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Abstract – We introduce a model of percolation induced by disorder, where an initially
homogeneous network with links of equal weight is disordered by the introduction of heterogeneous
weights for the links. We consider a pair of nodes i and j to be mutually reachable when the ratio
αij of the optimal path length between them before and after the introduction of disorder does not
increase beyond a tolerance ratio τ . These conditions reflect practical limitations of reachability
better than the usual percolation model, which entirely disregards path length when defining
connectivity and, therefore, communication. We find that this model leads to a first-order phase
transition in both 2-dimensional lattices and in Erdős-Rényi networks, and in the case of the latter,
the size of the discontinuity implies that the transition is effectively catastrophic, with almost all
system pairs undergoing the change from reachable to unreachable. Using the theory of optimal
path lengths under disorder, we are able to predict the percolation threshold. For real networks
subject to changes while in operation, this model should perform better in predicting functional
limits than current percolation models.

Copyright c© EPLA, 2012

Percolation theory one of the most established
approaches to study system connectivity, and how this
connectivity becomes compromised with local system
failure [1]. Systems usually refer to connected structures
such as lattices or random networks [2], and failures to
the removal of nodes or links. Percolation predicts failure
thresholds and sizes of the connected parts of the network
after those failures. Practical domains of applications
include epidemiology [3–5], communication networks like
the Internet [6], and propagation of information in social
networks [7].
Recently [8], it was pointed out that there are many

contexts in which structural connectivity may not be
sufficient for a network to maintain its functionality when
faced with failures. Network nodes may need to be more
than connected; they may need to be reachable from
one another, which is a practical definition. In regular
percolation, node j is reachable from node i if there is
a path of consecutive links from i to j, i.e., if the nodes
are structurally connected after any failures. However,
in real networks, two nodes initially reachable from one
another through a structural path can become unreachable

after link failures even if there is a new structural path
connecting them, but which is in some way unsatisfactory:
for instance, at the onset of traffic congestion in urban
travel, if uncongested paths are present but lead to a
commute time that is a considerable fraction of the
working day, the commute is impractical. This reasoning
led to the introduction of Limited Path Percolation (LPP),
in which reachability between nodes i and j after the
onset of failures is a relative statement: if the path length
between nodes before (!ij) and after (!′ij) failures is such
that !′ij/!ij ! τ , then node j is reachable from i (and vice
versa), where τ is an externally imposed tolerance that
reflects properties of the functional aspect of the network
(regular percolation corresponds to τ →∞). For a large
class of networks, ref. [8] shows that a new phase transition
appears, where networks are now more fragile due to the
additional length constraint.
The approach introduced in ref. [8] was restricted to

the removal (absolute failure) of some links, while other
links remained unperturbed. However, in many real-world
examples, links usually do not fail entirely, but can instead
become more difficult to use such as in road networks
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affected by weather. One can then imagine a network to
begin with no performance degradation (equally useful
links forming an “ordered” network), but progressively
develop some form of disorder in which each link becomes
costly to use (with cost or weight w). In other words,
the network acquires a distribution of link weights Pa(w)
where a is the disorder parameter1. Once disorder has
set in, new “optimal” paths (paths of least total weight)
between each pair of nodes must be found, and a new
disorder-induced Limited Path Percolation can be defined
on the basis of the path length change between the
original unweighted network and the subsequent weighted
network, reflecting a scenario more akin to many real
networks. This is fundamentally different from ref. [8]
because here the network is fully connected structurally
before and after the paths change due to disorder; the
reachability condition is the only source of percolation
effects.
Therefore, we study disorder-induced LPP, and find

that the model leads to a first-order phase transition
for both 2-dimensional square lattices and Erdős-Rényi
networks, indicating a drastic failure of the system when
the disorder exceeds the tolerance limit of the network.
For Erdős-Rényi networks, the failure appears to be
catastrophic, as our numerical results indicate that the
phase transition occurs between an almost fully connected
network and a network of fractional size zero in the
thermodynamic limit. The previous results were obtained
via the introduction of new tools of analysis of LPP;
these tools allowed for the characterization of the phase
transition, and offered a new perspective into a broader
class of models with LPP-like behavior. Through the use
of theoretical results that explain the behavior of optimal
paths, we are able to predict the location of the LPP
transition in both network structures as a function of the
disorder, and structural properties of the networks.

