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We calculate the scaled constant-magnetization and constant magnetic field specific heats

[Cy (M) — Cy (6,0))/M ~°'# and [Cy (6,H) — Cy (€,0))/H ~°'#% as functions of the scaled variable

x =€/M"® and y = e/H '"P, respectively. [where ¢ =(T — T.)/T, and T, is the critical
temperature] for the spin-%2 Ising model (bcc lattice) and the spin-1%, o0 Heisenberg models (fcc

lattice). Our calculations are based on previously calculated scaling functions for the M (H,T) equation
of state. We also calculate the amplitudes of the zero-field specific heat for T > T, and T < T ..
Thus, we obtain the functions Cy, (e,M) and Cj (¢,H ), though for the Heisenberg models we cannot
obtain the finite nonzero constant C,,(0, 0)=C,,(0, 0). We compare our calculated functions with the data of

Connelly, Loomis, and Mapother on nickel.

1. INTRODUCTION

Recently measurements of specific heat in a field
have been made on the ferromagnet nickel,land these
data were shown! to obey the scaling hypothesis. ®~*
That is, data from different isotherms (7T = const)
and “isochamps” (H = const), when appropriately
scaled, were observed to collapse onto a single
curve.® The scaling scheme used was to reduce
the observed relation between the thvee variables
specific heat C,, magnetic field 3¢, and tempera-
ture T to a relation between the two variables
T'=(Cy — C) 3¢/ and <y = €3¢ */*, wheree= (T - T,)/
T, (with T, the critical temperature) and a, B, &
are the usual critical-point exponents. (The rea-
son for the prime on the variable 77 will become
apparent in Sec. II.)

The functional relation between 7'and vy, how-
ever, remained unknown. Ho® obtained for Ni a
scaling function7’(y) by using the Maxwell rela-
tion between the entropy 8, field ¥, magnetiza-
tion M, and temperature T,

98 _ 93C
(m) r (3_7:—)911’
on an empirical fit to available 3¢-9M-T data.® The
empirical fit consisted in assuming the ¥¢-IM-T
data to be well represented by the “linear model”
in the parametric representation. " It is a one-
parameter fit, where the parameter is the slope of
the m (6) line, in the notation of Ref. 7. It is im-
portant to point out that the “linear model” is not
a model in the sense of a microscopic Hamiltonian,
but rather is a useful way of presenting 3C-W-T
data, once the data have been obtained either ex-
perimentally or by calculations on a microscopic
Hamiltonian.
We present here the first calculations of scaling
functions for specific heats based on microscopic

(1.1)
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Hamiltonians; our work requires no adjustable
parameters. These calculations became possible
after the magnetic equations of state 3¢(7, ) for
these Hamiltonians were obtained by MiloSevié
and Stanley, ® and Karo, ? through analysis of high-
temperature expansions.

A major virtue of the present results is that they
are arrived at without recourse to the very lengthy
and tedious process of obtaining and analyzing high-
temperature series expansions for the specific
heat. Such series are usually extremely irregular
and therefore much less reliable than series of the
same order for the magnetic equation of state.

In Sec. II we show how knowledge of the magnetic
equation of state 3¢(7', M) can be used to obtain the
scaling functions for the specific heats. In Sec.
I, we discuss the normalization scheme used in
this work. In Sec. IV, we present our results for
the scaling functions for specific heats at constant
field and at constant magnetization and compare
them with Ni data. Finally, Sec. V shows how one
can then use the knowledge of the scaling functions
to obtain the amplitudes of the singularities in the
zero-field specific heat.

II. METHOD

In critical phenomena work it is usual to reduce
the variables to dimensionless quantities which
are zero at the critical point. Thus we define the
variables H=3(T,/m)! (here % is Boltzmann’s
constant, m is the magnetic moment per site),
M=9/Nm (N is the number of sites), and €= (T
- T.)T.. Inthese variables, the Maxwell relation,
Eq. (1.1), becomes

(). -Ge), -

where S= S/R is the entropy in units of R, the
universal gas constant. We may use this relation

(2.1)
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to obtain information about the entropic equation
of state S=S(€, M), and therefore about the specific
heats as well.

