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Using an exact-enumeration approach, we study the multifractal spectrum of diffusion-limited ag-
gregation. The enormous number of possible configurations is reduced by many orders of magni-
tude using symmetry considerations. The most interesting result is that we find evidence which
strongly suggests the existence of a phase transition in the multifractal spectrum: specifically, the

2 <

“free energy,

energy,” and “‘specific heat”” develop singularities near a critical “temperature” ..

Moreover, the energy shows large fluctuations near .. We also find that for 8 < 3., the free energy

is dominated by the maximum energy

Emax(L))

which increases with system size L:

E .«(L)~L?*/InL. The implications of this phase transition are that the free energy is not defined
for B <., and that the large energy part of the “entropy” function is a straight line of slope B.. We
provide a phenomenological explanation for the origin of this phase transition.

I. INTRODUCTION

The diffusion-limited aggregation' (DLA) model has
been found to describe a remarkably large number of in-
teresting physical systems such as fluid flow in porous
media, colloidal aggregation, and electrodeposition.?™!7
Although DLA is one of the most important models of
fractal growth phenomena, and is described by a quite
simple set of rules, there has been surprisingly little un-
derstanding of this model. For example, even the ex-
istence of the fractal dimension in the large-cluster limit
is not clear. The situation becomes more complicated,
since the fractal dimension alone is not sufficient to
characterize the growth process.* ¢ Furthermore, in or-
der to fully characterize the growth process, one needs an
infinite number of independent exponents, which is usual-
ly called the multifractal spectrum.’~°

There have been enormous efforts to calculate the mul-
tifractal spectrum of DLA using various techniques such
as real-space renormalization,'® numerical simula-
tions,»®!* phenomenological arguments,'"'* conformal
mapping, !>~ !¢ fixed-scale transformation,!” and a field-
theoretical method.'> Owing to these efforts, valuable in-
formation for some part of the spectrum has been ob-
tained. Especially for the region corresponding to the
“tip” of the cluster, most of the methods seem to give
similar results. However, the exact solution for the mul-
tifractal spectrum has not been determined at present.

In particular, there has been essentially no reliable in-
formation for the part of the spectrum corresponding to
the “fjord” of the DLA cluster. The origin of this
difficulty is the fact that this region is characterized by
extremely small growth probabilities. Therefore, numeri-
cal simulation cannot give reliable results due to numeri-
cal accuracy (the smallest growth probability for a large
DLA cluster is much smaller than the numerical accura-
cy). Furthermore, different methods seem to give
different results and also disagree with the experiments, a
fact that has plagued investigators in this field. '®

In this paper, we study the multifractal spectrum of
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DLA based on an exact enumeration approach, which
means we must consider every possible cluster
configuration up to a certain size. This exact enumera-
tion follows the general procedure outlined by Nagatani'®
in connection with a position-space renormalization-
group formulation for DLA. Since we find the minimum
growth probability to a high numerical accuracy, we can
determine the fjord part of the multifractal spectrum.

We consider clusters of size L, where L=2,3,4,5. We
find out that we have to consider 3.0X 10'7 different clus-
ter configurations for L =5. By finding symmetries in
the system, we are able to reduce them to 9361
configurations, which indicates there are enormous num-
bers of symmetries in the system.

Furthermore, we find evidence suggesting the existence
of a phase transition’>?! in the multifractal spectrum. In
other words, the “free energy” of the system develops a
singularity near a certain critical “temperature.” We also
find that this transition has several interesting conse-
quences. For example, the free energy is not defined
below the critical temperature 3., the large energy part of
the “entropy” function is a straight line of slope 3., and
there are large fluctuations of energy near the critical
temperature. We also give a phenomenological explana-
tion for the origin of this phase transition. ??

This paper is organized as follows. In Sec. II, we de-
scribe the exact enumeration method used here to obtain
the multifractal spectrum. The method which reduces
the number of independent configurations based on sym-
metry considerations is given in Sec. III. In Sec. IV, we
describe the evidence of a phase transition and its conse-
quences. The origin of a phase transition is explained us-
ing a phenomenological argument in Sec. V. The sum-
mary and open questions can be found in Sec. VI.

II. EXACT ENUMERATION METHOD

In this section, we will describe the method used here
to obtain the multifractal spectrum. Consider the dielec-
tric breakdown model?* (DBM), which has the same
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mathematical structure as DLA. For DBM, one solves
the Laplace equation for the electrical potential ¢, with
boundary conditions ¢=1 on the cluster and ¢=0 at
infinity. In this paper, we will consider DBM in the strip
geometry; here one replaces the point seed with a line of
seed particles, and one chooses ¢ =1 for all particles con-
nected to this line and ¢ =0 for points an infinite distance
above the cluster. It is believed that the fractal proper-
ties of the original DBM problem with circular geometry
are the same as those for the DBM in the strip geometry.
Furthermore, we shall take periodic boundary conditions
in the horizontal direction, so that our strip is effectively
wrapped onto a cylinder.