Model and methods. –

Formulation of Limited Path Percolation induced by
disorder. To be concrete, LPP in ref. [8], where link
failure corresponds to link removal, is formulated in the
following way: if a pair of nodes i and j is connected
through a shortest path of length !ij (number of links)
at p= 1 (no links removed), and of length !′ij(p) at p < 1
(fraction 1− p of links removed), i and j are considered
reachable if !′ij(p)! τ!ij , where τ is the tolerance factor
which lies on the range between 1 and∞ [8]. The number
of reachable nodes from an origin o, S, is measured
through

S =
N∑

i=1(i"=o)

θ(τ!oi− !′oi), (1)

where θ is the Heaviside step function θ(x) = 1 if x" 1,
and 0 otherwise. Here, as in ref. [8], o is chosen randomly

1The details of how these weights emerge and their typical range
of values depend on the specific problem, and we will not address
this question here, because it is fundamentally context dependent.

in Erdős-Rényi networks and in the center for square
lattices. S depends on both p and τ , and the LPP phase
transition occurs for the combination of these parameters
at the threshold of the relation S ∼N . For fixed τ , there
is a threshold p= p̃c(τ), at which S ∼N is achieved.
Alternatively, given p" pc, (see footnote 2) there is a
τ = τc(p) such that S ∼N . When τ →∞, p̃c(τ →∞) = pc.
For disorder-induced LPP, the set up is similar, but

instead of considering each link to be kept with probability
p, we change each link weight from 1 to w drawn from a
random uncorrelated distribution Pa(w) where a is the
disorder parameter (defined below)3. The path lengths
change from !ij to !′ij(a) where now the latter corresponds
to the length of the optimal path between i and j.
Reachability is then defined as in ref. [8]: i and j are
considered reachable if !′ij(a)! τ!ij . The number of node
pairs S that remain reachable is a function of a, τ , and N .
We search for the LPP threshold by imposing S ∼N . If a
threshold exists for a fixed tolerance τ , there is a critical
disorder a= ac(τ) or, vice versa, a critical tolerance τ =
τc(a) that depends on the disorder parameter a. Another
way to phrase this is to say that τ and a are control
parameters in disorder-induced LPP, as τ and p are in
regular LPP.
To consider a tolerance to the path length increase

without considering an associated tolerance to the path
weight increase may at first seem arbitrary, but in fact
is well justified in that the overall weight of a path
is asymptotically proportional to its length under the
conditions of disorder we study here (for finite a in
the thermodynamic limit, the problem is always in the
so-called weak disorder [9], further explained below).
Hence, choosing path length tolerance does not affect
the qualitative nature of our results, and one choice of
tolerance can be mapped onto the other. In concrete terms,
if we imagined disorder corresponding to something like
time of travel through a link, then total average travel
time scales linearly with the trip distance.
The general algorithm used to measure disorder-induced

LPP is the following. First, we select the ensemble of
networks G of interest (Erdős-Rényi (ER) graphs [10],
and square lattices). For each network realization G∈ G,
in which all links have weight 1, we determine the path
length !oi between nodes o and i for all i &= o. On the same
network realization G (the same nodes and links), disorder
is introduced by changing the weight of each link from 1
to wij . Subsequently, the optimal paths between o and all
other nodes i of G are determined, and their lengths !′oi
recorded. S is calculated by using eq. (1). To determine
path lengths, we use the Dijkstra algorithm [11].

