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Chapter 1
Network of Interdependent Networks: Overview
of Theory and Applications (18 April 2013)

Dror Y. Kenett, Jianxi Gao, Xuqing Huang, Shuai Shao, Irena Vodenska,
Sergey V. Buldyrev, Gerald Paul, H. Eugene Stanley and Shlomo Havlin

Abstract Complex networks appear in almost every aspect of science and tech-1

nology. Previous work in network theory has focused primarily on analyzing single2

networks that do not interact with other networks, despite the fact that many real-3

world networks interact with and depend on each other. Very recently an analytical4
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4 D. Y. Kenett et al.

framework for studying the percolation properties of interacting networks has been5

introduced. Here we review the analytical framework and the results for percola-6

tion laws for a network of networks (NON) formed by n interdependent random7

networks. The percolation properties of a network of networks differ greatly from8

those of single isolated networks. In particular, although networks with broad degree9

distributions, e.g., scale-free networks, are robust when analyzed as single networks,10

they become vulnerable in a NON. Moreover, because the constituent networks of11

a NON are connected by node dependencies, a NON is subject to cascading failure.12

When there is strong interdependent coupling between networks, the percolation13

transition is discontinuous (is a first-order transition), unlike the well-known con-14

tinuous second-order transition in single isolated networks. We also review some15

possible real-world applications of NON theory.AQ1 16

1.1 Introduction17

The interdisciplinary field of network science has attracted great attention in recent18

years [1–25]. This has taken place because an enormous amount of data regarding19

social, economic, engineering, and biological systems has become available over20

the past two decades as a result of the information and communication revolution21

brought about by the rapid increase in computing power. The investigation and grow-22

ing understanding of this extraordinary amount of data will enable us to make the23

infrastructures we use in everyday life more efficient and more robust. The original24

model of networks, random graph theory, developed in the 1960s by Erdős and Rényi25

(ER), is based on the assumption that every pair of nodes is randomly connected with26

the same probability (leading to a Poisson degree distribution). In parallel, lattice net-27

works in which each node has the same number of links have been used in physics28

to model physical systems. While graph theory was a well-established tool in the29

mathematics and computer science literature, it could not adequately describe mod-30

ern, real-world networks. Indeed, the pioneering observation by Barabási in 199931

[2], that many real networks do not follow the ER model but that organizational32

principles naturally arise in most systems, led to an overwhelming accumulation of33

supporting data, new models, and novel computational and analytical results, and34

led to the emergence of a new science: complex networks.35

Significant advances in understanding the structure and function of networks,36

and mathematical models of networks have been achieved in the past few years.37

These are now widely used to describe a broad range of complex systems, from38

techno-social systems to interactions amongst proteins. A large number of new mea-39

sures and methods have been developed to characterize network properties, includ-40

ing measures of node clustering, network modularity, correlation between degrees41

of neighboring nodes, measures of node importance, and methods for the identifi-42

cation and extraction of community structures. These measures demonstrated that43

many real networks, and in particular biological networks, contain network motifs—44

small specific subnetworks—that occur repeatedly and provide information about45
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1 Network of Interdependent Networks 5

functionality [8]. Dynamical processes, such as flow and electrical transport in het-46

erogeneous networks, were shown to be significantly more efficient compared to ER47

networks [26, 27].48

Complex networks are usually non-homogeneous structures that exhibit a power-49

law form in their degree (number of links per node) distribution. These systems50

are called scale-free networks. Some examples of real-world scale-free networks51

include the Internet [3], the WWW [4], social networks representing the relations52

between individuals, infrastructure networks such as airlines [28, 29], networks in53

biology, in particular networks of protein-protein interactions [30], gene regulation,54

and biochemical pathways, and networks in physics, such as polymer networks or55

the potential energy landscape network. The discovery of scale-free networks has led56

to a re-evaluation of the basic properties of networks, such as their robustness, which57

exhibit a character that differs drastically from that of ER networks. For example,58

while homogeneous ER networks are vulnerable to random failures, heterogeneous59

scale-free networks are extremely robust [4, 5]. Much of our current knowledge of60

networks is based on ideas borrowed from statistical physics, e.g., percolation theory,61

fractal analysis, and scaling analysis. An important property of these infrastructures is62

their stability, and it is thus important that we understand and quantify their robustness63

in terms of node and link functionality. Percolation theory was introduced to study64

network stability and to predict the critical percolation threshold [5]. The robustness65

of a network is usually (i) characterized by the value of the critical threshold analyzed66

using percolation theory [31] or (ii) defined as the integrated size of the largest67

connected cluster during the entire attack process [32]. The percolation approach68

was also extremely useful in addressing other scenarios, such as efficient attacks69

or immunization [6, 7, 14, 33, 34], for obtaining optimal path [35] as well as for70

designing robust networks [32]. Network concepts were also useful in the analysis71

and understanding of the spread of epidemics [36, 37], and the organizational laws72

of social interactions, such as friendships [38, 39] or scientific collaborations [40].73