The first step is to consider a finite lattice of edge L.
Every bond can be considered to be a resistor. If we as-
sign an infinite conductance to the bonds belonging to the
cluster, and unit conductance for the other bonds, with
the boundary conditions ¢ =1 on the cluster and ¢=0
along the top of the lattice, then this resistor network
problem becomes equivalent to DBM in the L — oo limit.
Since the resistor network is more convenient than DBM
for small-cell exact enumeration, we will mostly consider
the resistor network problems henceforth.

We use a finite-cell exact-enumeration method to study
the scaling structure of DLA. This means we must con-
sider every possible configuration for a given cell size.
Furthermore, we use a renormalization method
developed by Nagatani.!® The basic idea of his method is
as follows. In a coarse-graining process, there is a length
scale a defined as a lattice constant. The structures
whose length scale is less than a are usually ignored in
the process of coarse graining. For example, consider a
coarse graining of a 4 X4 cell configuration to a 2X2 cell,
shown in Fig. 1. The solid lines are “‘cluster”” bonds with
infinite conductance. Notice that cluster bonds whose
size is less than a are ignored in process 1 (marked as 2
and 4). On the other hand, cluster bonds whose size is
larger than a are preserved (marked as 1).

3
. 2 4
|
(a)
3
2 4
— BT a’e e e e
1

(b)

FIG. 1. Comparison of two coarse-graining processes. (a)
Process 1: small structures, whose size is less than a, are ig-
nored. (b) Process 2: small structures are replaced by bonds of
effective conductance o *.
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Instead of ignoring these small structures, one can as-
sign an effective conductance o* for the bonds containing
the small structures like 2,4 (process 2). Since those types
of bonds are always at the tip of cluster bonds, we call
them ‘“‘surface” bonds. One way to calculate o * has been
developed by Nagatani using an approximate renormal-
ization method (see Appendix A).

Based on the above remarks, we can exactly specify the
system to be studied. We cover the space with a L XL
square resistor network. The conductances of the bonds
(resistors) are defined as follows.

(1) If a bond is a part of the cluster, we call it a cluster
bond. Since the potential on the cluster remains the same
(¢=1), we assign an infinite conductance to cluster
bonds.

(2) If a bond is not a cluster bond, but one of its two
ends is touching a cluster bond, it is a surface bond. The
conductance o* assigned to surface bonds is calculated
using a renormalization method (see Appendix A).

(3) All the other bonds are designated as empty bonds
and assigned to a conductance of 1. Finally, we assign
boundary conditions, which are ¢ =0 at the top of the
cell and ¢=1 at the bottom of the cell. We also apply
periodic boundary conditions in a horizontal direction.
A typical configuration with boundary conditions is
shown in Fig. 2.

The next question to be answered is ‘“What are the pos-
sible configurations and their weights?” Let C_, be the
weight of configuration a, the probability of getting
configuration a, if we randomly choose one configuration
of the total possible configurations. Obviously not every
combination of the three types of bonds (cluster, surface,
and empty) is possible. The possible configurations and
their weights are determined by the growth rule of DBM.

Consider the 2X2 case as an example. All the possible
configurations and their weights are shown in Fig. 3. We
start with a configuration with no cluster bonds,
configuration 1, shown at the top of Fig. 3. The weight of
this configuration is C,;, which will now be calculated.
Note that only surface bonds can grow to be cluster
bonds, since if empty bonds grow to be cluster bonds, we
would have more than one cluster, and the cluster bonds
cannot grow any more. The growth probability for each
of the N, surface bonds in configuration a is given by

———— Empty bond

<«+»  ~—~~_~Surface bond
Periodic
boundary

condition
s Cluster bond

FIG. 2. A typical configuration (L =2 case), its boundary
conditions, and three types of bonds are shown.



39 EXACT-ENUMERATION APPROACH TO MULTIFRACTAL ...

KARE RN a:“

Cs5-Cq

Ce=Cq

Aty

Ce=Cq

3 24 RARN A
Cf;)z;Cz Co=Cq

FIG. 3. All the possible configurations with their weights for
the L =2 case.
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where (V¢); is the voltage drop across the ith surface
bond. For configuration 1, Ny=2 and p, =p,=4. Each
of the surface bonds can grow and generate con-
figurations 2 and 3 (as shown at the middle of Fig. 3).
The weights of these configurations C,,C; are just p,C,
and p,C,, respectively. We continue this growth process
until all the surface bonds are grown. But we do not con-
sider configurations which the bonds at the top vertical
layers are grown, since the growth probabilities of the
surface bonds in these configurations are zero. We thus
determine all the possible configurations and weights as a
function of C,. C, can be determined from the normali-
zation condition

N

> Cc.=1, (2)

a=1

where N is the total number of possible configurations.
For the 2 X2 case, N =9.