2For LPP to occur, p > pc, as there must at least be a connected
cluster when no length condition is imposed before reachable clusters
can be found under the more strenuous condition of limited path
lengths.
3Regular LPP is equivalent to choosing 1− p links to have w=∞,

while the others remain at w= 1.
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Disorder. We consider disorder distributions Pa(w)
characterized by a single disorder parameter which, for
convenience, we label as a. Generally, we would expect
that disorder-induced LPP changes as a function of the
form of Pa(w). However, recent work [12] shows that large
classes of disorder distributions are essentially equivalent
in the optimal path problem, provided a certain character-
istic length scale ξ(a) associated with Pa(w) is conserved
(see below). In practical terms, this means that disorder
distributions of different functional forms but with equal
ξ(a) lead to optimal path distributions that scale in the
same way [12].
This result allows us to choose a distribution that is

convenient and well understood. Thus, we use

Pa(w) = (aw)
−1, (w ∈ [1, ea]) (2)

for which a large amount of research has been conducted
in the context of the optimal path problem [9,13–16].
Determining ξ for a given distribution is addressed in [12],
and we return to this in the discussion of results.

Results and discussion. – To characterize LPP effec-
tively, we first measure Θ(S|τ, a,N), the distribution of
sizes of the cluster containing o, for networks of size N
with tolerance τ over disorder and network realizations.
Previously [8], the LPP transition was found by calcu-
lating 〈S〉=

∑
S SΘ(S), and determining the parameter

values at the threshold of 〈S〉 ∼N . Here we develop a more
systematic approach, in which we look at the entire distri-
bution Θ(S|τ, a,N) in order to explore whether disorder-
induced LPP exhibits a phase transition, and if it does,
what is the order. To study the thermodynamic limit, we
find it useful to analyze the fractional mass σ≡ S/N , and
hence Θ(σ|τ, a,N) (or Θ(σ|τ, a, L) for lattices).
On a square lattice of equal sides L and N = (L+1)2 ≈

L2 nodes, we measure Θ(σ|τ, a, L). In fig. 1(a), we show
Θ(σ|τ, a= 10, L) with several L and τ . The first interesting
feature is the narrow shape of the distribution, indicating
the presence of a characteristic mass S for given τ and L.
This suggests focusing on the most probable value of σ,
labeled σ∗(τ, a, L), i.e. Θ(σ∗|τ, a, L)>Θ(σ|τ, a, L) for all
σ &= σ∗. Also, we observe that for small τ , as the system
size increases, σ∗ systematically decreases, but in contrast,
for large τ , σ∗ slowly increases. Between these two cases,
we find a τ for which σ∗(τ) remains virtually constant.

For such τ , labeled τ (Latt)c , S ∼N since σ∗(τLattc ) = const.
A systematic study of σ∗(τ, a,N) can be carried out

with the purpose of understanding in more detail the phase
diagram of the model. In fig. 1(b) we present σ∗ for a= 10
and a range of L and τ . The value of σ∗ was estimated
from Θ(σ|τ, a, L) by finding an appropriate cubic fit for
the peak of the distribution and calculating the location

of its maximum. The determination of τ (Latt)c as a function
of a from simulations is done by inspection and requires
exploring a range of τ with considerable precision (δτ ∼
10−2 or even 10−3, becoming more sensitive for large
a) around a certain region, in plots such as fig. 1(b).

For small τ (say, close to 1 and well below τ (Latt)c ), it

is interesting to see that as the system size increases,
σ∗ ∼L−2 indicating that the fraction of the system that is
reachable is smaller than any power of L2. For τ # τ (Latt)c ,
log σ∗ vs. logL is concave, with the slope decreasing
from a small negative value to −2 as L increases. For
τ > τ

(Latt)
c , we find a progressive increase of σ∗ with

respect to L, with a saturation value that depends on
τ ; σ∗ gradually approaches 1 as τ →∞. These properties
can be interpreted as follows: since asymptotically in

