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We propose a position-space renormalization-group approach to the problem of viscous finger-
ing in the absence of surface tension, with an arbitrary viscosity ratio between the injected and
displaced fluid. We find that there are only two fixed points, the Eden and the diffusion-limited
aggregation (DLA) points. The Eden point, which corresponds to a compact cluster with a non-
fractal surface, is stable in all directions, while the DLA fixed point is a saddle point. Hence if
the viscosity of the injected fluid is not zero, the system must eventually cross over to a compact
cluster. We also calculate the crossover exponent ¢ and crossover radius R x, and discuss possible

experimental measurements.

How can patterns arise from processes which are ran-
dom at the microscopic level? This question has recently
occupied the attention of many investigators, ranging
from physicists and mathematicians to materials scientists
and embryologists. A problem that has come to serve as
one paradigm of pattern formation is the viscous-fingering
phenomenon.! In its simplest form, one injects a fluid of
viscosity u; into a fluid of higher viscosity u,, using a
Hele-Shaw cell—a two-dimensional geometry in which
the fluid is confined between two large transparent plates
separated by a distance b on the order of a millimeter.? If
the plates are circular disks and the injected fluid enters
through a hole at the center, the viscous fingers have radi-
al symmetry.

In the limiting case in which the interfacial tension be-
tween the injected and displaced fluid may be neglected
and the viscosity ratio u;/u,;— 0, one expects to find pat-
terns that are isomorphic to diffusion-limited aggregation
(DLA), since the Laplace equation underlies both the ex-
perimental phenomenon and the model system.> DLA
patterns are relatively simple to recognize since they may
be quantified by their fractal dimension dy, and the value
of dy (=1.7) for two dimensions is far from the compact
value of two.* However, experimental evidence on this
point has been contradictory and no clear picture has
emerged.’ 7

There are many possible sources for the lack of agree-
ment between experiments and the DLA model. In par-
ticular, the viscosity of the injected fluid is not zero, but
rather is typically a factor of 102-10¢ smaller than that of
the displaced fluid.’~7 Recent computer simulations for
viscous fingering with a nonzero viscosity ratio are incon-
clusive, displaying patterns that are rather difficult to ana-
lyze quantitatively; qualitatively, the “core” is compact,
but the rest of the pattern is roughly as ramified as
DLA.®7'% Thus an open question concerns the asymptot-

41

ic behavior of viscous fingering in real experimental situa-
tions in which the viscosity of the injected fluid is not
strictly zero.

In this Rapid Communication we propose an answer to
this question. Using a position-space renormalization-
group (PSRG) approach, we find that for any nonzero
viscosity ratio, the system must evolve into a compact
cluster with a nonfractal surface. We also propose a scal-
ing theory for the way the system evolves into a compact
cluster, where the evolution is described by crossover ra-
dius R x or crossover exponent ¢.

First we consider the basic equations for the Hele-Shaw
problem. In order to simplify the problem, we assume
that both fluids are Newtonian with zero interfacial ten-
sion. We start with the Darcy law

vi=—kVP;. (1a)

Here v; is the velocity field, P; the pressure field, and
ki=b%/12yu; is the permeability coefficient, and the index
i =1,2 indicates injected fluid and displaced fluid, respec-
tively. Conservation of volume implies (for incompressi-
ble fluids) that

V'V,'_O. (lb)

From (1) we conclude that P; should satisfy the Laplace
equation, V2P; =0.

The equation of motion for the interface is v,
= —kii- VP, = —k,i- VP,. Here v, is the normal veloci-
ty of the interface, and 1 is the unit vector normal to the
interface. In the absence of surface tension, the pressure
field must be continuous across the interface. These equa-
tions, together with the pressure field at the boundary,
completely determine the time evolution of the system.

Consider now a system made of two different materials
whose conductivities are s; and s,. Connect an external
current source to the system, and keep the electric poten-
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tial at the junction fixed. Then steady electric current will
pass through each material, with current density j; satis-
fying Ohm’s law

Ji=—siV¢;. (2a)
Electric charge conservation implies
V-ji=0. (2b)

Here ¢; is the electric potential, and the index i specifies
the two materials. We apply the interface evolution equa-
tion v, = —sfi- V¢, = — 5,ii- Vg,. Due to the formal simi-
larity between Egs. (1) and (2), the fluid flow problem be-
comes isomorphic to the electric current problem.