Since we obtained all the possible configurations and
their weights, we can study the scaling structure of the
growth site probability distribution using the thermo-
dynamic formalism.?* The “partition function” Z(83,L)
of the system is defined as

N Na
ZBL=3 C, 3 pl,, 3)

a=1 i=1

where p;, is the growth probability at site i of
configuration a. Motivated from the formal similarity of
Z(B,L) to the partition function of canonical ensemble,
we define ““free energy” as (Table I)

_ InZ(B,L)

F(B,L) InL

4)

Furthermore, we can define the “energy” E(B,L) and
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TABLE I. Comparison of notation of this paper and that of
Refs. 7-9.

This work Refs. 7-9
B—q F(B)—T1(q)
Eoa S(E)—f(a)

“specific heat” C(3,L) of the system,

_OF(B,L)
E(B,L)_————aﬁ , (S)
and
_ _OE(B,L)
C(B,L)= —aﬁ . (6)

III. SYMMETRY CONSIDERATIONS

In this section, we will describe the method to reduce
the complicated tree structures, such as Fig. 3 to simpler
forms, based on symmetry considerations. Consider Fig.
3 more carefully. The configuration C, is the translation
of the C; in the horizontal direction by one lattice con-
stant. Furthermore, every configuration grown from C,
(i.e., C4, Cs, and Cg) can be obtained by translating cor-
responding configuration grown from C; (i.e., C,;, Cg,
and Cy). In other words, by translating C; (and its
daughters) in the horizontal direction by one lattice con-
stant, we get C, (and its daughters). Therefore for any
arbitrary configuration a from C, (and its daughters), one
can find a corresponding configuration a' from C; (and
its daughters), which is the translation of configuration a
in horizontal direction by one lattice constant. Since the
translation of a configuration in the horizontal direction
leaves all the p; invariant, @ and a’ must have the same
p;- Furthermore, since the weight of a configuration de-
pends only on the ancestors and the p; of the ancestors,
C, and C should be the same.

If an operation on configuration a leaves C, and p; of
itself and its daughters unchanged, we call the operation

BRI

T

SRR

AT

FIG. 4. Three different configurations (C,, Cs, and Cg) be-
come identical after replacing their zero-voltage-drop surface
bonds (marked by circles) with the cluster bonds.
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as symmetry operation. For example, translation in hor-
izontal direction by one lattice constant is a symmetry
operation.

Since p; and C, are the only quantities used in the
evaluation of the partition function Z(3,L), C, (and its
daughters) and C; (and its daughters) make the same con-
tribution to Z(B,L). Therefore, instead of considering
two separate branch structures, we can consider only one
branch with symmetry factor 2.

In order to reduce the tree structure more, consider the
three configurations at the bottom (C,, Cs, and C4). As
shown in Fig. 4, these configurations have surface bonds
which have no voltage drop across them. Let us replace
these bonds with the cluster bonds. Since these bonds
have zero-voltage drop, these bonds do not contribute to
Z(B,L). Furthermore, since the p, of these bonds are

IR IT

FIG. 5. All the possible configurations, with their weights,
simplified by the symmetry considerations.
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zero, this replacement does not change the daughters’
structures too. After the replacement, the three
configurations (C,, Cs, and C,4) become the same. So in-
stead of considering three different branches, we can con-
sider only one branch with symmetry factor 3. The re-
duced tree structure with symmetry is shown in Fig. 5.

These symmetry considerations get more difficult as
the size of the cell increases, and become practically im-
possible for cells with L > 4. One has to rely on the com-
puter after that. In order to make a more efficient algo-
rithm, we have found additional symmetry operations.
Consider the inversion of a configuration around one of
its vertical axes. By following the same argument for the
translation, one can show that the inversion is a symme-
try operation. Let I, denote inversion operator around
the yth vertical axis. Then there will be L inversion
operators (y =1,2,...,L). If we call T, the translation
operator in the horizontal direction by the x lattice con-
stant, there also will be L translation operators
(x=1,2,...,L). One can notice that any operator
defined as products of one of these 2L symmetry opera-
tors is also symmetric. However, we find that these new
operators are equal to one of the 2L independent symme-
try operators, which we choose to be T, T,,..., T, _,
and I,,I,,...,I;. Two typical types of symmetric
operators are shown in Fig. 6.

The other thing we have considered is the replacement
of zero-voltage-drop surface bonds with cluster bonds.
Although this replacement does not change the value
Z(B,L), as argued before, it gives us two very important
advantages.

The first advantage is that it reveals “hidden” symme-
try. As illustrated in Fig. 4, there are configurations
which can be related to each other by symmetry opera-
tions, but their identification is difficult due to zero-
voltage-drop surface bonds. By this replacement, we
change the configuration into ‘“‘standard” form, in which
the identification of symmetry is much easier.