L→∞, σ∗(τ (Latt)c ) approaches a constant strictly greater
than 0 (in this particular case close to 0.20), but σ∗(τ <
τc, a, L)→ 0, the behavior of σ∗(τ) is that of a first-order
transition. We attempted to directly plot σ∗(τ) vs. τ in
hopes of observing the sharp discontinuous step, but finite-
size rounding effects such as those described in ref. [17]
made it impossible; our more subtle methodology was
developed to address this.
To measure Θ(σ|τ, a,N) in ER networks, we sample

over network realizations of G∈ G, and for each G
choose an origin o at random. In fig. 1(c) we present the
relevant simulation results. The qualitative features of
Θ(σ|τ, a,N) for ER networks are analogous to lattices,
including the existence of a critical τ , labeled τ (ER)c . In

contrast to lattices, σ∗(τ (ER)c ) is close to 1, indicating a
very dramatic LPP transition, in which a slight change

of τ around τ (ER)c leads to a transition between almost
entirely reachable to entirely unreachable global network

states. We also observe that for τ < τ (ER)c , there seems
to be a power-law decaying relation between σ∗ and N ,
consistent with a fractal size object below the threshold,
with the decay exponent τ -dependent.
To analyze the problem further, we define the quantity

αij = !′ij/!ij , called the length factor, for each node pair
ij [18], which measures the fractional increase of the path
between i and j, and explore the distribution Φ(α) and its
cumulative F (α) =

∫ α
Φ(α′)dα′ over realizations of Pa(w)

(and G, for ER networks). Note that the LPP reachability
condition is αij ! τ .
Figure 2(a) shows the measurement of F (α|a, L) in

lattices, and in the inset the distribution Φ(α|a, L), which
is a well-concentrated function around its maximum
α= αc. The cumulative F (α) increases sharply around
α= αc rapidly approaching 1, which indicates that many
node pairs satisfy α! αc. The sharpness of Φ(α) increases
for larger L, and F (α) becomes more step like, while αc
remains in the same location. Note that αc can also be
determined at the location where F (α|a, L) for increasing
L cross over each other. Increasing a, on the other hand,
leads to increasing αc, consistent with path lengths becom-
ing longer under more disordered conditions. In fig. 2(c),
we focus on F (α|a,N) for ER networks, and observe
similar features to those in the case of lattices (we display
the cumulative only as the small values of path lengths
in ER graphs produce large discretization fluctuations),
apart from the asymptotics which appear to be slower.

Scaling of path length as a function of disorder. In
order to understand the previous results, we consider the
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Fig. 1: (Colour on-line) (a) Θ(σ|τ, a= 10, L) vs. σ for the square lattice for various τ (in the legend) and L= 160, 320, 640
(increasing symbol size corresponds to increasing system size). Note that for τ = 1.4 the peaks of the distributions, σ∗, remain

almost in the same location with increasing L, indicating that τ (Latt)c is near this value. For τ < τ (Latt)c , σ∗ decreases with
L, and for τ > τ (Latt)c , σ∗ increases with L. Further detailed simulations reveal a better estimate of τ (Latt)c is 1.38 for a= 10.
From Θ(σ|τ, a, L), we determine σ∗ by cubic regression of the top points of the peak of Θ. (b) σ∗(τ, a= 10, L) vs. L for square
lattice, for several τ and L. With τ = τ (Latt)c = 1.38 the curve stays constant indicating the phase transition; for τ approaching
1 (minimal tolerance of path length increase), σ∗ scales as L−2 (solid line), indicating that the largest reachable component is
logarithmic in size. (c) Θ(σ|τ, a= 8, N) vs. σ for Erdős-Rényi networks of 〈k〉= 3, N = 11000, 59000, 307000 (increasing symbol
size corresponds to increasing system size), and various τ . In this case, for τ ≈ 3.7, σ∗ stays roughly constant with increasing N ,
indicating τ (ER)c is close to this value. A more detailed analysis reveals that τ (ER)c = 3.74 for a= 8 and 〈k〉= 3. (d) σ∗(τ, a= 8, N)
for ER networks, with τ values indicated in the legend, and N ranging from 11000 to 307000. It is clear that σ∗ increases with
N for τ > τ (ER)c and decreases for τ < τ (ER)c .
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Fig. 2: (Colour on-line) Cumulative F (α|a, L) vs. α for 2-dimensional lattices, and F (α|a,N) for ER networks. Plot (a) for
lattices corresponds to several L and a. The inset shows Φ(α|a, L) with logarithmic scale on the vertical axis, emphasizing
the fast decay of the distribution which is even more pronounced for larger system sizes. This supports the idea that, in the
asymptotic limit L→∞, the distribution is highly concentrated around αc (highlighted by the arrow). Note that the location
of αc also corresponds to the location where the cumulatives F (α|a, L) cross over each other as L increases. For increasing a,
the location of αc shifts to the right. Panel (b) for ER networks corresponds to F (α|a,N) for several N and a (distribution Φ
is omitted due to discretization fluctuations). αc is such that F (α|a,N) is close to 1. Increasing a leads to distributions shifted
to the right. The inset shows the crossing over between distributions with fixed a and increasing N .
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Fig. 3: (Colour on-line) Testing eqs. (5) and (8). (a) Φ(α/αc) and F (α/αc) vs. α/αc for lattices with αc ∼ (apc)ν(dopt−1), for
various a and L specified in the legend. Both Φ and F collapse supporting the hypothesis that αc responds to eq. (4) for