From Eq. (2.1) it is clear that from the equa-
tion of state H(€, M) one may learn only about the
M-dependent part of the entropy,

AS(e,M)=S(e,M)-S(e, 0), (2.2)

since the addition of an M-independent term to S
will not show up in the left-hand side of Eq.- (2. 1).
(In Sec. V we will see that if the zero-field specific
heat has a singularity, we can learn the amplitude
of that singularity as well. )

We consider three models, the spin-3 and spin-
infinity Heisenberg models, and the spin-3 Ising
model. All three models have equations of state®
which obey the static scaling hypothesis, Zi.e. ,
near the critical point they can be cast in a form

9

H=M°(x) , (2.3)
with
x=eM Ve, (2.4)

From Egs. (2.1) and (2. 3) it can be shown'® that
AS(e, M) also obeys the static scaling formulation,
that is, it can be written

AS=M%s(x), (2.5)

where z and s(x) are to be determined using the
Maxwell relation, Eq. (2.1).

Differentiating the scaling forms, Egs. (2. 3)
and (2. 5), with respect to € and M, respectively,
and using (2.1), we find

M= Yzs(x)-xs'(x)/B]=-M>Von' (x), (2.6)

where the prime denotes differentiation with re-
spect to the argument. Since the Maxwell relation
is everywhere valid, we may equate powers of M,
and find

z=1+6-1/8. (2.7

Thus from (2. 6) and (2. 7), s(x) must obey the dif-
ferential equation

xs’'(x)= Res(x)=pn'(x) .

While we could integrate this differential equa-
tion for s(x), and thus obtain the scaling function
for the entropy [cf. Eq. (2.5)], our primary inter-
est is the specific heat. Differentiating both sides
of (2. 5) with respect to € we find, for AC,=C (€, M)
- CM(E’ 0)’

ACM=(8AS> =M=VBgr(x)
M

(2.8)

5e (2.9)
Thus the specific heat is itself a scaled function
near the critical point, with scaling function s’(x).
A differential equation for s’(x) can be promptly
obtained from Eq. (2. 8) by differentiation with re-

spect to x,
xs''(x)+ as’'(x)=BRr" (x), (2.10)
where use has been made of the exponent relation®
a=2-p0+1) @.11)
for the exponent a of the zero-field specific heat.
The same relation yields together with Eq. (2.7),
z=(1-a)/B, (2.12)

and thus the power of M in Eq. (2.9) is - a/B.
The general solution to the differential equation

[Eq. (2.10)] is
s'(x)=x |x|'°‘ f

g

T lx|* R (x)dx + C, | |7,
(2.13)
where the upper and lower signs correspond to
positive and negative x, respectively. The lower
limits on the integral, x, , and the constants C,
are used to match the boundary conditions imposed
on s’(x). These conditions are that the difference
of specific heats AC, vanish on the H=0 line, for
x both positive and negative. For x <0, we may
choose the lower limit x .= - x,, with the constant
C. set equal to zero. For x >0, the lower limit
x, may be chosen as +«, with the constant C, also
set to zero. This choice of lower limits is not
unique, but any other choice of x, would necessitate
nonzero C,, in order to satisfy the boundary condi-
tions, Such nonzero values of C, would then be
strictly equivalent to our choice of x, with zero
constants C, .

The value of s’(x) at x= 0 can be obtained without
recourse to the integration of Eq. (2.13). We may
obtain the value s’(0) by considering Eq. (2. 10).
Near x=0, Cy(€, M) is nonsingular if M #0, and
can be replaced by its value at €= 0, while Cy(e, 0)
is singular, behaving as |€ |”® Thus s’ itself
must contain a term in [x|™*, while s’/ will behave
as |x 17!, There are two cases to consider,
a<0and @>0. K a<0, as for the Heisenberg
models, s’(0) will be finite and xs’’(x) will go to
zero as x tends to zero. Thus Eq. (2. 10) tells us
that

s'(0)=pn'’(0)/a<0 . (2.14)

When a >0, as is the case for the Ising model,
both s’(x) and xs’’(x) become infinite as x tends
to zero, although the left-hand side of Eq. (2. 10)
remains finite. Actually s’(0)-~ - %, since by (2. 9)
s’(x)x ACy, and Cy(€, 0)~ +=, while C (€, M) re-
mains finite.