The other advantage is that it removes unnecessary

i, M R
Ty
—_—
A,
MR SRS
{a)
Q_-_N!s\!("’ FE R
~
Iy

(b)

FIG. 6. Two types of symmetry operators. (a) Translational
operator translates a configuration by one lattice constant in the
horizontal direction. (b) Inversion operator inverts a
configuration around the first vertical axis.
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daughter structures. Since zero-voltage-drop surface
bonds have zero growth probabilities, the daughters ob-
tained by growing these bonds make no contribution to
Z(B,L). These unnecessary daughter structures, if not
removed, use a lot of CPU time. In our calculation, we
find this replacement is crucial to get results within a
reasonable time.

Then, how can the computer identify these zero-
voltage-drop surface bonds? One possibility is to numeri-
cally solve the Laplace equation and find the surface
bonds whose voltage drops are less than a specified error.
This method has two disadvantages. In order to deter-
mine the voltage distribution accurately, one needs a lot
of computation time. Furthermore, there is a possibility
of “misjudging” due to numerical accuracy. Instead, we
use a modified version of the “burning” algorithm? to
identify them (for more details see Appendix B).

Based on the above discussion, we constructed algo-
rithms that produce a ‘“‘reduced tree structure.” With
this program, we obtain the reduced tree structure up to
L =5. In order to get an idea about the importance of
the symmetries, we also calculated the number of
configurations both in the original and reduced tree
structures. We find that there are 9, 5323, 1.2 X 10°, and
3.0X 10" configurations in the original tree structures for
L =2, 3, 4, and 5, respectively. The corresponding num-
bers of configurations in the reduced tree structures are 3,
14, 259, and 9361, which indicates there are enormous
symmetries in the system. The reason for this remark-
able reduction is that we can apply the symmetry opera-
tions repeatedly. Thus, although there are only 2L sym-
metry operations, the reduction for the case L =5 is a
factor of roughly 10,

IV. PHASE TRANSITION ON DLA

In this section, we will describe the evidence suggesting
the existence of a phase transition in the multifractal
spectrum of DLA, and its connection to the ‘“‘negative
moment problem.” To be precise, consider the partition
function Z(B,L) defined in (3). The dependence of
InZ(B,L) on InL for several values of 8 is shown in Fig.
7. For =0, the data form an almost perfect straight
line, which strongly suggests power-law scaling behavior
of Z(B,L). However, as B is decreased, the data begin to
deviate from a straight line. Moreover, as 3 is decreased
further, the data seem to approach an exponential curve.
This suggests that the moments Z (f3,L) do not scale as a
power law for sufficiently negative 5. This deviation from
power-law scaling behavior, which appears in other sys-
tems,?! is called the “negative-moment problem.” We
shall argue that this negative-moment problem is a conse-
quence of a phase transition.

To explain what we mean by a phase transition, consid-
er the free energy F(B,L), determined for different L
values, shown in Fig. 8. One can see there are “knees”
around S~ —1, and they get sharper as we increase the
size of the system L. To see this phenomenon more clear-
ly, we also plot the E (3,L) curves, shown in Fig. 9.

Figure 9 shows the large change in the energy of the
system for —2 <3=<0. Furthermore, for < —2, E(3,L)
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FIG. 7. Dependence of InZ(3,L) on InL. (a) B=0, (+), ( X),
(O), (O), and (&) means =0, 2, 3, 4, and 5, respectively. The
data form an almost perfect straight line. (b) 80, (+), (X)),
(€), (O), and (® ) means B=—1, —2, —3, —4, and — 5, respec-
tively. The data deviate from a straight line as 3 is decreased.

becomes almost constant and is given by the maximum
energy of the system E_, (L). The size dependence of
E_..(L)on L is determined from the analysis of Fig. 10,

E_ (L)~L?/InL . 7

max

Next, we plot the specific heat C(j3,L) as shown in Fig.
11. One can clearly see that the maximum of C(f3,L) in-
creases as we increase the size of the system. On the oth-

10T T T T T

0

F(B.L)
|
S

FIG. 8. Dependence of F(f3,L) on 8 for L =2~5. One can

notice the “knees” developing around S~ —1.
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FIG. 9. Dependence of E(B,L) on 8 for L =2~35. One can
notice the sharp change for —2 <B=<0.
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FIG. 10. Determination of L dependence of E,,,(L). The
data approach the line of slope 2 (dashed line).
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FIG. 11. Dependence of C(B,L) on B determined for
L =2~5. One can notice that the maximum value of the

specific heat increases as L increases. On the other hand, their
position seems to be insensitive to L.
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er hand, fB,,,,, the temperature of the maximum C(B,L),
seems to be independent of L. Based on the above obser-
vation, we propose the following.

(1) The energy E (f3,L) shows a sharp transition around
the critical temperature 3.(L).

(2) As L is increased, the range of B in which the tran-
sition can be seen is getting smaller, and approaches a
single value 3, for L — oo.

(3) Below B.(L), E(3,L) jumps to the maximum ener-
gy of the system E_, (L) whose L dependence is given by
(7.

