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Abstract

We study transport properties such as electrical and frictionless flow conductance on scale-free and Erdős–Rényi networks. We consider the
conductance G between two arbitrarily chosen nodes where each link has the same unit resistance. Our theoretical analysis for scale-free networks
predicts a broad range of values of G, with a power-law tail distribution ΦSF(G) ∼ G−gG , where gG = 2λ − 1, where λ is the decay exponent
for the scale-free network degree distribution. We confirm our predictions by simulations of scale-free networks solving the Kirchhoff equations
for the conductance between a pair of nodes. The power-law tail in ΦSF(G) leads to large values of G, thereby significantly improving the
transport in scale-free networks, compared to Erdős–Rényi networks where the tail of the conductivity distribution decays exponentially. Based
on a simple physical ‘transport backbone’ picture we suggest that the conductances of scale-free and Erdős–Rényi networks can be approximated
by ckAkB/(kA + kB) for any pair of nodes A and B with degrees kA and kB . Thus, a single quantity c, which depends on the average degree k of
the network, characterizes transport on both scale-free and Erdős–Rényi networks. We determine that c tends to 1 for increasing k, and it is larger
for scale-free networks. We compare the electrical results with a model for frictionless transport, where conductance is defined as the number of
link-independent paths between A and B, and find that a similar picture holds. The effects of distance on the value of conductance are considered
for both models, and some differences emerge. Finally, we use a recent data set for the AS (autonomous system) level of the Internet and confirm
that our results are valid in this real-world example.
Published by Elsevier B.V.
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1. Introduction

Transport in many random structures is ‘anomalous’, i.e.
fundamentally different than that in regular space [1–3]. The
anomaly is due to the random substrate on which transport is
constrained to take place. Random structures are found in many
places in the real world, from oil reservoirs to the Internet, mak-
ing the study of anomalous transport properties a far-reaching
field. In this problem, it is paramount to relate the structural
properties of the medium with the transport properties.

An important and recent example of random substrates is
that of complex networks. Research on this topic has uncovered
their importance for real-world problems as diverse as the

∗ Corresponding author. Tel.: +1 505 6650055; fax: +1 505 6652659.
E-mail address: edlopez@bu.edu (E. López).

World Wide Web and the Internet to cellular networks and
sexual-partner networks [4].

Two distinct models describe the two limiting cases for
the structure of the complex networks. The first of these is
the classic Erdős–Rényi model of random networks [5], for
which sites are connected with a link with probability p and
disconnected (no link) with probability 1 − p (see Fig. 1). In
this case the degree distribution P(k), the probability of a node
to have k connections, is a Poisson:

P(k) ∼

(
k
)k

e−k

k!
, (1)

where k ≡
∑

∞

k=1 k P(k) is the average degree of the network.
Mathematicians discovered critical phenomena through this
model. For instance, just as in percolation on lattices, there
is a critical value p = pc above which the largest connected
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Fig. 1. (a) Schematic of an Erdős–Rényi network of N = 12 and p = 1/6.
Note that in this example ten nodes have k = 2 connections, and two nodes
have k = 1 connections. This illustrates the fact that for Erdős–Rényi networks,
the range of values of degree is very narrow, typically close to k. (b) Schematic
of a scale-free network of N = 12, kmin = 2 and λ ≈ 2. We note the presence
of a hub with kmax = 8 which is connected to many of the other links of the
network.

component of the network has a mass that scales with the
system size N , but below pc, there are only small clusters of
the order of log N . Another characteristic of an Erdős–Rényi
network is its ‘small-world’ property which means that the
average distance d (or radius) between all pairs of nodes of
the network scales as log N [6]. The other model, recently
identified as characterizing the topological structure of many
real world systems, is the Barabási–Albert scale-free network
and its extensions [7–9], characterized by a scale-free degree
distribution (see Fig. 1(b)):

P(k) ∼ k−λ
[kmin ≤ k ≤ kmax]. (2)

The cutoff value kmin represents the minimum allowed value
of k on the network (kmin = 2 except when otherwise noted),
and kmax ≡ kmin N 1/(λ−1), the typical maximum degree of a
network with N nodes [10,11]. The scale-free feature allows
a network to have some nodes with a large number of links
(‘hubs’), unlike the case for the Erdős–Rényi model of random
networks [5,6]. Scale-free networks with λ > 3 have d ∼

log N , while for 2 < λ < 3 they are ‘ultra-small-world’ since
the radius scales as d ∼ log log N [4,10].

