
ion difference is in his considerable range, so he keeps his
current opinion. If the difference of opinion is larger than
the tolerance threshold δ, then he adjusts his opinion dur-
ing the next time step according to the opinion updating
rules as follows:

gi(t + 1) =
{

gi(t), |ḡi(t) − gi(t)| ≤δ,
gi(t) + λ(ḡi(t) − gi(t)), |ḡi(t) − gi(t)| > δ,

(1)
where λ is the convergence parameter and refers to the
speed of updating the opinion of node i. In particular,
when λ = 0, node i will never change his opinion no mat-
ter what his neighbors’ opinions are. When λ = 1, once
the opinion difference is larger than the tolerance thresh-
old, he will immediately adopt the average opinion of his
neighbors gi(t + 1) = ḡi(t).

Numerical simulation and results. – Let us con-
sider an activity-driven network with N = 10000 agents.
The activity rates obey the distribution F (α) ∼ α−γ with
γ = 2.1 and ϵ = 0.1. Based on the Monte Carlo method,
we simulate the opinion evolution dynamics in activity-
driven networks. Since the results differ for each Monte
Carlo trial, here we present the results averaged over 100
independent runs.

Individuals form, reconsider, and possibly change
their opinions by constantly interacting with others.
Someone’s internal psychological factors and external so-
cial influences, especially the external pressure from social
interaction, strongly affect opinion formation. Individuals
adaptively adjust their opinions to decrease the difference
with their peers. When the opinion difference between in-
dividual i and the average opinion of his neighbors is more
than his tolerance threshold |ḡi(t)−gi(t)| > δ, individual i
will converge to his neighbors’ average opinion with speed
λ. We may intuitively believe that all of the opinions
evolve towards consensus at steady state. Actually the
tolerance threshold influences the evolution process; thus
the opinions vary within a certain range. Figure 1 shows
the opinion evolution process at different values of λ and δ.
As we can see, the larger the value of tolerance threshold
δ, the more types of opinion are preserved, but opinions
reach consensus when the tolerance threshold is small (see
δ = 0.1). Interestingly, in the case of g0 = 0.5, the con-
vergence parameter almost has no effect on the evolution
process that can be seen by comparing the three columns.

The pace of updating an individual’s opinion also has
a significant impact on the evolution of opinions. Let us
take a look at how the updating speed λ affects the final
fraction of opinions. Here Np and Nn are the number of
people with positive opinions and negative opinions, re-
spectively. fp = Np/N and fn = Nn/N are the fraction of
positive opinions and negative opinions in the network, re-
spectively. Although the final state of individuals opinion
could converge to a certain range, the fraction of positive

Fig. 1: (Colour online) The evolution of opinions varies with
time in activity-driven networks for different convergence pa-
rameters λ and tolerance thresholds δ. The initial opinion uni-
formly distributed in the interval [−1, 1]. From the left column
to the right column, the values of λ are 0.1, 0.3 and 0.5, re-
spectively. The rows correspond to three different values 0.1,
0.3 and 0.5 of the tolerance threshold δ. The other parameters
are set as g0= 0.5, and m = 3.

opinion fp = Np/N and negative opinion fn = Nn/N may
have a larger fluctuation.

The updating speed λ reflects how fast people adjust
their opinion. If the adjusting speed is too low, i.e.,
λ → 0, then according to the opinion updating rules
gi(t+1) = gi(t)+λ(ḡi(t)−gi(t)), we derive gi(t+1) ≈gi(t).
This implies almost all of the neighbors have no impact on
the individuals opinion at the next time step. However,
they will gradually change their opinion with increasing
λ. If the updating speed is fast enough (λ → 1), then the
individuals opinion rapidly tends to the average opinion of
his neighbors: gi(t + 1) ≈ ḡi(t). Thus, λ can significantly
affect the fp(∞) and fn(∞). In figs. 2(a1), (b1), we set
the initial fraction of positive opinion as g0= 0.45 < 0.5,
which means the number of negative opinion is larger
than positive opinion at initial time. As we can see from
figs. 2(a1), (b1), the fraction of negative opinion increases
and reaches its peak when the updating speed is around
0.5. In figs. 2(a2), (b2), the initial fraction of positive
opinion is g0 = 0.55 > 0.5, which means the number of
positive opinion is larger than negative opinion at initial
time. Interestingly, the fraction of positive opinion in-
creases and reaches its peak when the updating speed is
around 0.5. When the initial fraction of positive (nega-
tive) opinion is less than 0.5 and the updating speed is
larger than 0.5, the fraction of negative (positive) opin-
ion gradually decreases. This result shows that the evolu-
tion of opinion significantly relates to the internal factors
(e.g., the speed or extent to which people are willing to
change their opinions) and the external environment (e.g.,
the neighbors opinion). It also illustrates that the initial
fraction of opinion has an important impact on the final
fraction of opinion. If the negative (positive) opinion has
a numerical advantage at the initial time, the final frac-
tion of negative (positive) opinion increases and reaches
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Fig. 2: (Colour online) The fraction of positive and negative
opinion as a function of the updating speed λ for different
numbers of active connections m. fp(∞ ) and fn(∞ ) are the
fractions of positive and negative opinions (respectively) when
t → ∞ . (a1), (b1): parameters are g0 = 0.45 and δ = 0.4;
(a2), (b2): parameters are g0= 0.55 and δ = 0.4.

