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Anomalous Transport in Scale-Free Networks
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To study transport properties of scale-free and Erdős-Rényi networks, we analyze the conductance G
between two arbitrarily chosen nodes of random scale-free networks with degree distribution P�k� � k��

in which all links have unit resistance. We predict a broad range of values of G, with a power-law tail
distribution �SF�G� �G�gG , where gG � 2�� 1, and confirm our predictions by simulations. The
power-law tail in �SF�G� leads to large values of G, signaling better transport in scale-free networks
compared to Erdős-Rényi networks where the tail of the conductivity distribution decays exponentially.
Based on a simple physical ‘‘transport backbone’’ picture we show that the conductances of scale-free and
Erdős-Rényi networks are well approximated by ckAkB=�kA � kB� for any pair of nodes A and B with
degrees kA and kB, where c emerges as the main parameter characterizing network transport.
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Recent research on the topic of complex networks is
leading to a better understanding of many real-world so-
cial, technological, and natural systems ranging from the
World Wide Web and the Internet to cellular networks and
sexual-partner networks [1]. A network topology that ap-
pears in many real-world systems is the scale-free network
[2], characterized by a scale-free degree distribution:
P�k� � k�� and kmin � k � kmax, where k, the degree, is
the number of links attached to a node. The cutoff value
kmin represents the minimum allowed value of k on the
network (kmin � 2 here), and kmax � kminN1=���1�, the
typical maximum degree of a network with N nodes
[3,4]. The scale-free feature allows a network to have
some nodes with a large number of links (‘‘hubs’’), unlike
the case for the classic Erdős-Rényi model of random
networks [5,6].

Here we characterize transport properties by conduc-
tance. We show that for scale-free networks with � 	 2,
the conductance displays a power-law tail distribution that
is related to the degree distribution P�k�. We find that the
origin of the power-law tail is due to pairs of nodes of high
degree. Thus, transport in scale-free networks is better than
in Erdős-Rényi random networks. Also, we present a sim-
ple physical picture of transport in scale-free and Erdős-
Rényi networks and test it with simulations.

The classic random networks of Erdős and Rényi [5,6]
have a Poisson degree distribution, in contrast to the
power-law distribution of the scale-free case. Because of
the exponential decay of the degree distribution, the Erdős-
Rényi networks (i) lack hubs and (ii) their properties,
including transport, are controlled mainly by the average
degree �k � �kmax

i�kmin
iP�i� [6,7].

Most of the work done so far regarding complex net-
works has concentrated on static topological properties or
on models for their growth [1,3,8,9]. Transport features
have not been extensively studied with the exception of
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random walks on complex networks [10–12], despite the
fact that transport properties contain information about
network function [13]. Here, we study the electrical con-
ductance G between two nodes A and B of Erdős-Rényi
and scale-free networks when a potential difference is
imposed between them. We assume that all the links
have equal resistances of unit value [14].

To construct an Erdős-Rényi network, we begin with N
nodes and connect each pair with probability p. To gen-
erate a scale-free network with N nodes, we use the
Molloy-Reed algorithm [15], which allows for the con-
struction of random networks with arbitrary degree distri-
bution. We generate ki copies of each node i, where the
probability of having ki satisfies P�ki� � k��

i . These copies
of the nodes are then randomly paired in order to construct
the network, making sure that two previously linked nodes
are not connected again, and also excluding links of a node
to itself [16].

The conductance G of the network between two nodes A
and B is calculated using the Kirchhoff method, where
entering and exiting potentials are fixed to VA � 1 and
VB � 0. We solve a set of linear equations to determine
the potentials Vi of all nodes of the network. Finally, the
total current I � G entering at node A and exiting at node
B is computed by adding the outgoing currents from A to
its nearest neighbors through �j�VA � Vj�, where j runs
over the neighbors of A.

First, we analyze the probability density function (PDF)
��G� which comes from ��G�dG, the probability that two
nodes on the network have conductance between G and
G� dG. To this end, we introduce the cumulative distri-
bution F�G� �

R
1
G ��G0�dG0, shown in Fig. 1(a) for the

Erdős-Rényi and scale-free (� � 2:5 and � � 3:3, with
kmin � 2) cases. We use the notation �SF�G� and FSF�G�
for the scale-free case, and �ER�G� and FER�G� for the
Erdős-Rényi case. The function FSF�G� for both � � 2:5
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FIG. 1. (a) Comparison for networks with N � 8000 nodes
between the cumulative distribution functions for the Erdős-
Rényi and the scale-free cases (with � � 2:5 and 3.3). Each
curve represents the cumulative distribution F�G� vs G. The
simulations have at least 106 realizations. (b) Effect of system
size on FSF�G� vs G for the case � � 2:5. The cutoff value of the
maximum conductance Gmax progressively increases as N in-
creases.
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and 3.3 exhibits a tail region well fit by the power law

FSF�G� �G��gG�1�; (1)

and the exponent (gG � 1) increases with �. In contrast,
FER�G� decreases exponentially with G.