Here we extend our recent study of transport in complex
networks [12,13]. We find that for scale-free networks with
λ ≥ 2, transport properties characterized by conductance
display a power-law tail distribution that is related to the
degree distribution P(k). The origin of this power-law tail
is due to pairs of nodes of high degree which have high
conductance. Thus, transport in scale-free networks is better
because of the presence of large degree nodes (hubs) that
carry much of the traffic, whereas Erdős–Rényi networks lack
hubs and the transport properties are controlled mainly by the
average degree k [6,14]. Also, we present a simple physical
picture of transport in scale-free and Erdős–Rényi networks
and test it through simulations. Additionally, we study a form
of frictionless transport, in which transport is measured by the
number of independent paths between source and destination.
These later results are similar to those in [15]. The results of
our study are relevant to problems of diffusion in scale-free and
Erdős–Rényi networks, given that conductivity and diffusivity
are related by the Einstein relation [1–3].

The paper is structured as follows. Section 2 concentrates
on the numerical calculation of the electrical conductance
of networks. In Section 3 a simple physical picture gives a
theoretical explanation of the results. Section 4 deals with the
number of link-independent paths as a form of transport. In
Section 5 we present the conclusions and summarize the results
in a coherent picture.

2. Transport in complex networks

Most of the work done so far regarding complex networks
has concentrated on static topological properties or on models
for their growth [4,10,8,16]. Transport features have not been
extensively studied with the exception of random walks on
specific complex networks [17–19]. Transport properties are
important because they contain information about network
function [20]. Here we study the electrical conductance G
between two nodes A and B of Erdős–Rényi and scale-free
networks when a potential difference is imposed between them.
We assume that all the links have equal resistances of unit
value [21].

To construct an Erdős–Rényi network, we begin with N
nodes and connect each pair with probability p. To generate
a scale-free network with N nodes, we use the Molloy–Reed
algorithm [22], which allows for the construction of random
networks with arbitrary degree distribution. We generate ki
copies of each node i , where ki is a random number taken from
a distribution of the form P(ki ) ∼ k−λ

i . We then randomly
pair these copies of the nodes in order to construct the network,
making sure that two previously-linked nodes are not connected
again, and also excluding links of a node to itself [23].

We calculate the conductance G of the network between two
nodes A and B using the Kirchhoff method [24], where entering
and exiting potentials are fixed to VA = 1 and VB = 0. We solve
the set of N − 2 linear equations

N∑
j=1, j 6=i

V j − Vi

ri j
= 0, ∀i 6= A, B (3)

representing the conservation of current at the nodes. The
resistances ri j are 1 if nodes i and j are connected, and infinite
if i and j are not connected. Finally, the total current I ≡ G
entering at node A and exiting at node B is computed by adding
the outgoing currents from A to its nearest neighbours through∑

j (VA − V j ), where j runs over the neighbours of A.
First, we analyze the probability density function (pdf) Φ(G)

which comes from Φ(G)dG, the probability that two nodes
on the network have conductance between G and G + dG.
To this end, we introduce the cumulative distribution F(G) ≡∫

∞

G Φ(G ′)dG ′, shown in Fig. 2(a) for the Erdős–Rényi and
scale-free (λ = 2.5 and λ = 3.3, with kmin = 2) cases. We use
the notation ΦSF(G) and FSF(G) for scale-free, and ΦER(G)

and FER(G) for Erdős–Rényi. The function FSF(G) for both
λ = 2.5 and 3.3 exhibits a tail region well fit by the power law

FSF(G) ∼ G−(gG−1), (4)

and the exponent (gG −1) increases with λ. In contrast, FER(G)

decreases exponentially with G.
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Fig. 2. (a) Comparison for networks with N = 8000 nodes between the cumulative distribution functions of conductance for the Erdős–Rényi and the scale-free
cases (with λ = 2.5 and 3.3). Each curve represents the cumulative distribution F(G) vs. G. The simulations have at least 106 realizations. (b) Effect of system size
on FSF(G) vs. G for the case λ = 2.5. The cutoff value of the maximum conductance Gmax progressively increases as N increases.

Fig. 3. (a) The pdf ΦSF(G|kA, kB ) vs. G for N = 8000, λ = 2.5 and kA = 750 (kA is close to the typical maximum degree kmax = 800 for N = 8000). (b) Most
probable values G∗, estimated from the maxima of the distributions in Fig. 3(a), as a function of the degree kB . The data support a power law behavior G∗

∼ kα
B

with α = 0.96 ± 0.05.

