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Series for the reduced susceptibility X, the reduced specific heat (_3,,, and second moment
Ko of the static correlation function for the three-dimensional S=% Ising model on both the
simple cubic (sc) and face-centered cubic (fcc) lattices with different coupling strengths in
different lattice directions have been analyzed to determine the crossover exponent ¢ describ-
ing the behavior of the critical temperature as a function of the anisotropy parameter R in
the Hamiltonian 5= —J,, 5%y 5;5; =g D0ijy SiSy = —Jyy (2, iS5 +R Y515y 518;) . Here s;=2 1,
the first sum is over all nearest-neighbor pairs in the xy plane, and the second sum is over
all pairs coupled in the z direction. The constant gap exponent we obtain for successive de-
rivatives of ¥ and Cy with respect to R confirms the exponent predictions of scaling in the
parameter R for thermodynamic functions, while the results of the u, series confirm the ex-
ponent predictions of scaling with respect to R for the two-spin correlation function. Our
results agree with the predictions for ¢ of Abe and Suzuki, and also with rigorous relations
satisfied by the exponents describing the derivatives of the various functions. Our results
do not agree with previously published results, which are based on an analysis of only the

susceptibility on only the sc lattice.

I. INTRODUCTION

Interest has recently focused'™ on magnetic
model systems with different coupling strengths in
different lattice directions (“lattice anisotropy ”)
described by the Hamiltonian

Xy

Z
¥==d,, 2 $;8;=d, 2 548,
(1) (15

Z
E—ny< 3 $;S;+R 23 s,s,), (1.1)
m

(is)
thereby defining R=J,/J,, as the ratio of inter-
planar to intraplanar coupling strengths. Here
s;==1, the first sum is over nearest-neighbor (nn)
spins in the xy plane, while the second sum is over
spins whose relative displacement vector has a z
component. The Hamiltonian (1. 1) has previously
been studied'™ with two purposes in mind: (a) to
test the predictions of the “universality hypothe-

sis,”® and (b) to examine critical behavior upon
crossing over from a three-dimensional to a two-
dimensional lattice as R—~0. Of particular interest
is the “crossover exponent” ¢ giving the variation
of critical temperature T,(R) with R for small R,

T,R)- T,(0)~RY"*, (1.2)

and its relation to various scaling predictions.

In the preceding paper! (hereafter referred to as
Paper I), the reduced susceptibility ¥, the reduced
specific heat Cj, and the second moment L, were
defined, and high-temperature series for arbitrary

- R were presented for these quantities on both the

sc and fcc lattices, The implications of scaling of
thermodynamic functions and of the pair correlation
function with respect to the parameter R were dis-
cussed. In particular, the consequences of assum-
ing the Gibbs potential to be a generalized homo-
geneous function (GHF) of the variables 7= 7T
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- T,(R=0), the magnetic field H, and the anisotropy
parameter R were derived,

In Sec. II of the present paper we derive some of
the predictions of scaling not covered in Paper I.
Previous numerical work on the crossover problem,
carried out on only the susceptibility series on only
the sc lattice,* is reviewed in Sec, III. The pre-
vious results for the susceptibility exponents vy,
[defined below in Eq. (2.1)] are compared with
some rigorous relations. In Sec. IV we describe
the techniques we use to analyze all six series (Y,
ks, Cy for fcc and sc lattices), and present the re-
sults of this analysis. We believe this new numeri-
cal evidence made possible by the additional gen-
eral-R series offers substantial support to the hy-
pothesis of scaling in the parameter R for both
thermodynamic functions and the pair correlation
function. Finally, Sec. V contains a summary and
concluding remarks.

II. PREDICTIONS OF SCALING

As was shown in Paper I, scaling of thermody-
namic functions predicts that the exponents vy, de-
fined by

9"

(n) _ X ~ =Y

X = (_._ ) T
8R" R=0

should obey the relation [Eq. (1.9) of Paper I]
' (2.2)

(2.1)

Yn=Yo+ NP,

where ¢ is the same as the exponent in Eq. (1.2),
and y, is the exponent for the two-dimensional zero-
field susceptibility; claimed’ to be exactly 1.75 for
the Ising model.