its peak when the opinion updating speed λ is about 0.5.
At the same time, fig. 2 shows that the number of con-
nections m generated by people in an active state has less
effect on the final fraction of opinion.

The tolerance threshold δ and the opinion updating pace
λ have significant influence on the final distribution of
opinion. The tolerance threshold δ reflects how willing
an individual is to put up with difference of opinion from
his surrounding environment. When the tolerance thresh-
old is large, an individual tolerates or accepts the opinion
difference of his neighbors and does not change his own
opinion, even though he finds the difference unpleasant
or unsatisfactory. However, when the tolerance threshold
is small, once an agent recognizes the opinion difference,
he will update his opinion to be the average opinion of
his neighbors, which implies these people with low toler-
ance have strong social identity. Figure 3 shows that the
final fraction of opinion varies with the tolerance thresh-
old and the opinion updating speed for different initial
fractions of positive opinion. Suppose we have an initial
configuration with more positive opinions than negative
opinions. Then with the increase of tolerance threshold δ,
the final opinion configuration could become more nega-
tive than positive. Let us look more carefully at fig. 3(a1)
and fig. 3(b2). In fig. 3(a1), the initial positive opinion is
g0 = 0.4; that is, the negative opinion has an advantage
at the initial time, but we can see that the final frac-
tion of negative opinion fn(∞) decreases as the tolerance
threshold δ increase. Figure 3(b2) shows the same phe-
nomenon, the positive opinion is the dominant one in the
initial number, the final fraction of positive opinion fp(∞)
also decreases with the increase of tolerance threshold δ.
The reason behind this interesting phenomenon is that the
increase of tolerance threshold δ may lead to a large level
of opinion difference. At the same time, as the tolerance
threshold is large, individuals do not want to change their
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Fig. 3: (Colour online) The final fraction of positive and nega-
tive opinion as a function of the tolerance threshold δ and the
rate of opinion updating λ. fp(∞ ) and fn(∞ ) are the frac-
tion of positive and negative opinion when t → ∞ . (a1) and
(a2) are the final fraction of negative and positive opinion at
g0 = 0.6, respectively. (b1) and (b2) are the final fraction of
negative and positive opinion at , respectively. The parameter
is m = 3.
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Fig. 4: (Colour online) The fraction of positive and negative
opinion varies with the initial fraction of positive opinions g0.
Parameters are set as: δ = 0.1, λ = 0.5 and m = 3.

own opinion. Therefore, even though the number of nega-
tive/positive opinion has an advantage at initial time, the
final fraction of positive/negative opinion is not going to
decrease sharply.

The initial fraction of opinion g0has an important effect
on the evolution of opinion in the system. Without any
interference from external environment, once when pos-
itive (negative) opinions overwhelm the other side, then
the “herd effect” could be formed. Figure 4 studies how
the final fractions of positive and negative opinion evolve
for various initial fraction of positive g0. As we can see
from fig. 4, when g0 is small, there is no positive opin-
ion at the end of evolution time. Once g0 is larger than
a certain value (about 0.45), the final fraction of positive
opinions sharply increases and then equals 1. When the
negative opinion has an advantage at initial time, that
is g0 < 0.5, individuals will easily be influenced by sur-
rounding neighbors with negative opinions, which leads
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Fig. 5: (Colour online) The difference of opinion in the whole
network Sopinion varies with time t for different tolerance
threshold. Parameters are set as g0= 0.5, λ = 0.1. Panels (a)
and (b) show different situations as the value of parameter m
are m = 3 and m = 10, respectively.

the agents with positive opinion to gradually change their
positive opinions and tend toward negative. This grad-
ual process results in negative opinion dominating in the
end. Thus the initial fraction of opinion g0 is a crucial
index to measure the final tendency of opinion evolution.
Without any other external factors, on the basis of the
mean-field method, we can calculate the average opinion
of all nodes at initial time as ḡ0= g0−0.5. When g0< 0.5,
ḡ0= g0−0.5 < 0, so the average opinion of all nodes in the
whole network continually tends to negative opinion, and
when g0 > 0.5, the average opinion of all nodes similarly
approaches positive opinion.