Increasing N does not significantly change FSF(G)

(Fig. 2(b)) except for an increase in the upper cutoff
Gmax, where Gmax is the typical maximum conductance,
corresponding to the value of G at which ΦSF(G) crosses over
from a power law to a faster decay. We observe no change of the
exponent gG with N . The increase of Gmax with N implies that
the average conductance G over all pairs also increases slightly.

We next study the origin of the large values of G in scale-free
networks and obtain an analytical relation between λ and gG .
Larger values of G require the presence of many parallel paths,
which we hypothesize arise from the high degree nodes. Thus,
we expect that if either of the degrees kA or kB of the entering
and exiting nodes is small (e.g. kA > kB), the conductance G
between A and B is small since there are at most k different
parallel branches coming out of a node with degree k. Thus,
a small value of k implies a small number of possible parallel
branches, and therefore a small value of G. To observe large G
values, it is therefore necessary that both kA and kB be large.

We test this hypothesis by large scale computer simulations
of the conditional pdf ΦSF(G|kA, kB) for specific values of the
entering and exiting node degrees kA and kB . Consider first
kB � kA, and the effect of increasing kB , with kA fixed. We
find that ΦSF(G|kA, kB) is narrowly peaked (Fig. 3(a)) so that

it is well characterized by G∗, the value of G when ΦSF is a
maximum. We find similar results for Erdős–Rényi networks.
Further, for increasing kB , we find [Fig. 3(b)] G∗ increases as
G∗

∼ kα
B , with α = 0.96 ± 0.05 consistent with the possibility

that as N → ∞, α = 1 which we assume henceforth.
For the case of kB & kA, G∗ increases less fast than kB , as

can be seen in Fig. 4 where we plot G∗/kB against the scaled
degree x ≡ kA/kB . The collapse of G∗/kB for different values
of kA and kB indicates that G∗ scales as:

G∗
∼ kB f

(
kA

kB

)
. (5)

Below we study the possible origin of this function.

3. Transport backbone picture

The behaviour of the scaling function f (x) can be
interpreted using the following simplified ‘transport backbone’
picture [Fig. 4 inset], for which the effective conductance G
between nodes A and B satisfies:

1
G

=
1

G A
+

1
G tb

+
1

G B
, (6)
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Fig. 4. Scaled most probable conductance G∗/kB vs. scaled degree x ≡

kA/kB for system size N = 8000 and λ = 2.5, for several values of kA and
kB : � (kA = 8, 8 ≤ kB ≤ 750), ♦ (kA = 16, 16 ≤ kB ≤ 750), 4 (kA = 750,
4 ≤ kB ≤ 128), © (kB = 4, 4 ≤ kA ≤ 750), 5 (kB = 256, 256 ≤ kA ≤ 750),
and B (kB = 500, 4 ≤ kA ≤ 128). The curve crossing the symbols is the
predicted function G∗/kB = f (x) = cx/(1 + x) obtained from Eq. (8). We
also show G∗/kB vs. scaled degree x ≡ kA/kB for Erdős–Rényi networks
with k = 2.92, 4 ≤ kA ≤ 11 and kB = 4 (symbol •). The curve crossing the
symbols represents the theoretical result according to Eq. (8), and an extension
of this line to represent the limiting value of G∗/kB (dotted-dashed line).
The probability of observing kA > 11 is extremely small in Erdős–Rényi
networks, and thus we are unable to obtain significant statistics. The scaling
function f (x), as seen here, exhibits a crossover from a linear behavior to the
constant c (c = 0.87±0.02 for scale-free networks, horizontal dashed line, and
c = 0.55 ± 0.01 for Erdős–Rényi, dotted line). The inset shows a schematic
of the ‘transport backbone’ picture, where the circles labeled A and B denote
nodes A and B and their associated links which do not belong to the ‘transport
backbone’.

where 1/G tb is the resistance of the ‘transport backbone’ while
1/G A (and 1/G B) are the resistances of the set of links near
node A (and node B) not belonging to the ‘transport backbone’.
It is plausible that G A is linear in kA, so we can write G A =

ckA. Since node B is equivalent to node A, we expect G B =

ckB . Hence:

G =
1

1/ckA + 1/ckB + 1/G tb
= kB

ckA/kB

1 + kA/kB + ckA/G tb
,

(7)

so the scaling function defined in Eq. (5) is

f (x) =
cx

1 + x + ckA/G tb
≈

cx

1 + x
. (8)

The second equality follows if there are many parallel paths
on the ‘transport backbone’ so that 1/G tb � 1/ckA [25].
The prediction (8) is plotted in Fig. 4 for both scale-free and
Erdős–Rényi networks and the agreement with the simulations
supports the approximate validity of the transport backbone
picture of conductance in scale-free and Erdős–Rényi networks.