Moreira et al. investigated topologically-biased failure in scale-free networks and74

controlled the robustness or fragility by fine-tuning the topological bias during the75

failure process [41].76

Because current methods deal almost exclusively with individual networks treated77

as isolated systems, many challenges remain [42]. In most real-world systems an indi-78

vidual network is one component within a much larger complex multi-level network79

(is part of a network of networks). As technology has advanced, coupling between80

networks has become increasingly strong. Node failures in one network will cause81

the failure of dependent nodes in other networks, and vice-versa [43]. This recursive82

process can lead to a cascade of failures throughout the network of networks system.83

The study of individual particles has enabled physicists to understand the properties84

of a gas, but in order to understand and describe a liquid or a solid the interactions85

between the particles also need to be understood. So also in network theory, the study86

of isolated single networks brings extremely limited results—real-world noninter-87

acting systems are extremely rare in both classical physics and network study. Most88

real-world network systems continuously interact with other networks, especially89

since modern technology has accelerated network interdependency.90
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6 D. Y. Kenett et al.

Fig. 1.1 Example of two interdependent networks. Nodes in network B (communications network)
are dependent on nodes in network A (power grid) for power; nodes in network A are dependent
on network B for control information

To adequately model most real-world systems, understanding the interdependence91

of networks and the effect of this interdependence on the structural and functional92

behavior of the coupled system is crucial. Introducing coupling between networks is93

analogous to the introduction of interactions between particles in statistical physics,94

which allowed physicists to understand the cooperative behavior of such rich phe-95

nomena as phase transitions. Surprisingly, preliminary results on mathematical mod-96

els [43, 44] show that analyzing complex systems as a network of coupled networks97

may alter the basic assumptions that network theory has relied on for single networks.98

Here we will review the main features of the theoretical framework of Network of99

Networks (NON), and present some real world applications.100

1.2 Overview101

In order to model interdependent networks, we consider two networks, A and B, in102

which the functionality of a node in network A is dependent upon the functionality103

of one or more nodes in network B (see Fig. 1.1), and vice-versa: the functionality104

of a node in network B is dependent upon the functionality of one or more nodes in105

network A. The networks can be interconnected in several ways. In the most general106

case we specify a number of links that arbitrarily connect pairs of nodes across107

networks A and B. The direction of a link specifies the dependency of the nodes it108

connects, i.e., link Ai → B j provides a critical resource from node Ai to node B j .109

If node Ai stops functioning due to attack or failure, node B j stops functioning as110

well but not vice-versa. Analogously, link Bi → A j provides a critical resource111

from node Bi to node A j .112

To study the robustness of interdependent networks systems, we begin by remov-113

ing a fraction 1 − p of network A nodes and all the A-edges connected to these114

nodes. As an outcome, all the nodes in network B that are connected to the removed115

A-nodes by A → B links are also removed since they depend on the removed nodes116

in network A. Their B edges are also removed. Further, the removed B nodes will117

cause the removal of additional nodes in network A which are connected to the re-118

moved B-nodes by B → A links. As a result, a cascade of failures that eliminates119

virtually all nodes in both networks can occur. As nodes and edges are removed, each120
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1 Network of Interdependent Networks 7

network breaks up into connected components (clusters). The clusters in network A121

(connected by A-edges) and the clusters in network B (connected by B-edges) are122

different since the networks are each connected differently. If one assumes that small123

clusters (whose size is below certain threshold) become non-functional, this may124

invoke a recursive process of failures that we now formally describe.125

Our insight based on percolation theory is that when the network is fragmented the126

nodes belonging to the giant component connecting a finite fraction of the network127

are still functional, but the nodes that are part of the remaining small clusters become128

non-functional. Thus in interdependent networks only the giant mutually-connected129

cluster is of interest. Unlike clusters in regular percolation whose size distribution130

is a power law with a p-dependent cutoff, at the final stage of the cascading failure131

process just described only a large number of small mutual clusters and one giant132

mutual cluster are evident. This is the case because the probability that two nodes that133

are connected by an A-link and their corresponding two nodes are also connected134

by a B-link scales as 1/NB, where NB is the number of nodes in network B. So135

the centrality of the giant mutually-connected cluster emerges naturally and the136

mutual giant component plays a prominent role in the functioning of interdependent137

networks. When it exists, the networks preserve their functionality, and when it does138

not exist, the networks split into fragments so small they cannot function on their139

own.140

We ask three questions: What is the critical p = pc below which the size of any141

mutual cluster constitutes an infinitesimal fraction of the network, i.e., no mutual142

giant component can exist? What is the fraction of nodes P∞(p) in the mutual giant143

component at a given p? How do the cascade failures at each step damage the giant144

functional component?145

Note that the problem of interacting networks is complex and may be strongly146

affected by variants in the model, in particular by how networks and dependency147

links are characterized. In the following section we describe several of these model148

variants.149

1.3 Theory of Interdependent Networks150

In order to better understand how present-day crucially-important infrastructures151

interact, Buldyrev et al. [43] recently developed a mathematical framework to study152

percolation in a system of two coupled interdependent networks subject to cascading153

failure. Their analytical framework is based on a generating function formalism154

widely used in studies of single-network percolation and single-network structure155

[40, 43, 45]. Using the framework to study interdependent networks, we can follow156

the dynamics of the cascading failures as well as derive analytic solutions for the157

final steady state. Buldyrev et al. [43] found that interdependent networks were158

significantly more vulnerable than their noninteracting counterparts. The failure of159

even a small number of elements within a single network in a system may trigger a160

catastrophic cascade of events that propagates across the global connectivity. For a161
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8 D. Y. Kenett et al.