The difference of individuals’ opinion in the whole net-
work reflects the overall degree of bias of opinion in the
whole network. To measure how individual opinions differ
at each step, we here use the standard deviation of the
individuals’ opinions:

Sopinion(t) =

√√√√ 1
N

N∑

i=1

(gi(t) − ḡ(t))2. (2)

Where ¯g(t) is the mean value of all indifiduals’ opinion at
time t.

Figure 5(a) and (b) show that the differences of opin-
ion in the whole network decrease with time for different
tolerance threshold. Furthermore, with the increase of
tolerance threshold δ, the difference of opinion obviously
increases. Since the threshold δ expresses the tolerance
of individuals to their surrounding environment, the more
the individuals’ tolerance, the more the difference of opin-
ion in the whole network. However, when the difference
of opinion reaches a certain value, individuals’ opinions
reach a steady state. We can see that when t > 200, the
difference of opinion Sopinion is almost unchanged.

In order to further study the effect of tolerance thresh-
old δ on the difference of opinion, we calculate the dif-
ference of positive and negative opinion respectively. Let
S+

opinion(∞) and S−
opinion(∞) be the difference of positive

and negative opinion, respectively. From fig. 6, we see
that the difference of opinion Sopinion(∞) increases with
the tolerance threshold δ regardless of whether the opin-
ion is positive or negative. From fig. 6(a1) and fig. 6(b1),
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Fig. 6: (Colour online) The difference between the average
positive and negative opinions varies with tolerance thresh-
old for different opinion updating speed λ. S+

opinion(∞ ) and
S−

opinion(∞ ) are the difference between the average positive
and negative opinions when t → ∞ . (a1) and (a2) show
the variation tendency of S+

opinion(∞ ) and S−
opinion(∞ ) at g0=

0.4, respectively; (b1) and (b2) show the variation trend of
S+

opinion(∞ ) and S−
opinion(∞ ) at g0 = 0.6, respectively. The
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Fig. 7: (Colour online) The difference of opinion Sopinion(∞ ) as
a function the initial fraction of positive opinion g0. Sopinion(∞ )
is the difference of opinion when t → ∞ . Parameters are set
as λ = 0.1 and m = 3. (a) The tolerance threshold δ = 0.3;
(b) the tolerance threshold δ = 0.5; (c) the tolerance threshold
δ = 0.7.

one sees that, for small g0 values, S−
opinion(∞) = 0 only

at δ = 0 while S−
opinion(∞) is zero at δ is not equal to

0 for large g0 values (g0 = 0.6 in fig. 6(b1)). For the
large initial fraction of positive opinion g0 = 0.6, as the
tolerance threshold is less than 0.2, the difference of nega-
tive opinion is almost to 0. Since there are many positive
opinions at the initial time, and the tolerance threshold is
small, almost all of the individuals adopt a positive opin-
ion. This leads to few (if any) negative opinions in the
network. Comparing fig. 6(a2) and fig. 6(b2), we find the
same phenomenon. Interestingly, the difference of opinion
is relatively small when the updating speed is λ = 0.5 (see
fig. 6(a1) and fig. 6(b2)). However, when the opinion up-
dating speed is fast, for example, as λ = 0.9, the difference
of opinion is large (see fig. 6(a1) and fig. 6(b2)).