Once the scaling function s’(x) for the specific
heat C, has been found, we use the thermodynamic
identity

OH

c,,_c,=T(5—T-Mx,, (2. 15)
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where xr is the isothermal susceptibility, to cal-
culate the scaling function for the constant-H spe-
cific heat, which we call t’(y). Thus,

CH(G’ H)— Cﬂ(ey 0)=Hﬁ t,(y) ’ (2' 16)

y=ed e (2.17)

where p can be shown? to be equal to — a/B6. Equa-
tion (2. 15) applied to Eq. (2. 16) yields an equation
for t'(y),

Bh'3(x) )

t’(y):h(ﬂ""“(s’(th

(2.18a)

where x =x(y) implicitly, using the relation
-1
y=xh(x) (2. 18b)

" obtained by combining Eqs. (2. 3), (2. 4), and (2. 11).
The reason the present scaling function #/(y) is
expressed as a derivative is because if we chose
to express the scaled entropy as a function of
(€, H) instead of (€, M), it would read

S(e, H)- S(€, 0)= HI/854(y) | (2.19)

from which Eq. (2. 16) follows immediately.
We now turn to a normalization scheme found
useful in this work.

III. NORMALIZATION

In order to compare the equations of state of
different physical systems which are presumed to
be similar in some sense, or to compare a model
with a real system, a certain amount of variable
transformation becomes necessary. Thus, we
replaced the temperature T by a reduced tempera-
ture €= (T - T,)/T,, divided the magnetization 9N
by the magnetic moment per site and by the number
N of sites, thus obtaining the variable M =9/Nm,
and we divided the magnetic field 3¢ by #T,/m since
that is the combination in which 3C participates in
the Hamiltonian, obtaining then the variable H =m3c/
kT.. A choice of normalization for 3C, 9, and T,
however, implies a normalization for all other
thermodynamic quantities, since they all derive
from the same free energy. It is straightforward
to show that, in this convention, the entropy § be-
comes S= 8/R, where R is the universal gas con-
stant, and the specific heat € becomes the variable
C=C/R,

Despite this normalization by constants char-
acteristic of each system, different systems are
observed to have differing amplitudes (as well as
exponents) on the various special critical loci
(critical isochore, critical isotherm, and phase
boundary). The elimination of the amplitude
dependence of the special loci can be dealt with
by the simple normalization

H=H/[n(0)x3%] (3.1)

|oo

and

M= M/, 3.2)
which have the effect of normalizing to unity,” in
the variables H, M , €, the amplitudes of both the
phase boundary and the critical isotherm.!* In the
%, h(x) language, this redefines the scaling vari-
ables

H=M"h(x), (3.3)
where

h(%)=h(xx0)/1(0) (3.4)
and

x=x/xg. (3.5)

The choice of a normalization for H and M, how-
ever, implies again a scale for all other quantities.
For example, from Eq. (2.1) it follows that a new

entropy S is given by
S=5x8¢*/p(0), (3.6)

and thus the scaling function s(x) is replaced by

5(x)=s(xx9)xo/R(0) , (3.7)
while the specific heat normalizes as

Cy=Cyx8®*V/n(0) (3.8)
and its scaling function s’(x) becomes

$’(x)=s(xx0) x3/1(0) . (3.9)

Equations (2. 10)and (2. 13) must remain the same
in the barred variables, except for the lower
limit x. on the integral for x <0, which becomes
-1, Thus

! _ v |~a = a=1 0717 (N A

s'(c)=1 |x| f:; | % |*1BR' (x)dx
is the expression for the scaling function being
sought. _

Concerning the scaling function for Cy;, Egs.