The next step is to discretize the system. We cover the
system with a square “net,” where every bond is con-
sidered to be a resistor, and we assign conductances o,
and o, to the bonds covering the injected and displaced
fluid, and refer to them as “injected bond” and “displaced
bond,” respectively. The discretized rule for the interface
evolution is that a bond with conductance o, at the inter-
face can be transformed to a bond with conductance o;.
We refer to injected bonds in the “growth zone” as A
bonds, and corresponding displaced bonds as B bonds.
The probability of the transformation pi for the kth bond
in one time step (not a real time) is

- (Vo)
LA 7Y A

where (V¢), is the potential drop across the kth bond at
the interface. '

Next we consider the small-cell PSRG. In the same
spirit as the PSRG for percolation,'! we only consider the
y direction. Therefore, we apply periodic boundary condi-
tions in the x direction of the cell. Without loss of gen-
erality, we set o, =1. Therefore, the conductances of the
unrenormalized bonds of types 4 and B are 64 =0, and
og =1, respectively. The renormalization rules are (i) if
the injected bonds span the cell in the vertical direction,
we replace the cell with a renormalized surface bond of
conductance o. (ii) If the injected bonds do not span the
cell in the vertical direction, we replace the cell with a re-
normalized surface bond of conductance o.

The renormalized conductances o} and op are defined
as the average vertical conductances of configurations
satisfying rules (i) and (ii), respectively.'> For a small
cell, we can consider all the injected bonds as type-A
bonds.

In order to calculate the renormalized conductances, we
must know every possible cell configuration and its weight.
Let C, be the weight of configuration a (i.e., the probabil-
ity of getting configuration a if we randomly choose one
configuration from all possible configurations). The possi-
ble configurations and their weights are determined by the
interface evolution rule discussed before.

As the cell size increases the number of possible
configurations /N, becomes enormous (N, =2.8x10'° for
the L=3 cell). Thus N, is much larger than for the
analogous PSRG calculation for bond percolation, where
the total number of configurations for a LXxL cell is
22L’=L (3.2x10* for L=3). The large values N, of the
Hele-Shaw problem come from the fact that for a growth

(3)

process there is a “‘history dependence.” This point can be
illustrated by considering two configurations that look
alike. In the growth process, in contrast to percolation,
these two configurations can be generated through
different histories, which in general give different weights.

Since N, is so vast, it is very difficult even by computer
to enumerate all possible configurations. Moreover, we
must solve the Laplace equation for every configuration in
order to determine all the growth probabilities and total
conductances, and we must do all these calculations for
each renormalization step. Hence, we take an alternate
approach. First, we find that some branches in the
“growth tree structure” are identical. Therefore, instead
of considering two branches separately, we can consider
only one branch with symmetry factor 2. Motivated by
this idea, we apply an algorithm'3 that recognizes these
symmetries and produces a “reduced-growth tree struc-
ture,” and thereby reduces N, to 20 for L =2 and to 3124
for L =3,

We now proceed to define the renormalized conduc-
tances o4 and op. We denote by &,(04,05) the conduc-
tance in the vertical direction of configuration a. We con-
sider two versions of the conductance renormalization. In
the first version, the renormalized conductances are the
algebraic averages of configurations satisfying the renor-
malization rules. Thus

oy =(8,(04,08))ees (4a)
and
op=($.(04,08)eeuU, (4b)

where S is the set of configurations that satisfy rule (i)
and U is the set of configurations that satisfy rule (ii), and
Xoaes=XaesCoXo/2aesCa Alternatively, we may
use geometric averages,

Inoly ={In&.(04,068))ces (5a)
and

lno‘b"(lne?a(o,g,dg))aeu. (Sb)

To find the fixed points of these renormalization equa-
tions, we randomly choose a point in the parameter space
(ps,p4), where pg=1/0p and p4=1/04, and calculate the
renormalized conductances using (4) or (5), to find a new
point (p3,p4). We repeat this process to find another
point (pg,p4), and continue until we approach a stable
fixed point (p3,p%). We used 100 initial points and plot
the renormalization flow. Figure 1(a) shows part of the
flow for L =2, obtained by using (5). The points on the
p4=0 line (x axis) need special attention. For these
points, the renormalization equations for o4, Eqs. (4a)
and (5a), becomes trivial. Since o is simply an average
conductance of the spanning configuration, and all span-
ning configurations have infinite conductance (note that
04 =), o4 also should be infinity. Therefore, we only
need to consider Egs. (4b) or (5b) with o4 =00, Since
there is a fixed point on the x axis which is found to be a
saddle point, this decoupling of the equations is particu-
larly important in order to converge to the fixed point.
The renormalization flow on the p4 =0 line obtained in
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FIG. 1. (a) The renormalization flow for L=2 with the
geometric average rule. Part (a) is for arbitrary (ps,p4), while
part (b) is for the p4 =0 line. Note the stable fixed point at
(1,1) in (a), and the saddle point on the x axis. (c) shows the
crossover line from the DLA to the Eden fixed point.

this way is shown in Fig. 1(b).