As mentioned above, the initial fraction of opinion has a
significant impact on the final fraction of opinion. Now let
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Fig. 8: (Colour online) The relationship between the final
opinion distribution and activity rate. Parameters are set as
λ = 0.05, m = 3 and δ = 0.1. Panels (a) and (b) are for
g0 = 0.4 and g0 = 0.6, respectively. The red line is the re-
sult of nonparametric fitting. (For more information about the
nonparametric fitting method see the appendix.)

us take a careful look at how the initial fraction of positive
opinion g0 affects the difference of opinion. In fig. 7, we
use the standard deviation to indicate the difference of
individuals’ opinions. On the one hand, the range of the
gi and ḡi are [−1, 1], i = 1, 2, . . . , N ; on the other hand,
individuals’ opinions could converge to within a certain
interval, thus the fluctuations of Sopinion(∞) are relative
small. As we can see from fig. 7(a), (b) and (c), with the
increase of initial fraction of positive opinion g0, there are
a peak and two valleys in the difference of opinion Sopinion.
Most importantly, even for different tolerance thresholds,
the difference of opinion Sopinion(∞) reaches the peak and
the valley at the same initial fraction of positive opinion
g0. The higher the tolerance threshold, the higher the
peak and the greater the difference between the peak value
and the valley value becomes. In addition, we find that
Sopinion(∞) is maximum when g0 ≈ 0.5, which means
that the difference of opinion Sopinion(∞) is large if the
initial fractions of positive opinion and negative opinion
are the same.

The activity-driven network described in the second sec-
tion is applied to build the underlying connections between
individuals. In general, the individuals with high activity
rates could interact with more neighbors at each time.
Figure 8(a) shows that when the negative opinion domi-
nates initially (i.e., the initial fraction of positive opinion
is g0= 0.4), there is positive correlation between individ-
uals’ activity rates and individuals’ opinions. However,
when the positive opinion has an advantage at the ini-
tial time (i.e., the initial fraction of positive opinion is
g0 = 0.6), fig. 8(b) shows that the relationship between
individuals’ activity rates and individuals’ opinions is neg-
atively correlated. The above results demonstrate that
there is a strong relationship between the degree of activ-
ity rate and individual’ opinion, and the higher the activity
rate of the individual, the more likely it is for the individ-
uals’ opinions to tend to 0. We also find that the lower the
activity rate of the individuals, the greater the fluctuation
range of their opinions; adversely, the higher the activity
rate of the individuals, the smaller the fluctuation range of
their opinions. The reason is that the individuals with low

activity rates only connect with a few other agents at each
time step. The frequency of opinion updating for people
with low activity rates is therefore less than the opinion-
updating frequency for those with high activity rate, and
this finally leads to large fluctuations in opinion for those
with a low activity rate.

Conclusions. – Quantitative analysis of human behav-
ior is an interesting and important project. The inter-
action topology connecting individuals often varies with
time, especially considering modern online social networks
which provide a convenient way for people to interact with
different users at different times. In the previous stud-
ies, researchers proposed many opinion spreading models,
such as the Deffuant model and the Hegselmann-Krause
model. On the one hand, almost all of those traditional
opinion models evolved in static networks, on the other
hand, they assume that an individual interacts with an-
other agent only if their opinions are close enough. There-
fore, we have built a realistic continuous opinion model to
study the opinion dynamics of activity-driven networks.
By studying the behavior of this opinion dynamics sys-
tem, we could improve our understanding of the evolution
of opinion.

After a large number of numerical simulations, we find
that there exists a critical value of λ (the updating speed)
at about 0.5. Interestingly, the difference of opinion is rela-
tively small at this critical value. We find that a higher tol-
erance threshold δ leads to less agreement among agents.
We also observe that when the initial fraction of positive
opinion g0 is small, there are no positive opinions once the
system reaches a steady state, and Sopinion(∞) begins to
change abruptly at g0 = 0.5 ± 0.05. In addition, we find
that Sopinion(∞) is maximized when g0≈0.5. This value
must in fact equal 0.5 due to the system’s symmetry with
respect to positive and negative opinions. Our final obser-
vation is that the lower the activity rate of the individuals,
the greater the range of fluctuation of their opinions.
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Appendix: nonparametric regression. – We use
nonparametric regression procedures to obtain a smooth
set of points from each set of scattered data (ki, ni),
i = 1, . . . , N [41]. Nadaraya-Watson: we construct the
kernel smoother function

mh(k) =
∑N

i Kh(k − ki)ni∑n
i Kh(k − ki)

. (A.1)

Here Kh(k − ki) is a Gaussian kernel of the form

Kh(k − ki) =
1√
2N

exp
[
− (k − ki)2

2h2

]
. (A.2)
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The optimal bandwidth h suggested by Bowman and
Azzalini is

h =
√

hkhn, (A.3)

where hk(n) = (4N
3 ) 1

5 δk(n), δk(n) =
median{|ki(ni)−median{ki(ni)}|}

0.6754 , i = 1, 2, . . . , N .
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