(2.18), (3.4), and (3. 5) yield the normalization

(3.10)

£'@)=t'(yyo)/to, (3.11)

y=y/0, (3.12)
with

ty=x§n(0)y /%" (3.13)
and

yo=h(0) Y/ Box, . (3.14)

Equation (2. 18) is the same in the barred variables.
IV. SCALING FUNCTIONS FOR C;- AND C

Table I gives the scaled equations of state®®
for the spin=« and spin-3 Heisenberg models and
for the spin-3 Ising model. Using these functions
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a numerical integration of Eq. (3. 10) was carried
out to obtain the Cz scaling functions 5'(x). Our

results are shown in Fig. 1.

Equation (2. 18) in

the normalized (barred) variables was then used
to obtain the Cy scaling functions #/(y). Figure

2 shows the results of this calculation.

The Ni

data of Ref. 1 are compared with the spin=
Heisenberg-model scaling function in Fig. 2(a).
The agreement may be considered good in light of
the fact that Ni is neither an insulating ferromag-
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tion specific heat Cy [cf. Egs. (2.9) and (3.7)] for (a)
Heisenberg spin= (fcc lattice), (b) Heisenberg spin=4%

(fcc lattice), and (c) Ising spin=% (bcc lattice). Cusp at

x=0 in (a) and (b) represents a negative exponent o/,
while infinity at x=0 in (c) represents o >0.

|oo

0.4r- Spin = co

Heisenberg model
0.2

¥ o
-0.2

-0.4}

« Ni data

-0.6— .
6 —— Present calculation

-0.8} -

-1.0 [T B Lo
s -4 -3 -2 - o0 | 2 3 4 5
y

Spin= —'2—
Heisenberg model

(b)

- —»

Spin= % Ising model

(c)

-t —
]

-0.2-

-0.4+

-0.6

-0.8—

_10 TR N [T N B B
-5 -4 -3 -2 -l [0} | 2 3 4 5
y —

FIG. 2. Scaling function for the constant-field specific
heat Cylcf. Eqs. (2.18), (3.11), and (3.12)] for (a) Hei-
senberg spin= (fcc), (b) Heisenberg spin=3 (fcc), and
(c) Ising spin=4% (bcc). Points in (a) are data for Ni, from
Ref. 1. Parameters used for Ni are %(0) =0.29063, x,
=0,39400 (Ref. 6).

net, nor has it a large spin. In fact, the data for
Ni lie somewhere in between the curves for spin
=% and spin ==,

A prominent feature of the three models is an
infinite slope in s’(x) at x=— 1. This has its origin
in the nonintegral power g of the singularity at the
phase boundary (cf. Table I). The origin and con-
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FIG. 3. Scaling functions for the constant-M specific
heat for the mean-field theory and the spherical model
[cf. Egs. 2.9), 3.7), 4.3), and 4.5)]. Discontinuity
in slope at x=0 for the spherical model represents a
negative integer value for a(-1).

sequences of nonintegral ¢ have been discussed
elsewhere. ®*® In addition to computing the specif-
ic-heat scaling functions for these three models,
we also used Eqgs. (3. 10) and (2. 18) (in normalized
variables)to calculate the mean-field and spheri-
cal-model scaling functions for comparison. For
the mean-field scaled equation of state we used™

RE)=1+% (4.1)
while for the spherical model we used®®
nir)= (1+%)%. (4.2)

In these simple cases Eq. (3.10) can be integrated
in closed form. It is then straightforward to show
that the specific-heat scaling functions are

§'(x)=0, (4.3)

(y)=1/(3+%)-31-6(3)], (4. 4a)
with y implicit in X through

y@)=%/(1+x)%/3 (4. 4b)

for the mean-field theory (cf. Fig. 3). Here 6(x)
is the unit step function, 6(x)=0 for x <0 and 1 for
x>0. Similarly,

§'®)=-1-%[1-6®)], (4. 5)

- - - o =\2

v 3)= 1 (@ ALY e
with y implicit in ¥ through

yx)=x/(1+x)*® (4. 6b)

for the spherical model (cf. Fig. 4).
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V. AMPLITUDES OF THE ZERO-FIELD SPECIFIC HEAT

We have also estimated the amplitudes A, of the
zero-field specific heat, ¢

Cul€, 00~ Cy(0,0)x A, | €[ (a<0) (5.1)

and

Cyle,0)x A, |e|™ (@>0), (5.2)

where the upper sign is for x >0 and the lower for

x <0, by the following argument. I H#0, then
upon crossing the x = 0 line there should be no sin-
gularity in the specific heat. Thus any singularity
in AC,M*/® (Fig. 1) arises solely from the sin-
gularity in the zero-field specific heat. The ampli-
tude of this singularity can then be obtained as the
amplitude of the singularity in the scaling functions
s’(x). We divide our argument into two cases.