Although these proposals cannot be proved rigorously,
we will give some physical arguments supporting them in
Sec. V. In the remainder of this section, we will concen-
trate on the consequences of this transition for the other
thermodynamic quantities such as free energy and entro-
py function.

Then, what we can say about F(f3), which is defined as
L — o limit of F(B,L)? For B> f3,, because E(B) is a
smooth curve, we expect F () to be also a smooth func-
tion of B. On the other hand, for B<f,, E(f3,L) equals
E_..(L); therefore, F(B,L) is a straight line of slope
E_..(L). Furthermore, since E_, (L) diverges as
L — oo, F(f3) diverges to negative infinity. This diver-
gence of F(B) for any B<f3. is precisely the negative-
moment problem stated previously. Therefore, we argue
that the negative moment problem, which has plagued in-
vestigator in this field, is just a consequence of this transi-
tion. Moreover, since this transition implied a singularity
in the free-energy function, we call it a “phase transi-
tion.”

Next, consider the “entropy” function S (E, L), defined
as the negative of the Legendre transform of F(f3,L) with
respect to the variable f3,

S(E,L)=BE —F(B,L) . (8)
20 71—
—_— 2X2
15 | Co¥a
44
65X6 )
3 10| ]
=) ]
= 1
0.5 | . ]
\"\_
+ AR}
0.0 P [
0 5 8
E
FIG. 12. Dependence of S(E,L) on E determined for

L =2~5. The left part shows good convergence. On the other
hand, the right part is poorly convergent.
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We also define S(E) as the L — o limit of S(E,L).
S (E,L), determined for several different L, is shown in
Fig. 12. The left-hand part of S(E,L), which corre-
sponds to the =0 part of F(f3,L), shows very good con-
vergence. On the other hand, the right-hand part of

1.26 71— —r ———

1.00

D(e,L)L-(Be)
o
(4]
[«)
T

12.5

e=—-Inp/InL
1.25 [
1.00 [ (c) ]
~ 1
Q 2 .
", 0.75
3
v 050 [ ]
o
026 [ B
0.00 L R ] .uﬂ]i 1
() 2.5 5 7.5 10 12.5

e=-Inp/InL

FIG. 13. Energy fluctuations above, near, and below the
phase transition. Shown is the density of states multiplied by
the Boltzmann factor L ~?¢ for the case of L =5 and (a) =1.0,
(b) B=—1.0, and (c) B= —2.0.
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S (E,L) shows poor convergence. In order to find out the
meaning of this poor convergence, consider the form of
S (E), determined from F(B). The B> 3, part of F(f) is
mapped into the E < E_ part of S(E), which is expected
to be a smooth function of E [where E, Elimﬁ_'/ﬁF’(B)].

However, the =3, part of F(f3) (a point) is mapped into
a straight line of slope 3., which is the E = E, part of
S (E). The poorly convergent part of S (E) precisely cor-
responds to the S~ f3, part of F (), which is expected to
converge to a straight line of slope ..

We next argue that this poor convergence is due to the
large fluctuation of energy near 3,.. In order to show this,
let us first define the density of states function

D (€,L)d e =average number of surface bonds satisfying
€e<e'<et+de, (9

where € = —Inp /InL and p is the growth probability of
the surface bonds. Furthermore, we define s(e,L)
=InD(€,L)/InL. Then the partition function can be
written as

Z(B,L)=3 D(e,L)L Pde= 3 L"“Y'L ~Pde . (10)
€ €
The € dependence of the function D (e, L)L ~#¢ shows the
relative contribution of different € terms to Z (3,L). The
L =S5 case is shown in Fig. 13 for three different values of
pB. For 3 away from f3,, one can see that this function has
a sharp peak near a certain value €*, which means that
the €* term gives the dominant contribution to Z(53,L),
and the other contribution can be ignored. However, for
B=~p3,, there seems to be no single dominant contribution,
and one can see the large fluctuation of energies. This
large fluctuation of energy also supports the existence of
a phase transition. Because we find contributions from
all energy scales for B~ f3,, the derivation of S (E,L) from
F(B,L) must be called into question. This derivation
uses the method of steepest descent, which assumes that
most of the contribution to Z (3,L) comes from energies
close to the saddle-point energy €*. In this case, S(E,L)

T T T]
—_— 2X%2
- 9x3 n
A -—- o4
~ - - 6X%6
:ﬂi A(’\'\
S~ ~
A -50 v, ]
— 1\ V!
\ o\
8 s b bS]
~10.0 AR B L.
0 2.5 5 7.5 10 12.5
e=—-Inp/InL

FIG. 14. Data-collapse plot showing the dependence of
InD (€,L) scaled by InL on —InP scaled by InL. One can see the
reasonably good data collapse.
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converge rapidly to s(e*,L), and become equivalent in
the thermodynamic limit (L — o). Since this assump-
tion fails for B~ 3., the convergence of the entropy func-
tion is poor. We shall call the poor convergence of
right-hand side of S (E, L) “critical slowing down.”