lattices. Inset: τ (Latt)c vs. a from data and least squares fit. The relation predicted by our theory is τc ∼ (apc)ν(dopt−1), with
ν(dopt− 1) = 0.293 from known values of ν and dopt for 2-dimensional lattices, within error of 0.297± 0.008 obtained from the
fit from our simulation results. (b) F (α′|a,N) vs. α′ for ER networks for a combination of N and a. The collapse of the curves
strongly supports eq. (8).

current knowledge on the problem of optimal paths, which
has attracted considerable attention in the context of
surface growth and domain walls [9,12,19] in the physics
literature. For the purpose of clarity we briefly review
these results here, starting with lattices and extending the
discussion to networks.
Disordered lattices often exhibit optimal paths which

are self-affine, characterized by lengths that scale linearly
with !ij , with a constant prefactor dependent on the
roughness exponent related to the disorder [19]. This limit
of self-affine paths has become known as the weak-disorder
limit.
Another scaling regime has been recognized [9] when

the disorder approaches the so-called strong-disorder limit.
In this limit, each link weight in the network is very
different from any other link weight, progressively forcing
the optimal paths to lie inside the minimum spanning tree
where their lengths scale as !

dopt
ij in lattices, dopt being

the scaling exponent of the shortest path in the lattice
minimum spanning tree [12,13,20].
A general theory explaining these optimal path limits

points out that weak and strong disorder are separated
by a disorder length scale ξ which depends on the
disorder distribution Pa(w) and some network-dependent
features [12,14]. Optimal paths covering a distance smaller
than ξ are in strong disorder, and those covering a larger
distance are in weak disorder (provided the system is large
enough so that ξ+L). Thus, ξ is the weak-strong disorder
crossover length. The weak- and strong-disorder scaling
regimes for !′ij can be expressed by the scaling relation

!′ij ∼ ξdoptf
(
!ij
ξ

)
, f(x) =

{
x, x, 1(weak),
const, x+ 1(strong).

(3)
The length scale ξ can be determined by the relation
ξ = [pc/(wcPa(wc))]ν [12], where pc is the percolation
threshold of the lattice, ν the correlation length exponent
of percolation, and wc is the solution to the equa-
tion pc =

∫ wc Pa(w)dw, i.e., the weight for which the
cumulative distribution of Pa(w) is equal to pc.

Based on the previous arguments, we can now postulate
the properties of Φ(α). We use the weak-disorder limit in
eq. (3) because, as explained before, the thermodynamic
limit naturally induces this regime. Thus, we find that
!′ij ∼ ξdopt(!ij/ξ) = ξdopt−1!ij , where the parenthesis corre-
sponds to !ij in the scale of the crossover length ξ, and
ξdopt to the length of the path within this crossover length
(see fig. 3 in ref. [14]). This relation indicates that the typi-
cal α is given by αc ∼ !′ij/!ij = ξdopt−1!ij/!ij = ξdopt−1. For
Pa(w) of eq. (2), ξ = (apc)ν calculated according to the
above formalism, producing

α(Latt)c ∼ (apc)ν(dopt−1). (4)