Fig. 1.2 Schematic demon-
stration of first and second
order percolation transitions.
In the second order case, the
giant component is continu-
ously approaching zero at the
percolation threshold p = pc.
In the first order case the giant
component approaches zero
discontinuously. After [46]

pp
c p

c

P∞

First order 

Second order 

fully coupled case in which each node in one network depends on a functioning node162

in other networks and vice versa, Buldyrev et al. [43] found a first-order discontinuous163

phase transition, which differs significantly from the second-order continuous phase164

transition found in single isolated networks (Fig. 1.2). This interesting phenomenon165

is caused by the presence of two types of links: (i) connectivity links within each166

network and (ii) dependency links between networks. Parshani et al. [44] showed167

that, when the dependency coupling between the networks is reduced, at a critical168

coupling strength the percolation transition becomes second-order.169

We now present the theoretical methodology used to investigate networks of170

interdependent networks (see Ref. [46]), and provide examples from different classes171

of networks.172

1.3.1 Generating Functions for a Single Network173

We begin by describing the generating function formalism for a single network that174

is also useful when studying interdependent networks. Here we assume that all Ni175

nodes in network i are randomly assigned a degree k from a probability distribution176

Pi (k), and are randomly connected, the only constraint being that the node with177

degree k has exactly k links [47]. We define the generating function of the degree178

distribution179

Gi (x) ≡
∞∑

k=0

Pi (k)xk, (1.1)180

where x is an arbitrary complex variable. The average degree of network i is181

〈k〉i =
∞∑

k=0

k Pi (k) = ∂Gi

∂x

∣∣∣∣
x→1

= G ′
i (1). (1.2)182
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1 Network of Interdependent Networks 9

In the limit of infinitely large networks Ni → ∞, the random connection process183

can be modeled as a branching process in which an outgoing link of any node has a184

probability k Pi (k)/〈k〉i of being connected to a node with degree k, which in turn has185

k − 1 outgoing links. The generating function of this branching process is defined as186

Hi (x) ≡
∑∞

k=0 Pi (k)kxk−1

〈k〉i
= G ′

i (x)

G ′
i (1)

. (1.3)187

The probability fi that a randomly chosen outgoing link does not lead to an infinitely188

large giant component satisfies a recursive relation fi = Hi ( fi ). Accordingly, the189

probability that a randomly chosen node does belong to a giant component is given190

by gi = Gi ( fi ). Once a fraction 1− p of nodes is randomly removed from a network,191

its generating function remains the same, but must be computed from a new argument192

z ≡ px + 1 − p [45]. Thus P∞,i , the fraction of nodes that belongs to the giant193

component, is given by [45],194

P∞,i = pgi (p), (1.4)195

where196

gi (p) = 1 − Gi [p fi (p) + 1 − p], (1.5)197

and fi (p) satisfies198

fi (p) = Hi [p fi (p) + 1 − p]. (1.6)199

As p decreases, the nontrivial solution fi < 1 of Eq. (1.6) gradually approaches the200

trivial solution fi = 1. Accordingly, P∞,i —selected as an order parameter of the201

transition—gradually approaches zero as in the second-order phase transition and202

becomes zero when two solutions of Eq. (1.6) coincide at p = pc. At this point the203

straight line corresponding to the right hand side of Eq. (1.6) becomes tangent to the204

curve corresponding to its left hand side, yielding205

pc = 1/H ′
i (1). (1.7)206

For example, for Erdős-Rényi (ER) networks [48–50], characterized by the Poisson207

degree distribution,208

Gi (x) = Hi (x) = exp[〈k〉i (x − 1)], (1.8)209

210

gi (p) = 1 − fi (p), (1.9)211

212

fi (p) = exp{p〈k〉i [ fi (p) − 1]}, (1.10)213

and214

pc = 1
〈k〉i

. (1.11)215
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10 D. Y. Kenett et al.