A. a< 0 (e.g., Heisenberg Models)

The amplitude is defined by Eq. (5.1). In the
case a <0, we have found that s’(x) is finite and
negative (Fig. 1). Thus Cy(€, M)<C (€, 0) for all
M. Therefore Cy(0, 0) cannot be zero, or else
Cy(0, M) would be negative, which is unacceptable.

In addition, we find from s’(x) that

s'(x)>s’(0) (5.3)
or, put in terms of specific heats,
CM(e} M)-Cu(e, 0)>CM(0;M)_CM(0; 0) . (5- 4)

But sufficiently near €=0, we can replace the non-
singular C,(€, M) by its value at €=0, so that
Eq. (5.4) reads

CM(E: 0) <CM(0; 0) (5- 5)

and hence the amplitude defined in Eq. (5.1) is
negative.
Writing then

0.4~ ~Spherical model

0.2 Mean-field theory

y —

FIG. 4. Scaling functions for the constant-H specific
heat for the mean-field theory and the spherical model
[ef. Egs. @.4) and 4.6)].
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TABLE II. Amplitudes A, of zero-field specific heats,
in normalized units [cf. Eqs. (5.1) and (5.2)]. Domb and
Bowers (Ref. 17) obtained a value of A, =—1.6 for the
spin= Heisenberg model, using o =— 1‘; (unspecified
lattice).

Heisenberg Heisenberg Ising
spin= spin=4% spin=4% Nickel
(fce) (fcc) (bee) (Ref. 1)
A, -1.05£0.10 =—0.66%0.01 0.463+0.001 ~—0,9337:3}
A, =0.72£0.10 -0.25+0,01 0.144+0.001 ~0.8217:%

Cu(€,0)=A, |€|™+C4(0,0), (5. 86)
we have
AC,=Cy(€,M)-Cyle, 0)
=Cyle, M)-A, |€ | = C,(0,0) (5.7)
=~Cy (0,M) - Cy(0,0)-A, €|, (5.8)

where the approximation has been made because
the last term in the above equation varies so much
more rapidly than C,(€, M) near €=0. This allows
us to consider

ACy(e, M)- ACy(0,M)=-4, ||
or

(5.9)

s’(x)—s'(O):—A*Ix |'°‘ (5.10)

oo

and thus
§'(x)-3'(0)=-A4, | % |™*. (5.11).

Equation (5. 11) thus allows an estimate for A, (cf.
Table II).

B. a> 0 (e.g., Ising model)
From Eq. (5.2) we infer that
Cule, 0)/M™ /5= A, |x |™® (5.12)

sufficiently near x=0, Since this is the only di-
vergence possible in s’(x), we can write

(5.13)

sufficiently near x=0. But then xs’’(x)=aA, |x|™
and Eq. (2.10) implies

s'(x)=f[r" (0)/a] - A, |x|™. (5. 14)

We can then estimate Z* by the amplitude of the
difference

§'() - BB (0)/a=-4, |x ™.

Table II contains the results of our estimates.

s'(x) = - A, |x|"*+ const

(5. 15)
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follows that f(€) = 0, and therefore AS is entirely a GHF.
This is the content of Eq. (2.5).

If a system scales, a normalization of € by a third constant
cannot be used to make any other amplitude come out to
unity. The reason is that if the system scales, then the
relation between the three variables H, M, and € reduces to
a relation between only two scaled variables such as H /M &
and €¢/M "2, Thus we really only have the freedom to
normalize two variables.
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