This point can be more clearly illustrated by compar-
ing S(E,L) with s(e,L) obtained by a ‘‘data collapse”
plot. To be more precise, consider the plot of
InD (e,L)/InL versus €= —Inp /InL, as shown in Fig. 14.
Although the data are quite noisy, one can see a reason-
ably good data collapse even for the large-e€ region.
Furthermore, the €>5 part of the curve is fairly linear,
which also supports the existence of a phase transition.

We want to conclude this section with some comments
about Monte Carlo sampling. Consider the situation that
one is trying to determine the multifractal spectrum by
Monte Carlo sampling. In other words, one randomly
chooses one configuration out of all the possible
configurations of size L, calculates the growth probabili-
ties of that configuration by solving the Laplace equation,
forms the partition function, and calculates the free ener-
gy from (4). We simulate this sampling process for L =4,

I
Il
I
=
2.0 N | | - | 2l
0 50 100 150 200 250
Number of Samples
40 e
(b) ]
35_—_______.____..__..____:_
& i B——
| 30 .
N
[ [ — ]
251 7
N ]
20‘ 1 | L. |

0 650 100 150 200 250
Number of Samples

FIG. 15. Estimation of F(S,L) by random sampling. The
dashed lines are the exact value for L =4. (a) =4: One can
see the running average converge smoothly to the exact value.
Moreover, we can get a good estimation of F(8=4,L =4) from
relatively small number of samples. (b) B=—5: The running
average shows “‘jumps,” and becomes close to the exact value
after the number of samples is the same order of magnitude as
the total number of configurations (259). This strange behavior
is due to the sample which gives the dominant contribution to
F(B,L), but is very hard to get.

JYSOO LEE, PREBEN ALSTROM, AND H. EUGENE STANLEY 39

that is, at each time step, we randomly choose one out of
259 configurations proportional to their weights C,, and
calculate the free energy, as explained above. The “run-
ning average” of the free energy is determined for two
values of [, as shown in Fig. 15. In contrast to the
smooth convergence for the positive 3, the convergence
for the negative [ consists of big jumps, and becomes
close to the actual value after the number of samples be-
comes comparable to the total number of
configurations.?® This strange behavior comes from the
fact that there are configurations that are very difficult to
get, but that give a big contribution for the free energy.
Since the free energy is dominated by these rare
configurations, one should not expect good estimates of
the multifractal spectrum for the fjord phase.

V. ORIGIN OF THE PHASE TRANSITION

In this section we discuss what causes the phase transi-
tion. We first argue that C,, the weight of configuration
a, as well as the growth probabilities p;, are determined
by a multiplicative process.

Consider clusters in a box of fixed size L. One can no-
tice that C, is a sum of products of some p; .,

Ca=C 21 Pie > (D
r,ia
where I', denotes all paths of configurations a’ from the
“initial configuration” to configuration . Here, the ini-
tial configuration is the one which does not have any
cluster bonds, whose mass is equal to the mass of the seed
particles, L. If a is a configuration of mass M, all the
products have M — L elements, where M has a value be-
tween L and L2, One should notice that the largest M is
not equal to 2L %— L, the number of bonds in a box of size
L, but L?, since DLA cannot form a closed loop.
Consider now all possible configurations of mass M
and define ', as the union of all ", where configuration
a has mass M. We also label the individual path, the ele-
ments of set I'y,, with index j. Since C,= zru C; the

partition function (3) becomes

LZ
Z(B,L): 2 Ecjzpfa > (12)

M=LT,, i

where C; /C, is a product of M — L growth probabilities,
and a is the final configuration on the path j. Let p*
denote the geometric mean of these probabilities, i.e., p*
is defined as

Cjzclpj*(MvL) . (13)

Next, we will argue that in order to significantly con-
tribute to the partition function, the number of surface
bonds should be order of the mass of the configuration.
Compare two configurations a and y, which have same
number of surface bonds N, but have different mass M,
and My. Furthermore, we assume that M, >>M72N.
One can notice that C, << C,,, since the weights are, as
shown (13), exponentially decreasing functions of M.
Now, consider the sum 2= zip,ﬁ. For positive f3, since
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both configurations have the ‘“tip” part, = for
configuration a and configuration y are about the same
order of magnitude. On the other hand, since
configuration a would be compact, and y be ramified, the
configuration y has surface bonds whose p; is very small.
So, for negative 3, the = for ¥ would be much larger than
that for . Therefore, the contribution to the partition
function, which is the product of the weight and X, is
dominated by configuration y.

Consider every configuration of mass M. If N is sub-
stantially less than M, we can find the configuration of
mass N which also has N surface bonds. From the above
arguments, the contribution from this configuration of
mass N and N surface bonds will be so dominant that we
can ignore the configuration of mass M and N surface
bonds. Therefore, we argue that only the configurations,
whose number of surface bond is of the same order of the
mass, are important.