Finally, using Eqs. (1.4), (1.9), and (1.10), one obtains a direct equation for P∞,i216

P∞,i = p[1 − exp(−〈k〉i P∞,i )]. (1.12)217

1.3.2 Two Networks with One-to-One Correspondence218

of Interdependent Nodes219

To initiate an investigation of the multitude of problems associated with interacting220

networks, Buldyrev et al. [43] restricted themselves to the case of two randomly221

and independently connected networks with the same number of nodes, specified222

by their degree distributions PA(k) and PB(k). They also assumed every node in223

the two networks to have one B → A link and one A → B link connecting the224

same pair of nodes, i.e., the dependencies between networks A and B establish a225

isomorphism between them that allows us to assume that nodes in A and B coincide226

(e.g., are at the same corresponding geographic location—if a node in network A227

fails, the corresponding node in network B also fails, and vice versa). We also assume,228

however, that the A-edges and B-edges in the two networks are independent.229

Unlike the percolation transition in a single network, the mutual percolation tran-230

sition in this model is a first-order phase transition at which the order parameter (i.e.,231

the fraction of nodes in the mutual giant component) abruptly drops from a finite232

value at pc +ε to zero at pc −ε. Here ε is a small number that vanishes as the size of233

network increases N → ∞. In this range of p, a removal of single critical node may234

lead to a complete collapse of a seemingly robust network. The size of the largest235

component drops from N P∞ to a small value, which rarely exceeds 2.236

Note that the value of pc is significantly larger than in single-network percolation.237

In two interdependent ER networks, for example, pc = 2.4554/〈k〉, while in a single238

network, pc = 1/〈k〉. For two interdependent scale-free networks with a power-law239

degree distribution PA(k) ∼ k−λ, the mutual percolation threshold is pc > 0, even240

when 2 < λ ≤ 3, when the percolation threshold in a single network is zero.241

Note also that, in this new model, networks with a broader degree distribution are242

less robust against random attack than networks having a narrower degree distribution243

but the same average degree. This behavior also differs from that found in single244

networks. To understand this we note that (i) in interdependent networks, nodes245

are randomly connected—high degree nodes in one network can connect to low246

degree nodes in other networks, and (ii) at each time step, failing nodes in one247

network cause their corresponding nodes (and their edges) in the other network248

to also fail. Thus although hubs in single networks strongly contribute to network249

robustness, in interdependent networks they are vulnerable to cascading failure. If a250

network has a fixed average degree, a broader distribution means more nodes with251

low degree to balance the high degree nodes. Since the low degree nodes are more252

easily disconnected the advantage of a broad distribution in single networks becomes253

a disadvantage in interdependent networks.254
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1 Network of Interdependent Networks 11

All of these features are investigated analytically in Ref. [51], a study that assumes255

that the degrees of the interdependent nodes exactly coincide, but that both networks256

are randomly and independently connected by their connectivity links. Reference [51]257

shows that, for two networks with the same degree distribution PA(k) of connectivity258

links and random dependency links, studied in Ref. [43], the fraction of nodes in the259

giant component is260

P∞ = p[1 − GA(z)]2, (1.13)261

where 0 ≤ z ≤ 1 is a new variable z = 1 − p + p fA satisfying equation262

[1 − HA(z)][1 − GA(z)]
1 − z

= 1
p
. (1.14)263

while in case of coinciding degrees of interdependent nodes Eqs. (1.13) and (1.14)264

become respectively265

P∞ = p[1 − 2GA(z) + GA(z2)] (1.15)266

and267

1 − (1 + z)HA(z) + t HA(z2)

1 − z
= 1

p
. (1.16)268

The left-hand side of Eq. (1.14) always has a single maximum at 0 < zc < 0, and269

the solution abruptly disappear if p becomes less than pc, the inverse left hand side270

at zc. This situation corresponds to the first order transition. In contrast, the left-hand271

side of Eq. (1.16) has a maximum only if H ′
A(1) converges, which corresponds to272

λ > 3 when there is a power law tail in the degree distribution. In this case, pc is the273

inverse maximum value of the left-hand side of Eq. (1.16), e.g., for ER networks,274

pc = 1.7065/〈k〉. When λ < 3, H ′(z) diverges for z → 1 and pc = 0, P∞ = 0275

as in the case of regular percolation on a single network, for which Eqs. (1.4), (1.5),276

and (1.6) give277

P∞ = p[1 − GA(z)], (1.17)278

and279

1 − HA(z)
1 − z

= 1
p
. (1.18)280

Thus for networks with coinciding degrees of the interdependent nodes for λ < 3,281

the transition becomes a second-order transition with pc = 0. In the marginal case282

of λ = 3, pc > 0, but the transition is second-order.283

From Eqs. (1.13)–(1.18) it follows that, if H ′
A(1) converges, the networks with284

coinciding degrees of interdependent nodes are still less robust than single networks,285

still undergo collapse via a first-order phase transition, but are always more robust286

than networks with uncorrelated degrees of interdependent nodes. If the average287

degree is fixed, the robustness of the networks with coinciding degrees of inter-288

dependent nodes increases as the degree distribution broadens in the same way as289
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12 D. Y. Kenett et al.

for single networks. Similar observations have been made in numerical studies of290

interdependent networks with correlated degrees of interdependent nodes [52]. In291

conclusion, the robustness of interdependent networks increases if the degrees of the292

interdependent nodes are correlated, i.e., if the hubs are more likely to depend on293

hubs than on low-degree nodes.294

1.3.3 Framework of Two Partially Interdependent Networks295

A generalization of the percolation theory for two fully interdependent networks296

was developed by Parshani et al. [44], who studied a more realistic case of a pair297

of partially-interdependent networks. Here both interacting networks have a certain298

fraction of completely autonomous nodes whose function does not directly depend299

on nodes in the other network. They found that when the fraction of autonomous300

nodes increases above a certain threshold, the collapse of the interdependent networks301

characterized by a first-order transition observed in Ref. [43] changes, at a critical302

coupling strength, to a continuous second-order transition as in classical percolation303

theory [31].304

We now describe in more detail the framework developed in [44]. This framework305

consists of two networks A and B with the number of nodes NA and NB, respectively.306