The agreement of (8) with simulations has a striking
implication: the conductance of a scale-free and Erdős–Rényi
networks depends on only one quantity c. Further, since the
distribution of Fig. 3(a) is sharply peaked, a single measurement
of G for any values of the degrees kA and kB of the entrance
and exit nodes suffices to determine G∗, which then determines
c and hence through Eq. (8) the conductance for all values of
kA and kB .

Fig. 5. Parameter 1 − c vs. k for scale-free and Erdős–Rényi networks with
N = 8000. The scale-free networks display a power-law decay with exponent
−1.69 ± 0.02, whereas the Erdős–Rényi networks exhibit a decay exponent of
−1.37 ± 0.02.

With regards to quantity c, first note it should grow, up
to its upper limit 1, as the number of connections increases.
For instance, a complete graph has conductance N/2 which,
if compared to Eq. (7), indicates that indeed c → 1. This
suggests testing c as a function of the average degree k. In
Fig. 5 we present results for both scale-free and Erdős–Rényi
networks. The most important feature is that there seems to
be a power-law decay of 1 − c with respect to k. We find
that the dependence is of the form 1 − c ∼ k

q
, with q =

−1.37 ± 0.02 for Erdős–Rényi and q = −1.69 ± 0.02 for
scale-free. Also, we observe that c for Erdős–Rényi networks,
at least in the region of k studied, is lower than for scale-
free networks. As k increases, transport on scale-free networks
becomes increasingly better than in Erdős–Rényi networks,
because c is closer to one for the same k.

Within this ‘transport backbone’ picture, we can analytically
calculate FSF(G). The key insight necessary for this calculation
is that G∗

∼ kB , when kB ≤ kA, and we assume that G ∼ kB

is also valid given the narrow shape of ΦSF(G|kA, kB). This
implies that the probability of observing conductance G is
related to kB through ΦSF(G)dG ∼ M(kB)dkB , where M(kB)

is the probability that, when two nodes A and B are chosen
at random, kB is the minimum degree. This can be calculated
analytically through:

M(kB) ∼ P(kB)

∫ kmax

kB

P(kA)dkA. (9)

Performing the integration we obtain for G < Gmax

ΦSF(G) ∼ G−gG [gG = 2λ − 1]. (10)

Hence, for FSF(G), we have FSF(G) ∼ G−(2λ−2). To test this
prediction, we perform simulations for scale-free networks and
calculate the values of gG − 1 from the slope of a log–log plot
of the cumulative distribution FSF(G). From Fig. 6(b) we find
that

gG − 1 = (1.97 ± 0.04)λ − (2.01 ± 0.13). (11)
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Fig. 6. (a) Simulation results for the cumulative distribution FSF(G) for λ between 2.5 and 3.5, consistent with the power law FSF ∼ G−(gG−1) (cf. Eq. (10)),
showing the progressive change of the slope gG − 1. (b) The exponent gG − 1 from simulations (circles) with 2.5 < λ < 4.5; shown also is a least square fit
gG − 1 = (1.97 ± 0.04)λ − (2.01 ± 0.13), consistent with the predicted expression gG − 1 = 2λ − 2 [cf. Eq. (10)].

Fig. 7. Comparison of pdf Ψ(Gtb) and Φ(G) for networks of N = 8000 for
two values of λ.

Thus, the measured slopes are consistent with the theoretical
values predicted by Eq. (10) [26].

The transport backbone conductance G tb of scale-free
networks can also be studied through its pdf ΨSF (see Fig. 7). To
determine G tb, we consider the contribution to the conductance
of the part of the network with paths between A and B,
excluding the contributions from the vicinities of nodes A and
B, which are determined by the quantity c. The most relevant
feature in Fig. 7 is that, for a given λ value, both ΨSF and
Φ(G) have equal decay exponents, suggesting that they are also
related to λ as Eq. (11). Fig. 7 also shows that the values of G tb
are significantly larger than G.