In addition, there is an elementary rigorous re-

sult® which states that
71=2%,. (2.3)

Coupling this result with the scaling prediction,
Eq. (2.2)yields

(2.4)
(2.5)

For purposes of later compé.rison, it is worthwhile
to point out that the above relations Eq. (2.5) have
also been shown® to be rigorously true for n=2, 3,

(2.6)

(p'_‘yOv
7n=(n+1)70-

Y2= 3%, Ys=4y,.

In a manner similar to Eq. (2.1), one may define
the exponents ¢, which characterize the divergence
near the critical point of the quantities

_ "C -
C(n) E( H ) ~ =y .
9R" /reo

(2.7)
Again, scaling of thermodynamic functions with
respect to the parameter R predicts that

ap=ag+ne , (2.8a)

which, combined with Eq. (2.4), yields

Qn=0o+MY, (2. 8b)

where ay=0 corresponds to the well-known loga-
rithmic divergence of the two-dimensional specific
heat.® The proof of Eq. (2.8a) proceeds exactly as
the proof of Eq. (2.2).

For the derivatives with respect to R of the sec-
ond moment W,, we define the exponents v, by

n
g E(?_Eg) ~ e trgre)
R=0

o (2.9)

where vy=1 exactly.® Assuming the pair correla-
tion function to scale in the variable R [as well as
in H, 7, and the lattice distance ¥ ] yields

2v,=2vy+nQ , (2.10a)
which, combined with Eq. (2.4), yields
2v,=2vy+ny,. (2. 10b)

The proof of Eq. (2.10a) begins with the assump-
tion that the pair correlation function Cy(r, H, T, R)
is a GHF of its four variables, for small values of
7, H, R, and 1/|7|'%;

C,(\brr, \bHH, AFF | APRR)=2\"%rC,(r, H, T, R),

(2.11)
where the scaling power of the function is chosen
to conform with the notation of Ref. 11, in which
the correlation function C,(7, H, ¥, R) defined by
the relation

X= 2 GCylr, H, T, R)EJ‘CZ(T, H, ¥, R)d¥
all (2‘ 12)
has a scaling power of unity.
1t is then easy to show that the jth moment p; is
also a GHF:

py (AT, APHH | APRR)

=20 [T G, 7, A7, T, A°RR)
T

=27 |AFF|7 C, (AP, APHH, A\PFT| \’RR)
b
=}\1+(3+“b'§> l;‘! 62(7’ H, F’ R)

S AMGOYy (1 B R). (2.13)

Given that u, is a GHF, it follows that the deriva-
tives pu{™ = (8"1,/ 8R")g.o are also GHF’s:

n
B (T, APHH) = Ty (orr, aoag, R))
8R R=0

n
= 2 IJ'" (XDTT, )‘bHH; AbRR) )‘-"bR.
9R R=0
=A@ Dopmbr (0 (7 H) (2.14)
In order to consider the divergence of u}"’ with 7,

we set A= |7 in the above equation, and let
H=0:
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u}n)(l, 0)= [T'-[1+(3-rj)br-an]/bTIJ;n)(T’ 0). (2.15)

Thus the exponents v, defined in Eq. (2.9) are
given by

- (yo+2v,)=(1+5b,—nbg)/b,. (2.16)

To express the right-hand side of (2. 16) in terms
of known quantities y,, vy, and ¢, we first set j=n»
=01in Eq. (2.15). Then, since the susceptibility is
the zeroth moment of C, [cf. Eq. (2.1) of I], we
have for y,

- 9,=(1+3b,)/b,. (2.17)
Next we use the definition!?
t= Ma/ i (2.18)

for the correlation length £, Setting j=2, =0 in
Eq. (2.15) we find from Eqs. (2.17) and (2. 18) that

- 2vy=(1+5b,)/b,+v,=2b,/b,. (2.19)

Finally, to obtain an expression involving ¢, it is
easiest to set j=0in Eq. (2.13), let H=0, and set
A=|R|"V*R, Then,