Within network A, the nodes are randomly connected by A edges with degree distri-307

bution PA(k), and the nodes in network B are randomly connected by B edges with308

degree distribution PB(k). In addition, a fraction qA of network A nodes depends on309

the nodes in network B and a fraction qB of network B nodes depends on the nodes in310

network A. We assume that a node from one network depends on no more than one311

node from the other network, and if Ai depends on B j , and B j depends on Ak , then312

k = i . The latter “no-feedback” condition (see Fig. 1.3) disallows configurations that313

can collapse without taking into account their internal connectivity [53]. Suppose314

that the initial removal of nodes from network A is a fraction 1 − p.315

We next present the formalism for the cascade process, step by step (see Fig. 1.4).316

The remaining fraction of network A nodes after an initial removal of nodes is317

ψ′
1 ≡ p. The initial removal of nodes disconnects some nodes from the giant318

component. The remaining functional part of network A thus contains a frac-319

tion ψ1 = ψ′
1gA(ψ′

1) of the network nodes, where gA(ψ′
1) is defined by Eqs.320

(1.5) and (1.6). Since a fraction qB of nodes from network B depends on nodes321

from network A, the number of nodes in network B that become nonfunctional is322

(1 − ψ1)qB = qB[1 − ψ′
1gA(ψ′

1)]. Accordingly, the remaining fraction of network323

B nodes is φ′
1 = 1 − qB[1 − ψ′

1gA(ψ′
1)], and the fraction of nodes in the giant324

component of network B is φ1 = φ′
1gB(φ′

1).325

Following this approach we construct the sequence, ψ′
t and φ′

t , of the remaining326

fraction of nodes at each stage of the cascade of failures. The general form is given by327
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(a)

(b)

Fig. 1.3 Description of differences between the (a) feedback condition and (b) no-feedback con-
dition. In the case (a), node A3 depends on node B2, and node B3 *= B2 depends on node A3, while
in case (b) this is forbidden. In case (a), when q = 1 both networks will collapse if one node is
removed from one network, which is far from being real. So in our model, we use the no-feedback
condition [case (b)]. The blue links between two networks show the dependency links and the
red links in each network show the connectivity links which enable each network to functional.
After [46]

ψ′
1 ≡ p,

φ′
1 = 1 − qB[1 − pgA(ψ′

1)],
ψ′

t = p[1 − qA(1 − gB(φ′
t−1))],

φ′
t = 1 − qB[1 − pgA(ψ′

t−1)].
(1.19)328

To determine the state of the system at the end of the cascade process we look at329

ψ′
τ and φ′

τ at the limit of τ → ∞. This limit must satisfy the equations ψ′
τ = ψ′

τ+1330

and φ′
τ = φ′

τ+1 since eventually the clusters stop fragmenting and the fractions of331

randomly removed nodes at step τ and τ+1 are equal. Denotingψ′
τ = x andφ′

τ = y,332

we arrive at the stationary state to a system of two equations with two unknowns,333

x = p{1 − qA[1 − gB(y)]},
y = 1 − qB[1 − gA(x)p]. (1.20)334

The giant components of networks A and B at the end of the cascade of failures335

are, respectively, P∞,A = ψ∞ = xgA(x) and P∞,B = φ∞ = ygB(y). The nu-336

merical results were obtained by iterating system (1.19), where gA(ψ′
t ) and gB(φ′

t )337

are computed using Eqs. (1.9) and (1.10). Figure 1.5 shows excellent agreement338

between simulations of cascading failures of two partially interdependent networks339

with N = 2 × 105 nodes and the numerical iterations of system (1.19). In the simu-340
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(a)

(b)

(c)

(d)

(e)

Fig. 1.4 Description of the dynamic process of cascading failures on two partially interdependent
networks, which can be generalized to n partially interdependent networks. In this figure, the black
nodes are the survival nodes, the yellow node represents the initially attacked node, the red nodes
are the nodes removed because they do not belong to the largest cluster, and the blue nodes are the
nodes removed because they depend on the failed nodes in the other network. In each stage, for one
network, we first remove the nodes that depend on the failed nodes in the other network or on the
initially attacked nodes. Next we remove the nodes which do not belong to the largest cluster of the
network. After [46]

lations, pc can be determined by the sharp peak in the average number of cascades341

(iterations), 〈τ 〉, before the network either stabilizes or collapses.342

An investigation of Eq. (1.20) can be illustrated graphically by two curves crossing343

in the (x, y) plane. For sufficiently large qA and qB the curves intersect at two points344