Increasing N does not significantly change FSF�G�
[Fig. 1(b)] except for an increase in the upper cutoff
Gmax, where Gmax is the typical maximum conductance,
corresponding to the value of G at which �SF�G� crosses
over from a power law to a faster decay. We observe no
change of the exponent gG with N. The increase of Gmax

with N implies that the average conductance �G over all
pairs also increases slightly [17].

We next study the origin of the large values of G in
scale-free networks and obtain an analytical relation be-
tween � and gG. Larger values of G require the presence of
many parallel paths, which we hypothesize arise from the
high degree nodes. Thus, we expect that if either of the
degrees kA or kB of the entering and exiting nodes is small,
the conductance G between A and B is small since there are
at most k different parallel branches coming out of a node
with degree k. Thus, a small value of k implies a small
number of possible parallel branches, and therefore a small
value of G. To observe large G values, it is therefore
necessary that both kA and kB be large.

We test this hypothesis by large scale computer simula-
tions of the conditional PDF �SF�GjkA; kB� for specific
values of the entering and exiting node degrees kA and
kB. Consider first kB 
 kA, and the effect of increasing kB,
with kA fixed. We find that �SF�GjkA; kB� is narrowly
peaked [Fig. 2(a)] so that it is well characterized by G�,
the value of G when �SF is a maximum. We find similar
results for Erdős-Rényi networks. Further, for increasing
kB, we find [Fig. 2(b)] G� increases as G� � k�B, with � �
0:96� 0:05 consistent with the possibility that as N ! 1,
� � 1, which we assume henceforth.
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For the case of kB * kA, G� increases less fast than kB,
as can be seen in Fig. 2(c) where we plot G�=kB against the
scaled degree x � kA=kB. The collapse of G�=kB for differ-
ent values of kA and kB indicates that G� scales as

G� � kBf
�
kA
kB

�
: (2)

The behavior of the scaling function f�x� can be inter-
preted using the following simplified ‘‘transport back-
bone’’ picture [Fig. 2(c), inset], for which the effective
conductance G between nodes A and B satisfies

1

G
�

1

GA
�

1

Gtb
�

1

GB
; (3)

where 1=Gtb is the resistance of the transport backbone
while 1=GA and 1=GB are the resistances of the set of
bonds near nodes A and B not belonging to the transport
backbone. Based on Fig. 2(b), it is plausible that GA is
linear in kA, so we can write GA � ckA. Since node B is
equivalent to node A, we expect GB � ckB. Hence

G �
1

1=ckA � 1=ckB � 1=Gtb

� kB
ckA=kB

1� kA=kB � ckA=Gtb
; (4)

so the scaling function defined in Eq. (2) is

f�x� �
cx

1� x� ckA=Gtb
�

cx
1� x

: (5)

The second equality follows if there are many parallel
paths on the transport backbone so that 1=Gtb 
 1=ckA
[18]. The prediction (5) is plotted in Fig. 2(c) for both
scale-free and Erdős-Rényi networks and the agreement
with the simulations supports the approximate validity of
the transport backbone picture of conductance in scale-free
and Erdős-Rényi networks.

The agreement of (5) with simulations has a striking
implication: the conductance of a scale-free and Erdős-
Rényi network depends on only one parameter c. Further,
since the distribution of Fig. 2(a) is sharply peaked, a single
measurement of G for any values of the degrees kA and kB
of the entrance and exit nodes suffices to determine G�,
which then determines c and hence through Eq. (5) the
conductance for all values of kA and kB.

Within this transport backbone picture, we can analyti-
cally calculate FSF�G�. Using Eq. (2), and the fact that
�SF�GjkA; kB� is narrow, yields

�SF�G� �
Z

P�kB�dkB
Z

P�kA�dkA�
�
kBf

�
kA
kB

�
�G

�
;

(6)

where ��x� is the Dirac delta function. Performing the
integration of Eq. (6) using (5), we obtain for G<Gmax