1R | (l#ab,.)/sz(T/ IR l b.,/bR, 0, 1)=§(T, 0, R).
(2.20)

Now, if the right-hand side of Eq. (2.20) has a
singularity at a temperature 7T,(R), corresponding
to a value of 7=7,(R)=[T,(R)~- T,(0)]/T,(0) for
some R >0, the functional form of Eq. (2.20) re-
quires there to be singularities over the entire line
where the first argument of the left-hand side has
a constant value, Thus

T,(R)/|R|® /R = const

or
To(R)- T,(0)~ |R|®/% (2.21)
so that from Eq. (1.2),
@=bgp/b,. (2.22)

Using the results Egs. (2.16), (2.19), and
(2.22) in (2.15) we obtain the desired result Eq.
(2.10a).

Equation (2. 10b) is actually rigorous for the case
n=1, by virtue of the relation®

(1)

s (2.23)

o« Xiq‘*‘ 2“2,qusq ,

where [, s, denotes the second moment on the two-
dimensional square lattice, This equation holds
for either the sc or fcc lattices, with the constant
of proportionality differing between them.

We note that the scaling powers for the Gibbs
potential of Paper I (a,, ay, ag)are not independent
of the b scaling powers for C,. From Eq. (1.5) of
I with H+#0 and Eq. (2.13) of the present paper with
j=0, it follows that

(1-2ay)/a,=(1+3b,)/b, , (2.24a)
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(2. 24b)
(2. 24c)

(1-2ay)/ag=(1+3b,)/bg,
(1=-2ay)/ay=01+3b,)/b,.

Thus the a’s are expressible in terms of the b’s,
but the converse is not true,

III. PREVIOUS WORK

There is currently a controversy in the litera-
ture®'* concerning whether the predictions of scaling
in the parameter R =J,/J,, for the exponents ¢ and
v, stated in Eqs. (2.4) and (2. 5) are borne out by
series analyses of the susceptibility on the sc lat-
tice.

One group of workers, 3 using an 11-order high-
temperature series in R and tanh(J,,/kT), reports
the following values for the exponents y,:

y,=3.50, ¥,=5.0£0.1,

3.1)

¥,=6.5+0.2, 7,=8.0£0.3.

The last three are in disagreement with both the
scaling predictions, Eq. (2.5), and the rigorous
equalities, Eq. (2.6), for n=2 and 3.

The same group® reports a value for ¢ of 1,2
+0.1, obtained from a log-log plot of T,(R)- T,(0)
vs R. This result is again in disagreement with
the scaling result Eq. (2.4). We believe this low
estimate for ¢ to be a consequence of improperly
low estimates of the T.(R) for small R. These low
estimates are consistent with the same group’s
estimates of the exponent y(R) describing the criti-
cal behavior of the susceptibility

XR)~[T- T, (R)"®, (3.2)

Their® estimates for v(R) show continuous variation
with R for small R, contradicting the universality
prediction®!® of 1,25 for all R>0. Low estimates
of T,(R) would lead to high estimates of y(R) (values
>1,25) on a ratio plot. [In Sec. IV, we will present
an estimate for ¢ using a different set of T,(R). ]
Another author,* using Padé approximant (PA) tech-
niques on the same general-R sc susceptibility
series, claims results for the vy, that are at least
consistent with the scaling predictions, Eq. (2.5).
These discrepancies between Refs. 3 and 4 seem
to us sufficient motivation to undertake a further
study of the crossover exponent. Furthermore,
the series from Paper I give us the opportunity to
study the additional scaling predictions of Egs.
(2. 8) and especially (2.10). Our study of (2.10)
provides a test of correlation-function scaling in
the parameter R, and constitutes to our knowledge
the first such test of its kind.

