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We study analytically and numerically the reaction kinetics for diffusion-limited reactions of the
type A+ B(static) — C/(inert) in one-dimensional (1D) systems with reactants initially separated in
space. We find expressions for the concentration profiles of each species, and for the reaction front.
The width of the front is characterized by w ~ t* with o = 1/4, and its height by h ~ ¢t~? with
B = 3/4; these values differ from the “mean-field” exponents and from those obtained when both

species diffuse.
PACS number(s): 05.40.4j

The dynamics of the reaction front observed in spa-
tially inhomogeneous reaction systems of the form A +
B — C(inert) has attracted recent attention [1-8]. In
these systems, the reaction takes place in the localized re-
gion where the two species meet. This region is “marked”
by the production of species C' and specifies the reaction
front. More precisely, the reaction front R(z,t) is defined
as the average number of C particles produced at posi-
tion z at time ¢. The time evolution of R(x,t) is usually
described by the exponents a and 3 that indicate how its
width and height vary asymptotically with time.

From experiments [5] and simulations [2-5] of d > 2
systems in which both reactants diffuse, it has been found
that the width of the front is characterized by w ~ t*
with & = 1/6, and its height by h ~ t# with 8 = 2/3,
in agreement with the theory of G4lfi and Récz [1] based
on “mean-field” scaling arguments. However, numerical
simulations of one-dimensional (1D) systems show that

46

the width exponent appears to be a ~ 0.3 and the height
exponent 8 =~ 0.8 [3,6]. The origin of the difference be-
tween the exponents of 1D systems and those of higher-
dimensional systems is not clear. In order to better un-
derstand this drastic change of behavior, we study ana-
lytically and numerically, for d = 1, the same reaction
for the situation where only one of the reactant species
moves. For this case we obtain o = 1/4 and 8 = 3/4,
which, as we shall argue, set lower bounds for the values
of the exponents when both reactants diffuse.

We consider the diffusing reactant A to be located to
the left of the origin and the static reactant B to the
right, so that the interface separating both species is ini-
tially at £ = 0. In the continuum approximation, the
concentration of the A particles c4(z,t) is obtained as
the solution of a Stefan problem [9]. From this solution,
the position 7(¢) of the boundary separating both species
is found to move as r = 4t1/2, where v is a constant cho-
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sen to satisfy the “Stefan condition.” This continuum
version does not describe what happens at small length
scales, and the reaction front appears as a 6 function at
r(t).

In order to gain insight into the microscopic dynam-
ics of the reaction, we consider a discrete description of
the problem. We concentrate on the leftmost B particle,
which defines the position of the boundary between the
two species. Since the B particles are static and “dis-
appear” upon each reaction, we can describe the motion
of the leftmost B particle as the motion of an imaginary
particle that at each unit of time can either remain fixed
with probability 1 — p(z,t), or move to the right (when
a reaction occurs) with probability p(z,t). We assume
that p(x,t) can be written as

Y z — (x)

p(z,t) = 5172 1-2K @ + . (1)
The first term of this expression arises from the aver-
age flux of particles at the boundary, as obtained from
the continuum formulation of the problem. The second
term is the lowest-order correction that accounts for the
fact that if at a given time the leftmost B particle is
to the right of its average position, more reactions than
the average must have taken place. This gives rise to
a depletion of the concentration near the boundary and
a reduction of the flux, so in the next unit of time the
probability of having a reaction is reduced. The converse
is true if the leftmost B particle is to the left of its aver-
age position. Higher-order corrections are assumed to be
negligible, and the constant K is used as a fitting param-
eter. This approach enables us to take into account the
fluctuations in the position of the boundary that arise
from the fluctuations inherent to the diffusive behavior
of the A particles.

Next we calculate the exponents a and G that describe
the asymptotic behavior of the width and height of the
reaction front. Since the C particles appear only where
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FIG. 1. Double-log plot of o as a function of time. The

best fit of the simulations to a straight line gives a slope of
0.250 £ 0.004.
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a reaction occurs, we need to calculate the probability
distribution of the position of the leftmost B particle
using the probability to make a jump of Eq. (1). We
begin by evaluating the central moments with respect
to the average position (x) = 4t1/2. The variance of
this distribution, 02 = ((z — (z))?) also characterizes the
width of the reaction front since w = o.