From the renormalization flow, we identify two fixed
points. One fixed point, which is on the x axis, corre-
sponds to the case that the injected fluid has zero viscosity.
The asymptotic behavior of the system at this point should
be the same as DLA so we call this the DLA fixed point.
The other point is (p} =1, p% =1). For this point, the
viscosity of the injected fluid is the same as the viscosity of
the displaced fluid at the interface. We call this point the
Eden fixed point, since every surface bond has equal prob-
ability to grow.'® Therefore, we expect the system to
evolve into a compact cluster with a nonfractal surface.

From the renormalization flow, we can determine the
stabilities of these fixed points. The DLA fixed point is a
saddle point: it is stable in the x direction, and unstable in
other directions. The Eden point is stable in every direc-
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tion. These results are confirmed by linearizing the renor-
malization equations and calculating the eigenvalues.
When we change the cell size (L =2,3) and the conduc-
tance renormalization rules (4) and (5), the numerical
values of the DLA fixed points are changed but the above
results concerning the existence of the two fixed points
and their stabilities are not changed'® (Table I).

The main result from the flow diagram is that there ex-
ists a crossover from a fractal cluster (the DLA fixed
point) to a compact cluster (the Eden fixed point). In or-
der to quantify this crossover behavior, we define a cross-
over exponent ¢ and a crossover radius Rx. Consider the
flow diagram shown in Fig. 1(a), and note that eventually
all the renormalization flows are sucked into the line join-
ing the DLA point to the Eden point. Therefore, one can
describe the crossover behavior of the system by concen-
trating only on this line. This crossover line can be deter-
mined by following the renormalization flow which starts
from very close to the DLA fixed point. Figure 1(c)
shows the crossover line for L =2 determined in this
fashion. We propose the scaling ansatz in the vicinity of
the DLA fixed point

(6a)

where M is the mass of the cluster, R is the radius of gyra-
tion, dy is the fractal dimension of DLA, and u=o0,/04
(=p./ps). Moreover, we assume

Fx)~ 1 1f‘x<<l,
x®ifx>1.

M(R,u) =RYF(uR?®) ,

(6b)

To find a relation between ¢ gf, and a, note that as R
increases, M (R,u) scales as R”**. However, the cluster
becomes compact, implying

df+¢a-2. @

Thus if one measures the scaling function F(x) and hence
a, one can calculate ¢. Furthermore, for a given value of
04, we can estimate Rx. From (6b), Rx should be the
value of the radius which corresponds to x=1, that is
Rx~u - l/p.

We estimate ¢ from the largest eigenvalue of the renor-
malization equation at the DLA fixed point. For L=2
with (4), we get ¢=0.5.'3 A more precise value of ¢
could be calculated by other methods. Note that the data
collapse predicted by Eq. (6a) may be put to direct experi-

TABLE I. The fixed points of the renormalization equations
and their stabilities.

Cell size R.G. rule DLA point Eden point

2 . (0.321,0) (1,1
Algebraic Saddle Stable

Geometric (0.430,0) a1

Saddle Stable

3 Algebraic (0.349,0) (1,1)
Saddle Stable

Geometric (0.456,0) 1,1

Saddle Stable
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mental test; from the scaling function, one can also mea-
sure ¢ and Rx. There are already some experimental in-
dications that the broad outlines of our approach may be
correct; e.g., the measured finger patterns are thicker near
the injection point than near the periphery, which is con-
sistent with the numerical simulations,® and recent experi-
ments® demonstrate that radial viscous fingers have an ap-
parent fractal dimension intermediate between DLA and
Eden prediction, exactly what one would expect if the ex-
perimental conditions are in the crossover region.

In summary, based on the electrostatic analogy we
developed a set of PSRG equations for the Hele-Shaw
problem in the absence of surface tension with an arbi-
trary viscosity ratio between the injected and displaced
fluid. We found that there are only two fixed points, the
Eden and DLA points. The Eden point is stable in all
directions, while the DLA fixed point is found to be a sad-
dle point. Therefore, for any nonzero viscosity ratio, the
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system must eventually cross over into a compact cluster
with a nonfractal surface. We also calculated the cross-
over exponent ¢ and crossover radius R x.

After submitting this work, we learned that our predict-
ed crossover to the Eden universality class for nonzero
viscosity ratio has received excellent numerical support. '®
We also learned that this prediction was to some extent
anticipated by a linear stability calculation'’ for the
analogous electrodeposition problem. Also, Nagatani has
recently applied the present two-parameter renormaliza-
tion group to DLA with variable sticking probabilities. '®
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National Science Foundation, Office of Naval Research,
NATO and the Boston University Academic Computing
Center for support.
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