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A critical phenomenon is an intrinsic feature of traffic dynamics,
during which transition between isolated local flows and global
flows occurs. However, very little attention has been given to
the question of how the local flows in the roads are organized
collectively into a global city flow. Here we characterize this
organization process of traffic as “traffic percolation,” where the
giant cluster of local flows disintegrates when the second largest
cluster reaches its maximum. We find in real-time data of city road
traffic that global traffic is dynamically composed of clusters of
local flows, which are connected by bottleneck links. This organi-
zation evolves during a day with different bottleneck links appear-
ing in different hours, but similar in the same hours in different
days. A small improvement of critical bottleneck roads is found to
benefit significantly the global traffic, providing a method to im-
prove city traffic with low cost. Our results may provide insights
on the relation between traffic dynamics and percolation, which
can be useful for efficient transportation, epidemic control, and
emergency evacuation.
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Traffic, as a large-scale and complex dynamical system, has
attracted much attention, especially on its dynamical transi-

tion between free flow and congestion (1–3). The dynamics of
traffic have been studied using many types of models (4–11),
ranging from models in macroscopic scales based on the kinetic
gas theory or fluid dynamics to approaches in microscopic scales
with equations for each car in the network. However, there is still
a gap between the microscopic behavior of individual vehicles
and the emergence of macroscopic city traffic. Indeed, a funda-
mental question has rarely been addressed: how the local flows
in roads interact and organize collectively into global flow
throughout the city network. This knowledge is not only neces-
sary to bridge the gap between local traffic and global traffic, but
also essential for developing efficient traffic control strategies.
There are mainly two obstacles in studying how the collective

network dynamics of real traffic emerge from local flows. The
first obstacle is the lack of valid methods to quantify the dy-
namical organization of traffic in the road network. The second
is the lack of data on traffic dynamics in a network scale. To
overcome the first obstacle, we develop here a quantitative
framework based on percolation theory, which combines evolv-
ing traffic dynamics with network structure. In this framework,
instead of the commonly used structural topology, only roads
in the network with speed larger than a variable threshold are
considered functionally connected. In this way, we can charac-
terize and understand the formation process of traffic dynamics.
To overcome the second obstacle of missing data on a network

scale and understand the organization processes of real traffic
in a network, we collected and analyzed velocities of more than
1,000 roads with 5-min segments records measured in a road
network in a central area of Beijing (Fig. 1A). This area of more
than 22 km2 contains the largest train station in Beijing and is
considered a typical region showing transition between free flow

and congestions. The data cover a time span of 2 wk in 2013. For
the road network, nodes represent the intersections and edges
represent the road segments between two intersections. For each
road, the velocity vij(t) varies during a day according to real-time
traffic. For each road eij, we set the 95th percentile of its velocity
in each day as its limited maximal velocity and define rij(t) as the
ratio between its current velocity and its limited maximal velocity
measured for that day (Fig. 1B and SI Appendix, Fig. S1). For
a given threshold q, the road eij can be classified into two cate-
gories: functional when rij > q and dysfunctional for rij < q,

eij =
!
1; rij ≥ q
0; rij < q: [1]

In this way, a functional traffic network can be constructed for
a given q value from the traffic dynamics of the original road
network, which becomes more diluted as the value of q increases.

Results
To observe the emergence of global city traffic in the network
scale at a given time, we can vary the value of q and study the
formation process of the dynamical traffic network. For q = 0,
the traffic network is the same as the original road network and
for q = 1 it becomes completely fragmented. For a certain value
of q, the hierarchical organization of traffic in different scales
emerges, where only clusters of roads with rij higher than q ap-
pear (clusters in Fig. 2 A–C). These clusters represent functional
modules composed of connected roads with speed higher than q.
For example, during a typical lunchtime instant, for q = 0.69, as
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shown in Fig. 2A, only small clusters of connected roads with
high velocity emerge, which cannot maintain the global network
traffic. As the value of q decreases to 0.19 in Fig. 2C, these small
clusters merge together and a giant cluster is formed, where the
functional network (with lower velocity) extends to almost the full
scale of original road network. For q = 0.38 (Fig. 2B), the size of
second-largest cluster becomes maximal, which signifies the phase
transition point for network connectivity of a functional traffic
network, according to percolation theory (12, 13). This percola-
tion-like process can be better understood in Fig. 2D (more
examples in SI Appendix, Fig. S4). As q increases, the size of
the giant component decreases, and the second-largest cluster
reaches a maximum at the critical threshold (qc) separating
the fragmented phase from the connected phase of the traffic
network.
As an indicator of the robustness characteristics of network