�SF�G� �G�gG �gG � 2�� 1�: (7)
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FIG. 2. (a) PDF �SF�GjkA; kB� vs G for N � 8000, � � 2:5, and kA � 750 (kA is close to the typical maximum degree kmax � 800
for N � 8000). (b) Most probable values G�, estimated from the maxima of the distributions in Fig. 2(a), as a function of the degree kB.
The data support a power-law behavior G� � k�B with � � 0:96� 0:05. (c) Scaled most probable conductance G�=kB vs scaled degree
x � kA=kB for system size N � 8000 and � � 2:5, for several values of kA and kB: � (kA � 8, 8 � kB � 750), � (kA � 16, 16 �
kB � 750), 4 (kA � 750, 4 � kB � 128), � (kB � 4, 4 � kA � 750), 5 (kB � 256, 256 � kA � 750), and � (kB � 500, 4 � kA �
128). The curve crossing the symbols is the predicted function G�=kB � f�x� � cx=�1� x� obtained from Eq. (5). We also show
G�=kB vs scaled degree x � kA=kB for Erdős-Rényi networks with �k � 2:92, 4 � kA � 11, and kB � 4 (�), the curve crossing the
symbols representing the theoretical result according to Eq. (5), and an extension of this line to represent the limiting value of G�=kB
(dot-dashed line). The probability to obtain kA > 11 is extremely small in Erdős-Rényi networks, and thus we are unable to obtain
significant statistics. Scaling function f�x�, as seen here, exhibits a crossover from a linear behavior to the constant c (c � 0:87� 0:02
for scale-free networks, horizontal dashed line, and c � 0:55� 0:01 for Erdős-Rényi, dotted line). The inset shows a schematic of the
‘‘transport backbone’’ picture, where the circles labeled A and B denote nodes A and B and their associated links, which do not belong
to the transport backbone.
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Hence, forFSF�G�, we haveFSF�G��G��gG�1��G��2��2�.
To test this prediction, we perform simulations for scale-
free networks and calculate the values of gG � 1 from the
slope of a log-log plot of the cumulative distribution
FSF�G�. From Fig. 3(b) we find that

gG � 1 � �1:97� 0:04��� �2:01� 0:13�: (8)

Thus, the measured slopes are consistent with the theoreti-
cal value predicted by Eq. (7) [19].

Next, we consider some further implications of our
work. Our results show that larger values of G are found
in scale-free networks with a much larger probability than
in Erdős-Rényi networks, which raises the question
whether scale-free networks have better transport than
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FIG. 3. (a) Simulation results for the cumulative distribution
FSF�G� for � between 2.5 and 3.5, consistent with the power law
FSF �G��gG�1� [cf. Eq. (7)], showing the progressive change of
the slope gG � 1. (b) The exponent gG � 1 from simulations
(circles) with 2:5< �< 4:5; shown also is a least squares fit
gG � 1 � �1:97� 0:04��� �2:01� 0:13�, consistent with the
predicted expression gG � 1 � 2�� 2 [cf. Eq. (7)].
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Erdős-Rényi networks. To answer this question, we con-
sider the average conductance among all the pairs of nodes
in the network, which quantifies how efficient the transport
is. However, since scale-free networks are heterogeneous,
we must find a way to assign proper weights to the choice
of A and B. Recent work [20–22] suggests that the con-
ductances of links between nodes i and j in certain real-
world networks are characterized by �kikj��, with � �

1=2. Using this weight, and comparing scale-free and
Erdős-Rényi networks with equal values of �k [23], we
find that the average conductance of scale-free networks
is larger than that of Erdős-Rényi networks (Table I). Even
larger average conductance for scale-free networks com-
pared to Erdős-Rényi networks (Table I) is obtained if one
assumes [10] � � 1, i.e., that transport occurs with fre-
quency proportional to the degree of the node. The case of
� � 0 represents a ‘‘democratic’’ average, where all the
TABLE I. Values of average conductance of scale-free and
Erdős-Rényi networks for weights defined as �kikj�

�. In paren-
theses we have indicated the values of the corresponding Erdős-
Rényi networks.

Scale-free � � 1 � � 1=2 � � 0
� �k �GSF ( �GER) �GSF ( �GER) �GSF ( �GER)

2.5 5.3 5.5 (2.1) 2.4 (2.0) 1.3 (1.9)
2.7 4.3 2.7 (1.5) 1.8 (1.5) 1.1 (1.4)
2.9 3.7 1.7 (1.2) 1.4 (1.2) 0.9 (1.1)
3.1 3.4 1.3 (1.0) 1.1 (0.9) 0.8 (0.9)
3.3 3.1 1.0 (0.9) 1.0 (0.8) 0.7 (0.7)
3.5 2.9 0.8 (0.7) 0.8 (0.7) 0.6 (0.7)
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pairs of nodes A and B are given the same weight. This
case, which is not justified for heterogeneous networks,
yields average conductance values for scale-free networks
close to those of Erdős-Rényi networks (Table I). In many
real-world systems, degree dependent link conductances
and frequent use of high degree nodes both occur, making
scale-free network transport even more efficient than
Erdős-Rényi network transport.

In summary, we find a power-law tail for �SF�G� and
relate the tail exponent gG to the exponent � of the distri-
bution P�k�. Our work is consistent with a simple physical
picture of how transport takes place in scale-free and
Erdős-Rényi networks.
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Note added.—Three months after the submission of our
manuscript to Physical Review Letters and its posting on
xxx.lanl.gov, a similar manuscript appeared (Deok-Sun
Lee and Heiko Rieger, cond-mat/0503008), which fully
corroborates our findings.
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1-4