To approach a further understanding of the underlying
mechanism for the phase transition that gives rise to the
negative-moment problem, we assume that the growth
probability on the outer part of a configuration has some
value p..,» and that the growth probability at a
“depth” of i sites has a probability p,,,, P & , where p,, is
an average penetration probability for the configuration
a. We expect this assumption to be valid at least for
large values of i, which is the interesting limit for the neg-
ative moments. From the considerations above we have
N,~M surface bonds for a dominant configuration of
mass M. This necessarily ramified structure of the dom-
inant configurations naturally leads us to a simple ap-
proach where each dominant configuration a of mass M
has M — L growth probabilities

Pia=Pmax,ab b s (14)
where i =0,1,..., M—L —1. Since 3¢ p, =1, we
have

Pmaxa=(1=P)/(1—p M~ (15)

Here we have disregarded the L growth probabilities
from the original line of seed particles. Then, what is
Pmin,» the smallest growth probability among the possi-
ble configurations in a box of size L? This can be ob-
tained by (14) with /=M —L —1 and M ~L>. Hence
Pmin, L Nﬁg » OT

Inp o ~L%, (16)

in agreement with the numerical observation (7).
By substituting (14) in (12), the partition function be-
comes
M—L—1

L? )
ZBL)=C;, ¥ SprM ple S P
M=LT,, i=0

LZ
:Cl z 2 pj*(MiL)pﬁax,a
M=LT,,
X(1—pAM—L)) /(1 —pB) | (17)

for =0, the third sum is M —L. One can also notice
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that
LZ
C, 3 IprMP=3c,=1. (18)
M=LT,, a
We consider two <cases. (i) For fB>0, since

(1—pBM~L))/(1—p B) becomes number less than 1, one

can notice that the last sum in (17) converges in the
large-L limit for all positive values of B. (ii) For B <0 this
is not always true. The terms which determine the con-
vergence of the sum in (17) are the products

jt(M—L)A g(M_L)_ *ﬁg)(M*L) , (19)

P D =(p;
i.e.,

LZ
ZBL)~C, 3 I (prphHM-D .
M=LT,

(20)

To reduce the sum in (20), define by K,,(p*,p )dp *dp the
total number of paths j leading to a configuration a of
mass M for which p' has a value between p* and
p*+dp* and p, has a value between p and p +dp. By
(18), C,Kp(p*,p) cannot increase faster than expo-
nentially, and therefore we write C,K,(p*,p) as
[n(p*,p)]'M L. Converting the sum in (20) over the
paths I';, into an integral over p* and p yields

LZ
ZBL~ 3 [(n(p*pp*p 1M Vdp*dp
M=L

L2
— 2 [n (q*’a)q*a ﬁ](M—L) ,
M=L
where g¢* and § are defined by steepest descent, i.e.,
where n (p*,p )p*p # is maximal.

We notice that ¢* and § may depend on 3; however,
we expect this dependence to be smooth. As regards the
origin of the phase transition we an therefore take ¢* and
g to be B independent. Then, from (21) two results are
obtained: (i) At and below

(21

g —Inln(a"9)"]
Ing

(22)

the partition function diverges; (ii) below (3. the partition
function has the form

Z(BL)~pmns
where a is of order 1 [in general a will be a slowly varying
function of B with @ =a (B) of order 1]. Equation (23) is
in perfect agreement with our numerical results, as
shown in Fig. 7(b). In particular, also the free energy
F(B,L) [Eq. (4)] diverges for B<f3..

Our numerical results suggest that n(g*,§)g* 2 q. Fi-
nally, our approach has not taken any nontrivial scaling
behavior of the outer part of the aggregate into account.
Still, the phase transition originates from an exponential
divergence,?!® and is therefore not influenced by power
laws.

(23)

VI. CONCLUSION

We studied the multifractal spectrum of DLA using an
exact enumeration approach. The enormous number of
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configurations is greatly reduced by finding 2L symmetry
operators (L translational operators and L inversion
operators), and repeatedly applying these operators. By
this symmetry consideration, we are able to obtain the
multifractal spectrum up to L =5. In the multifractal
spectrum, we find evidence strongly suggesting the ex-
istence of a phase transition: the free energy, energy, and
specific heat develop singularities near a critical tempera-
ture .. This phase transition implies the following. (1)
The free energy is not defined for 8 < f3,; this is common-
ly called the negative moment problem. (2) The large E
part of the entropy function is a straight line of slope f3,.
(3) There are large fluctuations of energy near the critical
temperature (B~f,.). This phase transition is of
significance for several reasons.

(1) The phase transition is a natural explanation for the
negative-moment problem, which has plagued the investi-
gators in this field.

(2) The phase transition gives valuable information
about the fjord area, such as the entropy function, where
no reliable calculation has previously been done.

(3) The phase transition may give insights into the
physics of DLA. Finally we presented a phenomenologi-
cal argument to explain the origin of this phase transi-
tion.