4. Number of link-independent paths: Transport without
friction

In many systems, it is the nature of the transport process that
the particles flowing through the network links experience no
friction. For example, this is the case in an electrical system
made of super-conductors [27], or water flow along pipes, if
frictional effects are minor. Other examples are flow of cars
along traffic routes, and perhaps most important, the transport
of information in communication networks. Common to all

these processes is that, the quality of the transport is determined
by the number of link-independent paths leading from the
source to the destination (and the capacity of each path), and not
by the length of each path (as is the case for simple electrical
conductance). In this section, we focus on nonweighted
networks, and define the conductance, as the number of link-
independent paths between a given source and destination A
and B. We name this transport process as the max-flow model,
and denote the conductance as GMF. Fast algorithms for solving
the max-flow problem, given a network and a pair (A, B) are
well known within the computer science community [28]. We
apply those methods to random scale-free and Erdős–Rényi
networks, and observe similarities and differences from the
electrical conductance transport model. Max-flow analysis has
been applied recently for complex networks in general [15,29],
and for the Internet in particular [30], where it was used as
a significant tool in the structural analysis of the underlying
network.

We find that in the max-flow model, just as in the
electrical conductance case, scale-free networks exhibit a
power-law decay of the distribution of conductances with the
same exponent (and thus very high conductance values are
possible), while in Erdős–Rényi networks, the conductance
decays exponentially (Fig. 8(a)). In order to better understand
this behaviour, we plot the scaled-flow G∗

MF/kB as a function of
the scaled-degree x ≡ kA/kB (Fig. 8(b)). It can be seen that the
transition at x = 1 is sharp. For all x < 1(kA < kB), G∗

MF = x
(or G∗

MF = kA), while for x > 1(kB < kA), G∗

MF = 1 (or
G∗

MF = kB). In other words, the conductance simply equals
the minimum of the degrees of A and B. In the symbols of
Eq. (7), this also implies that c → 1; i.e. scale-free networks
are optimal for transport in the max-flow sense. The derivation
leading to Eq. (10) becomes then exact, so that the distribution
of conductances is given again by ΦMF,SF(GMF) ∼ G−(2λ−1)

MF .
This picture of the transport is seen when the minimum

degree in the network is kmin = 2. When the minimum degree
is allowed to take values in the range between 1 and 2 [31],
we find that GMF ∝ min{kA, kB}, but the two quantities are no
longer equal. This reflects the fact that as the minimum network
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Fig. 8. (a) Cumulative distribution of link-independent paths (conductance) FMF(GMF) vs. GMF compared with the electrical conductance distributions taken from
Fig. 2. We see that the scaling is indeed the same for both models, but the proportionality constant of FMF(GMF) vs. GMF is larger for the frictionless problem. (b)
Scaled most probable number of independent paths G∗

MF/kB as a function of the scaled degree kA/kB for scale-free networks of N = 8000, λ = 2.5 and kmin = 2.
The behaviour is sharp, and shows how G∗

MF is a function of only the minimum k.

Fig. 9. (a) Average conductance GMF vs. minimum degree of the source and sink A and B for different values of kmin, the minimum degree in the network. All
curves show the behavior GMF ∝ k, as the proportionality coefficient gradually increases (see inset), until eventually becomes 1 as kmin approaches 2. (b) The same
concept is illustrated by plotting the probability to find a specific conductance GMF when the minimum degree is 12, for few values of kmin.

degree is lowered, the network becomes more dilute, such that
two paths starting at the source might intersect at some link
inside the backbone. In other words, the conductance of the
backbone is still high, but no longer infinite. This is illustrated
in Fig. 9(a), where we plot the average conductance GMF vs. the
minimum degree of the source and sink min{kA, kB}, and find
that while the relation between the two variables is linear, the
slope is not necessarily 1. Nevertheless, as kmin approaches 2,
the slope becomes 1, which indicates that a sufficient condition
for the network to have infinite backbone conductivity is
kmin ≥ 2. This is illustrated again in Fig. 9(b), where the
distribution of conductance values GMF for fixed min{kA, kB} is
plotted.