In order to test this, we present in fig. 3(a) (main panel)
the scaled curves Φ(α/αc) for various L and a, where αc
is taken from eq. (4). The collapse is consistent with our
scaling picture, and indicates that indeed there is a path
length increase (apc)ν(dopt−1) that explains the empirical
results.
Given the large fraction of node pairs for which α is

close to αc, we postulate that

τ (Latt)c = α(Latt)c (a)∼ (apc)ν(dopt−1), (5)

i.e., the tolerance necessary to obtain the LPP transition
is equivalent to the most probable length factor. To
test this relation, we find by inspection the values of

τ
(Latt)
c as a function of a, and plot them in fig. 3(a)

(inset). The relation between τ (Latt)c and a can be fit to
a power law with exponent 0.297± 8, which is very close
to the predicted ν(dopt− 1) = 0.293, strongly supporting
eq. (5). In addition, we find that σ∗(τ (Latt)c )∼ 0.2± 0.04,
independent of a.
For ER networks, it is known that their path length

distributions are concentrated due to their random
structure, leading to a large number of lengths being
similar to an overall typical length [15]. Thus, we simplify
our analysis by focusing on the typical lengths before and
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after the introduction of disorder. Before disorder sets in,
the typical path length is

!(ER) ∼
logN

log〈k〉 . (6)

However, after weak disorder sets in, it becomes [21]

!′(ER) ∼ µapc log
(
N1/3

apc

)
, (7)

which emerges from the relation that is the equivalent to
eq. (3) now applied to networks. µ is a quantity not yet
characterized in the literature, and depends on 〈k〉 and
also weakly on N and a; for our simulations, µ≈ 4. The N -
dependent ratio between !(ER) and !

′
(ER), which we label

β(N) (slightly different to α because the later applies to
each pair of nodes, but the former to the overall typical
distances), is given by

β(N)∼ µapc log〈k〉
[
1

3
− log(apc)
logN

]
= α(ER)c,∞ − ε(ER)(N),

(8)

where α(ER)c,∞ ≡ µapc log〈k〉/3 is the asymptotic value of
β, and ε(ER)(N)≡ µapc log〈k〉 log(apc)/logN , a finite-size
correction that vanishes logarithmically with N as N →
∞. In analogy to lattices, we hypothesize that τ (ER)c (N)
scales as β(N), which includes the size corrections with

N . Also, in the limit N →∞, we define τ (ER)c,∞ ≡ α(ER)c,∞ .
To test eq. (8), we introduce the rescaled variable α′ij =

(αij + ε(ER)(N))/α
(ER)
c,∞ , and plot F (α′|a,N) in fig. 3(b).

The collapse of the curves is excellent, and supports the
validity of our assumptions. In the thermodynamic limit
we expect

τ (ER)c,∞ = α(ER)c,∞ ∼
µapc log〈k〉

3
, (9)

but it is important to keep in mind the large finite size

corrections to τ (ER)c , which make it more similar in value
to eq. (8) for finite N .

Conclusions. – We have studied disorder-induced
Limited Path Percolation and determined that a percola-
tion transition occurs for a critical tolerance τc. The crit-
ical tolerance increases together with the heterogeneity of
the disorder. We find that the phase transition is of first
order, with the discontinuity in the order parameter σ∗(τc)
independent of the disorder. For square lattices σ∗(τc) is of
the order of 0.2; for Erdős-Rényi networks, our numerical
results suggest it may approach 1 signaling a catastrophic
transition. The concept of length factor applied to the
theory of optimal paths predicts a typical factor αc which,
in turn, predicts τc. We believe the tolerance thresholds
predicted here reflect reachability conditions of some real
networks under real failure scenarios (congestion, mainte-
nance, etc.) better than regular percolation. In addition,
focusing on Φ(α) offers a new perspective into possible
LPP-like models in which matching the behavior of α via
the tolerance τ becomes the way to control the reachability
of a system.
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[10] Erdős P. andRényi A., Publ.Math. (Debrecen), 6 (1959)
290; Publ. Math. Inst. Hung. Acad. Sci., 5 (1960) 1760.

[11] Cormen T. H., Leiserson C. E., Rivest R. L. and
Stein C., Introduction to Algorithms, 2nd edition (MIT
Press, Cambridge, Mass.) 2001.
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