(0 < x0, 0 < y0) and (x0 < x1 < 1, y0 < y1 < 1). Only the second solution (x1, y1)345
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10 20 30 40 50
0

0.2

0.4

0.6

t

φ t

Theory
Simulation

Fig. 1.5 Cascade of failures in two partially interdependent ER networks. The giant component
φt for every iteration of the cascading failures is shown for the case of a first order phase transition
with the initial parameters p = 0.8505, a = b = 2.5, qA = 0.7 and qB = 0.8. In the simulations,
N = 2 × 105 with over 20 realizations. The gray lines represent different realizations. The squares
is the average over all realizations and the black line is the theory, Eq. (1.19). After [46]

has any physical meaning. As p decreases, the two solutions become closer to each346

other, remaining inside the unit square (0 < x < 1; 0 < y < 1), and at a certain347

threshold p = pc they coincide: 0 < x0 = x1 = xc < 1, 0 < y0 = y1 = yc < 1.348

For sufficiently large qA and qB, P∞,A and P∞,B as a function of p show a first349

order phase transition. As qB decreases, P∞,A as a function of p shows a second350

order phase transition. For the graphical representation of Eq. (1.20) and all possible351

solutions see Fig. 3 in Ref. [44].352

In a recent study [32, 54], it was shown that a pair of interdependent networks can353

be designed to be more robust by choosing the autonomous nodes to be high degree354

nodes. This choice mitigates the probability of catastrophic cascading failure.355

1.3.4 Framework for a Network of Interdependent Networks356

In many real systems there are more than two interdependent networks, and di-357

verse infrastructures—water and food supply networks, communications networks,358

fuel networks, financial transaction networks, or power station networks—can be359

coupled together [55]. Understanding the way system robustness is affected by such360

interdependencies is one of the major challenges when designing resilient infrastruc-361

tures.362

Here we review the generalization of the theory of a pair of interdependent net-363

works [43, 52] to a system of n interacting networks [56], which can be graphically364

represented (see Fig. 1.6) as a network of networks (NON). We review an exact ana-365

lytical approach for percolation of an NON system composed of n fully or partially366

coupled randomly interdependent networks. The approach is based on analyzing the367

dynamical process of the cascading failures. The results generalize the known results368

for percolation of a single network (n = 1) and the n = 2 result found in [43, 44], and369
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Fig. 1.6 Schematic representation of a network of networks. Circles represent interdependent
networks, and the arrows connect the partially interdependent pairs. For example, a fraction of q3i
of nodes in network i depend on the nodes in network 3. The networks which are not connected by
the dependency links do not have nodes that directly depend on one another. After [46]

show that while for n = 1 the percolation transition is a second-order transition, for370

n > 1 cascading failures occur and the transition becomes first-order. Our results for371

n interdependent networks suggest that the classical percolation theory extensively372

studied in physics and mathematics is a limiting case of n = 1 of a general theory373

of percolation in NON. As we will discuss here, this general theory has many novel374

features that are not present in classical percolation theory.375

In our generalization, each node in the NON is a network itself and each link376

represents a fully or partially dependent pair of networks. We assume that each377

network i (i = 1, 2, ..., n) of the NON consists of Ni nodes linked together by378

connectivity links. Two networks i and j form a partially dependent pair if a certain379

fraction q ji > 0 of nodes of network i directly depends on nodes of network j , i.e.,380

they cannot function if the nodes in network j on which they depend do not function.381

Dependent pairs are connected by unidirectional dependency links pointing from382

network j to network i . This convention indicates that nodes in network i get a383

crucial commodity from nodes in network j , e.g., electric power if network j is a384

power grid.385

We assume that after an attack or failure only a fraction of nodes pi in each network386

i will remain. We also assume that only nodes that belong to a giant connected387

component of each network i will remain functional. This assumption helps explain388

the cascade of failures: nodes in network i that do not belong to its giant component389

fail, causing failures of nodes in other networks that depend on the failing nodes of390

network i . The failure of these nodes causes the direct failure of dependency nodes391

in other networks, failures of isolated nodes in them, and further failure of nodes in392

network i and so on. Our goal is to find the fraction of nodes P∞,i of each network393

that remain functional at the end of the cascade of failures as a function of all fractions394

pi and all fractions qi j . All networks in the NON are randomly connected networks395

characterized by a degree distribution of links Pi (k), where k is a degree of a node396

in network i . We further assume that each node a in network i may depend with397

probability q ji on only one node b in network j with no feed-back condition.398
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To study different models of cascading failures, we vary the survival time of399

the dependent nodes after the failure of the nodes in other networks on which they400

depend, and the survival time of the disconnected nodes. We conclude that the final401

state of the networks does not depend on these details but can be described by a402

system of equations somewhat analogous to the Kirchhoff equations for a resistor403

network. This system of equations has n unknowns xi . These represent the fraction404

of nodes that survive in network i after the nodes that fail in the initial attack are405

removed and the nodes depending on the failed nodes in other networks at the end of406

cascading failure are also removed, but without taking into account any further node407

failure due to the internal connectivity of the network. The final giant component of408