Note added in proof. After this work was submitted for
publication, we received a related preprint [R. Blumen-
feld and A. Aharony (unpublished)] which supports the
possibility that there is a phase transition in the mul-
tifractal spectrum of DLA, as proposed in Ref. 22 and in
this work. We thank Dr. Blumenfeld and Dr. Aharony
for sending us a copy of their work prior to publication.
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APPENDIX A: DETERMINATION OF o *

In this section, we will describe the Nagatani renormal-
ization method used to obtain o*, the conductance of the
surface bond. As explained in Sec. II, o* is due to the
small structures ignored in the conventional coarse-
graining process. In other words, o* should be calculat-
ed by considering the configurations which do not have a
spanning cluster.

For example, let us consider the 2X2 cell. First, we
find the configurations a that do not span. These
configurations are precisely those used in the exact
enumeration calculation (cf. Figs. 3 and 5). Then for
each configuration a, we calculate the weight C, and the
conductance §,. Both are functions of the conductance
of the surface bond. Since we do not know the conduc-
tance of the surface bond, let us assign some value 0. We
also define the conductance o’ as the geometrical average
of conductances of all the configurations which do not
span. In other words,

N
Inoc’'= Y C,(0)nf,(0), (A1)

a=1
where N is the total number of configurations.
For a 2X2 cell, one can see, from Fig. 5, N =3,

(A2)

Moreover, the conductances of these configurations
are determined to be &,(0)=20/(14+0), &H(o)=(40
+30%)/(1+30), and &3(0)=20. The renormalization
equation (A1) becomes

no'= A+30 | 20 4+30 | |40+30?
11+60 | 1+o 11+60 1+30
3
+ T es In20) . (A3)

(b)

FIG. 16. Identification of zero-voltage-drop surface bonds.
(a) A typical configuration with zero-voltage-drop surface
bonds, and the counters on the lattice are shown. (b) The same
configuration after replacing the zero-voltage-drop surface
bonds with cluster bonds. One can notice the enormous reduc-
tion of the surface bonds.
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We similarly obtain
L=34;5.

By setting 0 =0, we find the stable fixed points o *(L),
which are 2.326, 2.193, 2.089, and 2.066 for L =2, 3, 4,
and 5, respectively. What is the meaning of these fixed
points? o*(L) is the average conductance of the small
structures after an infinite number of coarse graining.
Thus o*(L) is a good approximation of the conductance
of the surface bond. For L XL exact enumeration, we
used the o *(L) as the conductance of a surface bond.

renormalization equations for

APPENDIX B: BURNING ALGORITHM

Consider a 5X5 cell configuration as shown in Fig.
16(a). One can see that there are many surface bonds
whose voltage drops are zero. As explained in Sec. III,
the identifications of these bonds and replacement with
cluster bonds is very important.

The term “burning” was proposed by Herrmann
et al.?® to describe an algorithm in which sites are suc-
cessively labeled (‘“burned”) as in a forest fire. Burning
algorithms are used to determine cluster structure, such
as minimum path length, backbone mass, and blob size
distribution.

The algorithm we used is a slight modification of the
burning algorithm. One can specify a lattice point by in-
dicating its row and column (i,j). For example, (1,1) is
the upper-left corner and (6,5) is the lower-right corner.
At each lattice point, we assign a counter (which we show
as a circle). The value of each counter is set to be zero,
except for the one at (1,1), which is given the value of 1.
The counter indicates whether a random walker has
passed the point or not. Initially the random walker is at
(1,1). In the next step, the random walker checks every
nearest neighbor sites and moves as follows.
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(1) If the site is not on the lattice, the walker cannot
move onto the site.

(2) If the site is occupied by a cluster bond or bonds,
the walker cannot move onto the site.

(3) If the counter on the site is nonzero, it cannot move
onto the site.

(4) If none of the above conditions (1)~(3) applies, the
walker moves onto the site and sets the counter to be 2.

In the next step, we check all the nearest-neighbor sites
of the counter=2 sites. We now apply the same rules
(1)-(4), except we set the counter at 3 for the newly visit-
ed sites. We continue this process until all the nearest-
neighbor sites are blocked. The value of the counter after
the random walk is shown in Fig. 16(a).

The sites with a counter of O are either sites with clus-
ter bonds or sites that cannot be reached by the random
walker. So a bond with zero counters on both sides
should be one of three following cases.

(1) Both sides are occupied with cluster bonds. Obvi-
ously no voltage drop is applied to this bond.

(2) Both sites are not-visited sites. If we consider the
random walker as an electron, this means that there is no
current through this bond, implying a zero-voltage drop.

(3) One site is a not-visited site and the other is a site
with a cluster. By the same logic as (2), there is no volt-
age drop across this bond.

Therefore we can identify the bonds with zero counters
on both sides as the bonds with zero-voltage drop. Since
there is no voltage drop across these bonds, we can re-
place it with cluster bonds [see Fig. 16(b)]. As shown in
this example, this identification plays a very important
role in reducing daughter structures, from 25 to 9 in this
example.
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