connectivity (14–20), the critical threshold qc in this percolation-
like process here quantifies the organization efficiency of real
traffic. An individual car can travel most of the city (giant
component of traffic network) only with velocity below qc,
whereas this car will be trapped in small isolated clusters when it
drives with velocity above qc. Hence, qc measures effectively the
maximal relative velocity one can travel over the main part of
a network, which reflects the global efficiency of traffic in a
network view.
Due to the traffic evolution, qc is found to change dramatically

during the day as seen in Fig. 2E (details in SI Appendix, Fig. S5).
In a typical working day, qc is found to be maximal from about
midnight until 5:30 AM, indicating that the whole road network
can function with high velocity. Close to 6:00 AM, qc begins to
drop abruptly and shows a minimum around 8:00 AM corre-
sponding to morning rush hours in Beijing. There are usually
two local minima during a typical working day, which are around
8:00 AM and 6:00 PM. Note that qc reaches an intermediate
level around noon, 12:00 PM, which might correspond to a pos-
sible third phase between free phase and congested phase. Due
to the diverse commuting habit during weekends, only one local
minimum appears in weekends around 2:00 PM (Fig. 2E).
The network at percolation criticality has a very dilute struc-

ture and behaves as the “backbone” of the original network (21).
In the backbone of the traffic network, we find some links (called
“red bonds” in percolation) that play a critical role in bridging
different functional clusters of traffic. Therefore, these bridging

links can be considered as bottlenecks because their velocities
are lowest with respect to the whole backbone and qc is de-
termined according to their value. We identify the bottleneck
links of the traffic network by comparing the functional network
just below and immediately above the criticality threshold. Fig. 3
A and B demonstrates the links removed at criticality, qc,
showing that they can disintegrate the giant cluster and result in
a maximal second-largest cluster. Some of these links connect
different traffic clusters and are thus considered bottlenecks.
Because the roads in the real data are directed, we define the
connected component as the “strongly connected component”
(22, 23), in which all pairs of nodes are mutually reachable from
each other along a directed path. Therefore, removal of two
roads in Fig. 3A will lead to loss of directed paths bridging
different clusters and disintegration of the giant strongly
connected component.

A B

Fig. 1. Road network of the observed district. (A) Map of the investigated district. (B) Road network of the investigated district. Road network at 9:00 AM on
March 29, 2013 is shown, where links are classified into three categories according to their velocity ratio rij: velocity ratio below 0.4 (red), between 0.4 and 0.7
(yellow), and above 0.7 (green). Note the clustering of each color.

A B C

D E

Fig. 2. Percolation of traffic networks: Traffic networks during the noon pe-
riod (at 11:50 AM on March 27) for three q values corresponding to different
connectivity states. A, B, and C exhibit the traffic networks under different q
values with 0.69, 0.38, and 0.19 representing the states of high-, medium-, and
low-velocity thresholds, respectively. For clarity, only the largest three clusters
are plotted, which are marked in green (largest cluster), blue (second-largest
cluster), and strawberry (third-largest cluster). Here the clusters are strongly
connected components, considering road direction (more details in SI Appen-
dix). (D) Size of the largest cluster (G) and the second-largest cluster (SG) of
traffic networks as a function of q (more examples in SI Appendix). Critical
value, qc, is determined as the q value when SG becomes maximal. (E) qc as
a function of time, averaged separately over nine weekdays and twoweekends.
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To observe the impact of bottleneck links on the global traffic,
we increase the road velocity (rij) of bottleneck links by a factor
of 1 + α (α > 0) and measure the new qc of the modified traffic
network. It can be seen in Fig. 3C that qc of the traffic network
is significantly increased only through increasing the velocity
of the bottleneck link (more examples in SI Appendix, Fig. S7).
This improvement of global traffic is dramatically higher com-
pared with the improvement when increasing the velocity of
a single link chosen randomly. Surprisingly, the improvement of

qc is negligible when the velocity of the link with the highest hop-
count–based betweenness is increased, although such a link is
usually considered a bottleneck link because it bridges different
topological communities (24, 25). This suggests that the bottleneck
links found in our dynamical network are unique and different
from results of network analysis based only on structural in-
formation. In addition, the links found based on weighted be-
tweenness (26, 27) are also compared and found to be different
from bottlenecks found by our method (SI Appendix, Fig. S12).