IV. TECHNIQUES OF SERIES ANALYSIS AND PRESENT
RESULTS

In order to estimate the exponents y,, a,, and v,
we proceed to test the series of Paper I by the ratio
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method, * by Padé approximants (PA’s) to their
logarithmic derivatives, ' and by Park’s method. ¢
In addition, each series is raised to a number of
trial powers near the inverses of the exponents pre-
dicted by scaling. We look for powers which pro-
duce in their respective Padé tables consistent sim-
ple poles which are closest to the exactly known
T,(0).'" Each series to a power was also studied by
the ratio test and Park’s method. Finally, bilinear
transformations are used to improve convergence.
We found that the series for ¥, had better con-
vergence to the correct 7,(0) when expressed in
the variable §=J,, /kT rather than v =tanh(g).
Hence, we expand all the series of Paper I in §.

A. Ratio Tests

Consider a finite series, e.g., the susceptibility

L
X=2 A8, 9=d,/kT, (4.1)
1=0
with
1
A= a; R, ag=1. (4.2)

420

Then the nth derivative with respect to R, at R=0,
is given by

1
X" xnl 2 ay,,8

I=n

L=n
=nl8" 25 ayn a9’ . (4.3)
1=0
The ratios p,,; are formed,
pn,lEahn,n/alm-lm’ l=1’ eovy L-n (44)

and plotted versus 1/1. A useful sequence of ex-
ponent estimates y,,; is obtained by using the
formula

Py =9 [1+ (v, = 1)/ 1. (4.5)

This sequence y,,; corresponds to the slopes of a
sequence of straight lines passing through succes-
sive ratios p,, and the exactly known'” g ;!

o s where
9,=J, /kT,(0)=arctanh(vV2-1), (4.8)

Upon arriving at a set of estimates y,,; (I=1,...,
L-n), we form a Neville table'®!® of extrapolated
estimates of the y, ;. The linear extrapolants 2, ,
are given by

)‘mlzlyml_(l"l)'}'n,l-ly (4-7)
the quadratic extrapolants &, ; by
grm:‘é'{l)\n,t‘ (I=2M,,54], (4.8)

and so on,
B. Park’s Method

In the Park’s-method studies the exact T,(0) of
Eq. (4.6)is again used to estimate the exponents,
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according to Eq. (2.20) of Ref. 5. The Ith esti-
mate of vy, by Park’s method, y;,, is given by

Yar=b"de, (4.9)
where
. 1-1
b E(la,,,,,,,,—- Zi; Aan-jn b;") /anm (4.10)
II

is the coefficient of §* in the expansion for the
logarithmic derivative of the series under study,
d 1!17( (n) L=n

=~ Mgt in,

dlnS 1=1 (4. 11)

and bin) Ean-bl,n/an.n-

The Park’s-method estimates for the exponents
exhibit large oscillations about a mean value,
One may then perform sequential averages of the
estimates; i.e., one can calculate the quantities

DPny Eé_(ynpol +7n}:l01)- (4.12)

This procedure can be repeated successively. Very
good convergence is obtained even after the first
such averaging. Such oscillations in the 'y,,"', can
also be eliminated by doing a bilinear transforma-
tion on the original series; this procedure is de-
scribed in Sec, IVD.,

C. Pade Approximants

The Padé tables for the logarithmic derivatives
of each series exhibit less pronounced convergence
than either of the above two methods. We thus use
the log-Padé method only as a check of our results.
One measure of the reliability of the log-PA results
for the exponents is provided by how well the esti-
mate of the critical temperature compares with the
exact value 7,(0).

In the case of raising the series to various trial
powers,?® we find that if the power is not the one
predicted by scaling, then convergence to a par-
ticular singularity Zs generally observed, but the
corresponding critical temperature is diffevent
from 7,(0). Each series was raised to powers
equal to, and on both sides of, the inverse of the
exponent predicted by scaling. Convergence was
not always the best for the scaling value, but the
pole produced was always closest to T,(0). This is
an example of how good convergence alone is not
sufficient to draw definitive conclusions.