We have so far observed that the max-flow model is quite
similar to electrical conductance, by means of having a finite
possibility of finding very high values of conductance. Also,
the fact that the minimum degree plays a dominant role in the
number of link-independent paths makes the scaling behaviour
of the electrical and frictionless problems similar. Only when

the conductances are studied as a function of distance, some
differences between the electrical and frictionless cases begin
to emerge. In Fig. 10(a), we plot the dependence of the
average conductance GMF with respect to the minimum degree
min(kA, kB) of the source and sink, for different values of the
shortest distance `AB between A and B, and find that GMF is
independent of `AB as the curves for different `AB overlap.
This result is a consequence of the frictionless character
of the max-flow problem. However, when we consider the
electrical case, this independence disappears. This is illustrated
in Fig. 10(b), where G is also plotted against the minimum
degree min(kA, kB), but in this case, curves with different `AB

no longer overlap. From the plot we find that G decreases as
the distance increases. This is explained using the observation
of [32], that the average shortest distance between the source
and the sink is inversely proportional to the (logarithm of the
product) of their degrees. Thus, on average, shorter distances
are attributed to higher degrees, which in turn are connected by
larger conductance.
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Fig. 10. (a) Average conductance GMF vs. minimum degree min(kA, kB ) of the source and sink A and B for different values of the shortest distance `AB . The
relation is independent of `AB indicating the independence of GMF on the distance. The network has N = 8000, λ = 2.5, kmin = 2. (b) Average conductance G
vs. minimum degree min(kA, kB ) of the source and sink A and B for different values of distance `AB . The independence of G with respect to `AB breaks down
and, as `AB increases, G decreases. Once again, N = 8000 and λ = 2.5, but the average has been performed for various kB < kA and kA = 750.

Fig. 11. Cumulative distribution F(G(I )
MF) of G(I )

MF for the Internet. This data
set is consistent with the scale-free structure that has been observed for the
Internet (see text).

In order to test the validity of our results in real networks,
we measured the conductance G(I )

MF on the most up to date
map of the Autonomous Systems (AS) level of the Internet
structure [33]. From Fig. 11 we find that the slope of the plot,
which corresponds to gG − 1 from Eq. (10), is approximately
2.3, implying that λ ≈ 2.15 ± 0.05. This value of λ is in good
agreement with the value of the degree distribution exponent
for the Internet observed in [33].

5. Summary

In summary, we find that the conductance of scale-free
networks is highly heterogeneous, and depends strongly on
the degree of the two nodes A and B. Our results suggest
that the transport constants are also heterogeneous in these
networks, and depend on the degrees of the starting and ending
nodes. We also find a power-law tail for ΦSF(G) and relate the
tail exponent gG to the exponent λ of the degree distribution
P(k). This power-law behaviour makes scale-free networks
better for transport. Our work is consistent with a simple

physical picture of how transport takes place in scale-free and
Erdős–Rényi networks. This, so called ‘transport backbone’
picture consists of the nodes A and B and their vicinities,
and the rest of the network, which constitutes the transport
backbone. Because of the great number of parallel paths
contained in the transport backbone, transport takes place inside
with very small resistance, and therefore the dominating effect
of resistance comes from the vicinity of the node (A or B) with
the smallest degree. This scenario appears to be valid for both
the electrical and frictionless models, as clearly indicated by
the similarity in the results. The quantity c, which characterizes
transport for a complex network exhibits a behaviour of the
form 1 − k

q
for both scale-free and Erdős–Rényi networks in

the electrical model, and in the frictionless model c = 1 in
most cases. We observe that as k increases, scale-free networks
become progressively better than Erdős–Rényi networks in
electrical transport.

Finally, we point out that our study can be extended further.
For instance, it has been found recently that many real-world
scale-free networks possess fractal properties [34]. However,
random scale-free and Erdős–Rényi networks, which are the
subject of this study, do not display fractality. Since fractal
substrates also lead to anomalous transport [1–3], it would
be interesting to explore the effect of fractality on transport
and conductance in fractal networks. This case is expected
to have anomalous effects due to both the heterogeneity of
the degree distribution and to the fractality of the network.
Furthermore, the effect on conductivity and transport of the
correlation between distance of two nodes and their degree [32]
should be further investigated.
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[5] P. Erdős, A. Rényi, Publ. Math. Debreccen 6 (1959) 290–297.
[6] B. Bollobás, Random Graphs, Academic Press, Orlando, 1985.
[7] A.-L. Barabási, R. Albert, Science 286 (1999) 509–512.
[8] P.L. Krapivsky, S. Redner, F. Leyvraz, Phys. Rev. Lett. 85 (2000)

4629–4632.
[9] H.A. Simon, Biometrika 42 (1955) 425.

[10] R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 85 (2000)
4626–4628.

[11] In principle, a node can have a degree up to N − 1, connecting to all
other nodes of the network. The results presented here correspond to
networks with upper cutoff kmax = kmin N 1/(λ−1) imposed. We also
studied networks for which kmax is not imposed, and found no significant
differences in the pdf ΦSF(G).
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