Using Eq. (1), we find that the conditional expecta-
tion value for z%(t + 1) (the square of the position of the
boundary at time ¢ + 1) given the position of the bound-
ary at time ¢ is

(@?(t + Dz (1) = 2*(t)[1 - p(z, )] + [2(t) + 1)p(z,1).
(2)

Averaging over all values of z(t), subtracting (z(t))?
from both sides of the equation, and taking the continu-
ous time limit leads to

2 _ 0 172, 1/2

=Ty’ =M (3)
Note that the “linear” correction term in Eq. (1) only
affects the value of the coefficient of t'/2 in Eq. (3). A
log-log plot of o as a function of ¢t from Monte Carlo (MC)
simulations of the system (in which the initial concentra-
tion of each species was taken to be equal to 1) is shown
in Fig. 1, from which we conclude that o ~ ¢0-250+0.004
in agreement with Eq. (3). The best fit of Eq. (3) with
the numerical simulations is found for K ~ 2/3.

An evaluation of the fourth central moment gives
asymptotically ((z — (z))*) ~ 3((z — (z))2)?, so that for
large times the probability distribution P(z,t) to find the
leftmost B particle at position z at time ¢ can be approx-
imated by a Gaussian. Using the Gaussian form we can
calculate the reaction front R(zx,t), which is defined as
the rate of reaction at position = and time t. Accordingly,
we note that the changes in P(z,t) are due to reactions,
i.e., P(x,t +1) — P(z,t) = R(z — 1,t) — R(z,t) [10]. In
the continuum limit, this yields
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FIG. 2. Semi-log plot of the reaction front from MC sim-
ulations for ¢ = 500 (+), 1000 (x) and 5000 (¢). The solid
lines are the values obtained from Eq. (4) for the same values
of time.
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R(z,t) = . (E) v exp [—Eﬂ}

um 2utl/2

T — ,Ytl /2
x [1, + ") ot1/Z )] (4)

From Eq. (4) we see that the width exponent is o =
1/4, a value smaller than the value a ~ 0.3 found for the
case where both reactants diffuse, but larger than the
mean-field value (o = 1/6). From (4), we also see that
the height exponent is 3 = 3/4. Note also that the center
of the front moves in time as (z) = /2.

A comparison between Eq. (4) and the MC simulations
is shown in Fig. 2. Since the flux of A particles into the
reaction zone is proportional to t~1/2, the two exponents
a and J still satisfy one of the G4lfi and Récz scaling
relations a — 3 = —1/2.

To further compare our results with MC simulations,
we calculate the integral in time of the reaction front,
which corresponds to the concentration profile of the C
particles co(z,t),

t 1 T — ~tl/2
CC(xyt) = /0 R(x, T)dT = Eerfc _2/“/7_—/2— .

Figure 3 shows a plot of Eq. (5) and the numerical
simulations for ¢ = 500, 1000, 5000. The good agreement
with the simulations supports our arguments. Note that
the profile of the B particles is simply related to the
profile of the C particles by cg(z,t) =1 — cc(z, ).

The difference between the values of the exponent «
for this case where only one reactant moves (o = 1/4),
and the case in which both reactants diffuse (o ~ 0.3)
can be understood qualitatively as follows. In the case
in which one reactant is static, the width of the reaction
front is solely a consequence of the fluctuations in the
number of reactions that have taken place. Now con-
sider the situation in which the B particles have a small
but nonzero diffusion constant. Then, in addition to the
fluctuations in the number of reactions, the width of the
reaction front will have a contribution from the fluctu-
ations in the position of the leftmost B particle, due to
diffusion, that arise in the increasingly longer times be-
tween reactions. This contribution can only increase the
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FIG. 3. Scaling plot of the integral in time of the reaction
front as a function of (z — vt*/2)/t*/4, from MC simulations
for times t = 500 (+), 1000 (x), and 5000 (¢). The solid line
is obtained from Eq. (5).

width of the reaction front. Thus our result for the expo-
nent o = 1/4 must correspond to a lower bound for the
more general case in which both species move.

For d > 2, the arguments and method used above for
the 1D case do not hold for essentially two reasons: (a)
even though one can define the leftmost B particle in each
strip perpendicular to the “reaction plane,” these do not
necessarily pinpoint the interface between the reactants;
and (b) the B particles are not necessarily reached by
the A particles from the left, but can be reached in prin-
ciple from any direction. Yet scaling arguments similar
to those of Gélfi and Récz suggest that if only one of the
reactants diffuses, then the exponents characterizing the
reaction front are @ = 0 (logarithmic in time for d = 2
[11]) and B =1/2 [2].
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