Fig. 3. Bottleneck links of a traffic network. (A) A typical example of a traffic network just below criticality, where two links (in red within red or black circles)
are removed at criticality. Removal of them will disintegrate the giant functional network. (B) Same traffic network after removal of the two links, where the
giant functional cluster is disintegrated into five clusters. We find all strongly connected clusters of the traffic network for each q and identify the links
removed at threshold qc when the second-largest strongly connected cluster reaches a maximum. Although some of these links are removed by chance,
a few links do play a critical role of bridging different traffic clusters of higher velocities. These bridging links are identified as bottleneck links, because when
increasing their velocity large clusters can join together to become the largest component (more details in SI Appendix, Fig. S7). (C) The improvement of qc by
increasing separately the ratio (r′ij = rij(1 + α)) of two links marked in A, within which improvement of qc can be achieved only with one (marked with red circle)
of them. This link is considered a bottleneck link for global traffic. This is compared with the improvement of one link randomly chosen and the link with
highest betweenness. (D) Zipf plot of occurrence times of links as bottlenecks during morning rush hours. It is compared with occurrence times of bottlenecks
in the same network with shuffled values of rij during morning rush hours. For the shuffled case, we shuffle the rij values 100,000 times at each instant and
find the bottleneck links with the same method.

A B

C D

Fig. 4. Evolving bottlenecks in different periods in 1 d. (A) Bottleneck links with high occurrence in different periods are marked: morning (red), noon
(green), and evening (blue). (B) The occurrence times of links (marked in A) as bottlenecks in different periods are plotted: morning (red), noon (green), and
evening (blue). (C and D) The network breaks into several clusters after removal of bottlenecks with highest occurrence (top 10 in the morning in C or top 8 at
noon in D). Red arrows in C and D are paths bridging different clusters, which are fragmented by the removal of bottleneck links.
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Further discussion can be found in SI Appendix. The appearance
of the bottleneck links is not accidental. As shown in Fig. 3D (SI
Appendix, Fig. S8), some bottleneck links appear to be much
more frequent than the random case. The high occurrence of
bottleneck links demonstrates the dynamical percolation feature
of real traffic and shows that the approach could be useful for
significantly improving city traffic. Note that these bottleneck
links with high occurrence are different from those found in the
shuffled case, which reflect only the structural feature of the
road network.
Static bottleneck links of a network are identified usually

based on structural information (28–33), by considering links
that are critical for network connectivity. However, traffic is
a dynamical nonequilibrium system, which evolves with time as
a result of collective individual competition. Therefore, we ex-
pect that bottlenecks of global traffic will also evolve accordingly,
different from those found by structural methods. From the
bottleneck links identified in different hours during a typical day
(Fig. 4 A and B and SI Appendix, Fig. S10), one can conclude that
the bottleneck roads are essentially different in the morning,
lunchtime, and evening rush hours. This is due to the different
individual travel habits and interactions, which result in different
global traffic patterns during different rush hours. As seen in Fig.
4A, in the morning, red bonds are distributed along a central
path (city highway), whose congestion disintegrates the whole
network into isolated clusters; however, in the evening hours, red
bonds are distributed in less central roads, whose congestion
influences only local areas, and the main part of the network
stays functional. Indeed, as shown in Fig. 4B, the occurrence of
links as bottlenecks changes dramatically from morning to
evening rush hours; however, they appear repeatedly in different
days in the same hours (SI Appendix, Fig. S11).
Bottleneck links result from the interactions among local

functional clusters. Different bottleneck links signify distinct

organization of global traffic in different hours. As shown in
Fig. 4 C and D, traffic networks become disintegrated in differ-
ent ways when different bottleneck links are removed. In Fig. 4C,
removal of bottleneck links in the morning causes the giant
cluster to break into one large cluster and four smaller clusters.
In Fig. 4D, however, removal of bottleneck links at noon breaks
the giant cluster into two clusters of similar size.

Conclusion
As we reveal the percolation feature in organization of real traffic,
the percolation threshold can be considered a measure for traffic
efficiency, which takes into account the interaction between roads’
network structure and flow. This proposed framework enables us
to identify instantaneously those roads bridging different traffic
clusters of higher velocity (with respect to the bottleneck). These
bottleneck links identified at qc can provide opportunities to im-
prove significantly the global network traffic with minor cost
(e.g., improving a single road). Understanding the congestion
formation and dissipation mechanisms in a network view through
our framework can serve to predict and control traffic, in partic-
ular in the future realization of the “smart city.” Particularly, our
study can be useful in mitigating congestion (34) or traffic-driven
epidemics (35) through certain self-healing algorithms (36) based
on real-time information on traffic dynamics in the network.
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