each network is P∞,i = xi gi (xi ), where gi (xi ) is the fraction of the remaining nodes409

of network i that belongs to its giant component given by Eq. (1.5).410

The unknowns xi satisfy the system of n equations,411

xi = pi

K∏

j=1

[q ji y ji g j (x j ) − q ji + 1], (1.21)412

where the product is taken over the K networks interlinked with network i by partial413

dependency links (see Fig. 1.6) and414

yi j = xi

p j q ji y ji g j (x j ) − q ji + 1
, (1.22)415

is the fraction of nodes in network j that survives after the damage from all the net-416

works connected to network j except network i is taken into account. The damage417

from network i must be excluded due to the no-feedback condition. In the absence418

of the no-feedback condition, Eq. (1.21) becomes much simpler since y ji = x j .419

Equation (1.21) is valid for any case of interdependent NON, while Eq. (1.22) rep-420

resents the no-feedback condition.421

The most general case of interdependency links was studied by Shao et al. [53].422

They assumed that a node in network i is connected by s supply links to s nodes423

in network j from which it gets a crucial commodity. If s = ∞, the node does not424

depend on nodes in network j and can function without receiving any supply from425

them. The generating function of the degree distribution Pi j (s) of the supply links426

G ji (x) = ∑∞
i=0 P ji (s)xs does not include the term P ji (∞) = 1 − q ji , and hence427

G ji (1) = q ji ≤ 1. It is also assumed that nodes with s < ∞ can function only if they428

are connected to at least one functional node in network j . In this case, Eq. (1.21)429

must be changed to430

xi = pi

K∏

j=1

{1 − G ji [1 − x j g j (x j )}. (1.23)431

When all dependent nodes have exactly one supply link, Gi j (x) = xqi j and Eq. (1.23)432

becomes433
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xi = pi

K∏

j=1

[1 − q ji + q ji x j g j (x j )], (1.24)434

analogous to Eq. (1.21) without the no-feedback condition.435

1.3.5 Examples of Classes of Network of Networks436

Finally, we present four examples that can be explicitly solved analytically: (i) a437

tree-like ER NON fully dependent, (ii) a tree-like random regular (RR) NON fully438

dependent, (iii) a loop-like ER NON partially dependent, and (iv) an RR network439

of partially dependent ER networks. All cases represent different generalizations of440

percolation theory for a single network.441

1.3.5.1 Tree-Like NON of ER Networks442

We solve explicitly the case of a tree-like NON (see Fig. 1.7) formed by n ER [48–50]443

networks with average degrees k1, k2, ...ki , ..., kn , p1 = p, pi = 1 for i *= 1 and444

qi j = 1 (fully interdependent). Using Eqs. (1.21) and (1.22) for xi and taking into445

account Eqs. (1.8), (1.9) and (1.10), we find that446

fi = exp



−pki

n∏

j=1

(1 − f j )



 , i = 1, 2, ..., n. (1.25)447

These equations can be solved analytically [56]. They have only a trivial solution448

( fi = 1) if p < pc, where pc is the mutual percolation threshold. When the n449

networks have the same average degree k, ki = k (i = 1, 2, ..., n), we obtain from450

Eq. (1.25) that fc ≡ fi (pc) satisfies451

fc = exp
[

fc − 1
n fc

]
. (1.26)452

where the solution can be expressed in terms of the Lambert function W−(x), fc =453

−[nW−(− 1
n e− 1

n )]−1, where W−(x) is the most negative of the two real roots of the454

Lambert equation exp[W (x)]W (x) = x for x < 0.455

Once fc is known, we can obtain pc and the giant component at pc P∞,n ≡ P∞456

pc = [nk fc(1 − fc)
(n−1)]−1,

P∞(pc) = 1− fc
nk fc

.
(1.27)457
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Fig. 1.7 Three types of loopless networks of networks composed of five coupled networks. All
have same percolation threshold and same giant component. The dark node is the origin network
on which failures initially occur. After [46]

Equation (1.27) generalizes known results for n = 1, 2. For n = 1, we obtain the458

known result pc = 1/k, Eq. (1.11), of an ER network [48–50] and P∞(pc) = 0,459

which corresponds to a continuous second-order phase transition. Substituting n = 2460

in Eqs. (1.26) and (1.27) yields the exact results of [43].461

From Eqs. (1.21)–(1.22) we obtain an exact expression for the order parameter462

P∞(pc), the size of the mutual giant component for all p, k, and n values,463

P∞ = p[1 − exp(−k P∞)]n . (1.28)464

Solutions of Eq. (1.28) are shown in Fig. 1.8a for several values of n. Results are465

in excellent agreement with simulations. The special case n = 1 is the known ER466

second-order percolation law, Eq. (1.12), for a single network [48–50]. In contrast,467

for any n > 1 the solution of (1.28) yields a first-order percolation transition, i.e., a468

discontinuity of P∞ at pc.469

To analyze pc as a function of n for different k values, we find fc from Eq. (1.26),470

substitute it into Eq. (1.27), and obtain pc. Figure 1.8 shows that the NON becomes471

more vulnerable with increasing n or decreasing k (pc increases when n increases472

or k decreases). Furthermore, when n is fixed and k is smaller than a critical number473

kmin(n), pc ≥ 1, which means that when k < kmin(n) the NON will collapse even if474

a single node fails. The minimum average degree kmin as a function of the number475

of networks is476

kmin(n) = [n fc(1 − fc)
(n−1)]−1. (1.29)477

Equations (1.25)–(1.29) are valid for all tree-like structures such as those shown in478