D. Bilinear Transformations

When a series is examined by the ratio test or by
Park’s method, there often exist large oscillations
in the successive ratios and estimates for the ex-
ponents. This can be due to a “nonphysical ” sin-
gularity in the complex-d plane situated closer to
the origin than the ferromagnetic singularity §. of
Eq. (4.6). Such a spurious singularity may often
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7, : Ratio method 8y
350 -y,
i FIG. 1. Estimates of the exponent
r Y1 by ratio method. First two Neville
345 table entries are also shown [cf. Egs.
’ (4.7) and (4.8)]. Arrow at right indi-
r cates limiting value from Eq. (2. 3).
3.40 | | ! I R
i N | 1/c0
3 5

€L
10

be “transformed away” by a bilinear transforma-
tion. Here the original series in §is reexpressed
in the variable!®

|
i5 2

with b suitably chosen to move the interfering sin-
gularity further from the origin and hence diminish
its effect. The location of the singularity, and
thus the proper value of b, can be estimated from

d=89/(1+09), (4.13) the Padé table for the original series in J .

_ Y+ Park’s method

L [
4.0 o (a)
3.8

*7
3.4 First Y
averages
30l FIG. 2. (a) Estimates v{, (0) for
the exponent vy, by Park’s method.

- Only the first averages (@) are shown
3.0 for clarity. (b) Estimates by Park’s
i method after the transformation of

Eq. (4.13), where the choice 6=2.17
2.8 E i I - i Ll “:'“”‘ Do was based on the log-Padé estimates.
3 5 o B 2r These points are without averaging.
1/2
Y, : Park’s method
3.6 (Transformed series) (b)
000000 Yy
3.4
7171 B
3.2+
3.0 I R |

10
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5
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i2b
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5 h as— hd T hd T 1 1

1 1 L 1/00

3 5 9

174

FIG. 3. Ratio-method estimatesy, ;forn=2-5(0)sec,
(@)fcc. Arrows at right indicate the values predicted
by scaling. For n=3, these are also rigorous equalities.
Dashed lines are guides to the eye, and vertical bars in-
dicate confidence limits based on all methods of analysis.

n=5 O 5
o+ Th ¢ Park’s method fcc
(Transformed series )

C a -

sk
P
,yn,l 3 R .
|
2 O " -

4 ] I [ |

L i i 1/00

2 3 8

174

FIG. 4. Park’s-method estimates v,f: ; for n=2-5 from
fee transformed series, Eq. (4.13). The choices b=1.58,
1.09, 2.00, 1,00 (for =2, 3, 4, 5, respectively) were
based on the log-Padé estimates. The case n=1 is
shown in Fig. 2(b). Arrows anddashedlines asinFig. 3.
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16

ap + Ratio method
fcc

14 n:8 }
°

! 1
o 1 1/co
3 5

FIG. 5. Ratio-method estimates of @, for n=2, 4, 6,
8 for the untransformed fcc series (O). @, first Neville
extrapolants. Arrows at right indicate values predicted
by scaling. Vertical bars indicate confidence limits on
our estimates based on all methods of analysis.

14 S %
Qp : Park’s method fcc
- (Transformed series)
12+
B 6
T
10}
P -
an,l
8 —
4 _o=0 .
6 -
4+
2 s
2 | L
€ . x 1700
2 4 9
1/4

FIG. 6. Park’s-method estimatesof @, for n=2, 4;
6, 8 on the transformed fcc series. The parameter b
of Eq. (4.13) equals 3.50, 3.00, 1.50, 0.25 forn=2, 4,
6, 8, respectively. Arrows at right indicate values
predicted by scaling. Dashed lines are guides to the eye,
and vertical bars at right are confidence limits.
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FIG. 7. Ratio-method estimates of
2v,+7%,, for (a) sc lattice and (b) fec
lattice. Arrows at right indicate values
predicted by scaling. For n=1 the lim-
iting value is rigorous. Dashed lines
are visual guides, not fits. Bars at
right indicate confidence limits based
on gll methods of analysis. Higher
Neville extrapolants are also shown,
and their order can be inferred by the
1 at which they start: kth Neville extrap-
olant starts at [ =3 +k.
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(a) 2un+Y, : Park’s method sc
(Transformed series )

(b) 2vn+Y, - Park’s method fcc
L (Transformed series)

2Vn,l +)’o % O
8
2
4}‘/;/,)",”;‘:”

I
L
9

i N 1/c0
2 4
1/2

FIG. 8. Park’s-method estimates for2v,+7,, for (a)
sc and (b) fcc lattices. Results for sc are obtained
from transformed series, with the parameter b of Eq.
(4.13) equal to 2.0, 4.0, 7.0, 6.0 forn=1, 2, 3, 4, re-
spectively. Results for fcc use b valuesof2.0, 1.5, 2.0,
2.0 for n=2, 3, 4, 5, respectively. Arrows at right
indicate values predicted by scaling. Value for n=1 is
rigorous. Dashed lines are visual guides, and vertical
bars at right indicate our confidence limits based on all
methods of analysis.

E. Test Series

A particularly good test of the above methods is
given by a lengthy series for X', which we ob-

tained from the rigorous relation®
(4.14)

where Y4, the susceptibility for the two-dimen-
sional square lattice, has very recently been cal-
culated® through order 21. It is this relation that
produces the rigorous result Eq. (2.3). It is valid
for both sc and fcc lattices, with proportionality
factors 2 and 8, respectively. Figure 1 shows the
first few Neville table entries for this series

i(l) < iiq,
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plotted versus 1/1. In Fig. 2(a) we display the
estimates of the exponent y, obtained by Park’s
method and the first sequential averages of these
estimates. Figure 2(b) shows the estimates of y,
from the bilinearly transformed series.

F. Evidence Supporting Scaling of Thermodynamic Functions:
Exponents vy, and &,

Figure 3 shows ratio method estimates y,,; vs
1/1 for n=2-5 for both the sc and fcc lattices.

For n=1 the series estimates of the exact result
3.50 are shown in Fig, 1.,

Figure 4 shows the Park’s method estimates
'yf,, of Eq. (4.9) for the fcc series. These provide
supportive evidence for the conclusions drawn
from Fig. 3. The values shown are for the trans-
formed J series [cf. Eq. (4.13)], since the series
in J had oscillating estimates. The Park’s esti-
mates for the sc series are divergent, and upon
transformation they become convergent, but too
slowly to draw a firm conclusion.

When considering Figs. 3 and 4, it must be re-
membered that the correct exponents in each case
must obey the rigorous equalities of Eq. (2.6) for
n=2, 3. Each equality is the value predicted by
scaling, which is displayed by the arrow. If we had
no such equalities, the combined methods of analy-
sis would still lead us to the same values for the y,,
albeit with confidence limits. Confidence limits are
indicated in the right margin only for n=4, 5.

The dashed lines in the figures are not fits, but
merely guidelines., In considering the limiting
value of the present estimates, it is important to
distinguish these plots from “ratio plots.” Since

0.20 T T T T
e fcc
- osc ép=1.0—4

0.6

R
§U 0.12 ‘.O/‘
N _
x
o 0.08 1 2/

0.04

—

0 K& ! '
0 002 004 0.06 008 0.I0 0.20
R

FIG. 9. T.(R)—T.(0) raised to various trial powers
@¢, for both the sc and fcc lattices. T,(R) is expressed
in units of the two-dimensional mean-field value, 7™
=qJ/k, where g =4 is the coordination number of the
lattice. ¢ =1.2 is the value from Ref. 3.
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the present estimates are for the same quantity,
the limiting slope of the dashed line must be zevo.
When plotting ratios, on the other hand, the limit-
ing slope is in general nonzero.

In the case of the specific-heat exponents a,, we
do not as yet have rigorous inequalities such as
those for the y,, and therefore, we must place
wider confidence limits on our estimates. Figures
5 and 6 exhibit the ratio and Park’s estimates, re-
spectively.

The 5,, series for the sc lattice proves to be too
short for any meaningful results to be extracted,
and that analysis is therefore not presented here.

TABLE L

LIU, AND STANLEY

(BN

G. Evidence for Scaling of Correlation Function:
Exponents », )

Figures 7(a) and 7(b) show, for the sc and fcc
lattices, respectively, ratio-method estimates for
the v,, for n=1-5. The exponents v, are actually
displayed in the form 2, +%,, which are the ex-
ponents of i as defined in Eq. (2.9). The case
n=1 is identical for the two lattices because of the
rigorous relation Eq. (2.23), and 2v, is thus known
to be exactly 2vy+7v,=3.75. Hence the n=1 case
provides yet another test of our method. Figure 8
shows the Park’s-method analysis.

(a) First three lines test the predictions of thermodynamic scaling with a parameter [Eqs. (2.5) and (2. 8b)].

(b) Last line tests the predictions of correlation function scaling with a parameter [Eq. (2.10)].

Scaling hypothesis plus

Present work

Previous numerical results (sc and fcc lattices)

Definition of exponents Y1 =27, proof (Ref. 8) (sc lattice only) sc fee
(a) Test of thermodynamic scaling
T.(R) - T,(0) ~R!/® =% =1,29® ®=1.70+0,1
fyp=1.75]
X" = (0"X/0RMNg ..y~ TN Yn=Yo tnQ
= +1)7,
n=1 3.50 3,50%@% @ 3.500
n=2 5.25 5.0£0.1%, 5,2:0.19 5. 250
n=3 7.00 6.5+0.2%, 6.9:0,19¥ 7.000
n=4 8.75 8.0+0,3® 8.75+£0.25 8.75+0.03
n=5 10,50 10.5+0:38  10.5+0:4
C{P = (8"Cy/ ORMg <o~ T™n 0=y +ng
=0+
[g=0]
n=2 3.50 3.5+0.05
n=4 17.00 7.0+0, 04
n=6 10.50 10.5+0.05
n=8 14,00 14.0£0.6
(b) Test of correlation-function scaling
1" = (8",/ OR Mg . g~ 770 200 Yo+2Vp="Y, +2V) +n@
=2vq+ (e +1)Yy, [vy=1]
n=1 5.50 5.500
n=2 17.25 7.25+0:48 7.25+0.02
n=3 9.00 9.0+8:3  9.0x0.1
n=4 10,75 10,75+ 9:32 10,7540, 03
n=>5 12,50 12.85+0:4) 12.50:0:40
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H. Evidence Supporting T, (R)-T.(0)~R Y7o

As a final step, we analyze values of T (R), from
Table VI of Ref. 5, in order to obtain a direct esti-
mate of ¢ from Eq. (1.2) with 7,(0) being known
exactly. " In Fig. 9 we plot T,(R)~ T,(0) raised
to various trial powers ¢, vs R, and seek the value
of ¢, which produces the straightest line. This
method was favored over a log-log plot,® since it
allows the point (0, 0) to be included. We conclude
that the best straight line occurs for

©,=1,7£0.1, (4.15)
for both the sc and fcc lattices, This is consistent
with results from our log-log plots. To arrive at
this value of ¢, it is necessary to plot many more
curves than those shown in Fig. 9, and observe
the trend of the small-R region as the power is
varied. While there is considerable scatter in any
one curve, we believe the absence of curvature is
most pronounced for the curve with ¢, given above,
Although it is certainly not conclusive evidence for
@ =%,, it casts doubt on the value ¢ =1, 2 of Ref, 3.
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V. SUMMARY AND CONCLUSIONS

We have analyzed the general-R series of Paper
I for the susceptibility, specific heat, and second
moment of the correlation function of the spin-%
Ising ferromagnet with directional anisotropy, on
both the sc and fcc lattices. Our purpose was to
determine the critical-point exponents y,, a,, and
v, which characterize the divergence of the nth
derivatives with respect to R of X, Cp, and p,. We
find the v,, a,, and v, to be characterized by a
constant crossover exponent ¢. We have compared
the results obtained above withthose predicted by the
scaling hypothesis for the parameter R, and find
agreement, In particular, this work constitutes a
test of scaling in R not only for thermodynamic
functions but for the two-spin correlation function
as well, Table I summarizes our results as well
as the predictions of scaling.
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