Fig.1.7. Note that Eq. (1.29) together with Eq. (1.26) yield the value of kmin(1) = 1,479

reproducing the known ER result, that 〈k〉 = 1 is the minimum average degree480

needed to have a giant component. For n = 2, Eq. (1.29) also yields results obtained481

in [43], i.e., kmin = 2.4554.482
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1.3.5.2 Tree-Like NON of RR Networks483

We review the case of a tree-like network of interdependent RR networks [56, 57]484

in which the degree of each network is assumed to be the same k (Fig. 1.7). By485

introducing a new variable r = f
1

k−1 into Eqs. (1.21) and (1.22) and the generating486

function of RR network [56], the n equations reduce to a single equation487

r = (rk−1 − 1)p(1 − rk)n−1 + 1, (1.30)488

which can be solved graphically for any p. The critical case corresponds to the489

tangential condition leading to critical threshold pc and P∞490

pc = r − 1
(rk−1 − 1)(1 − rk)n−1 , (1.31)491

492

P∞ = p



1 −





p

1
n P

n−1
n∞





(

1 −
(

P∞
p

) 1
n
) k−1

k

− 1



 + 1






k



n

. (1.32)493

Comparing this with the results of a tree-like ER NON, we find that the robustness494

of n coupled RR networks of degree k is significantly higher than the n interdependent495

ER networks of average degree k. Although for an ER NON there exists a critical496

minimum average degree k = kmin that increases with n below which the system497

collapses, there is no such analogous kmin for a RR NON system. For any k > 2,498

the RR NON is stable, i.e., pc < 1. In general, this is the case for any network with499

any degree distribution such that Pi (0) = Pi (1) = 0, i.e., for a network without500

disconnected and singly-connected nodes [57].501

1.3.5.3 Loop-Like NON of ER Networks502

In the case of a loop-like NON (for dependencies in one direction) of n ER networks,503

all the links are unidirectional and the no-feedback condition is irrelevant. If the initial504

attack on each network is the same 1 − p, qi−1i = qn1 = q, and ki = k, using Eqs.505

(1.21) and (1.22) we find that P∞ satisfies506

P∞ = p(1 − e−k P∞)(q P∞ − q + 1). (1.33)507

Note that when q = 1 Eq. (1.33) has only a trivial solution P∞ = 0, but when q = 0508

it yields the known giant component of a single network, Eq. (1.12), as expected. We509

present numerical solutions of Eq. (1.33) for two values of q. Note that when q = 1510

and the structure is tree-like, Eqs. (1.28) and (1.32) depend on n, but for loop-like511

NON structures, Eq. (1.33) is independent of n.512
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1.3.5.4 NON of ER Networks513

Now we review results [46] for a NON in which each ER network is dependent on514

exactly m other ER networks. This system represents the case of RR network of515

ER networks. We assume that the initial attack on each network is 1 − p, and each516

partially dependent pair has the same q in both directions. The n equations of Eq.517

(1.21) are exactly the same due to symmetries, and hence pc and P∞ can be solved518

analytically,519

pc = 1
k(1 − q)m , (1.34)520

521

P∞ = p
2m (1 − e−k P∞)[1 − q +

√
(1 − q)2 + 4q P∞]m . (1.35)522

Again, as in the case of the loop-like structure, it is surprising that both the critical523

threshold and the giant component do not depend on the number of networks n, in524

contrast to tree-like NON, but only on the coupling q and on both degrees k and m.525

Numerical solutions of Eq. (1.35) are shown in Fig. 1.8. In the special case of m = 0,526

Eqs. (1.34) and (1.35) coincide with the known results for a single ER network, Eqs.527

(1.11) and (1.12) separately. It can be shown that when q < qc we have “weak528

coupling” represented by a second-order phase transition and when qc < q < qmax529

we have “strong coupling” and a first-order phase transition. When q > qmax the530

system become unstable due to the “very strong coupling” between the networks. In531

the last case, removal of a single node in one network may lead to the collapse of the532

NON.533

1.3.6 Resilience of Networks to Targeted Attacks534

In real-world scenarios, initial system failures seldom occur randomly and can be the535

result of targeted attacks on central nodes. Such attacks can also occur in less cen-536

tral nodes in an effort to circumvent central node defences, e.g., heavily-connected537

Internet hubs tend have more effective firewalls. Targeted attacks on high degree538

nodes [4, 6, 7, 13, 41] or high betweenness nodes [58] in single networks dramati-539

cally affect their robustness. To study the targeted attack problem on interdependent540

networks [13, 59–61] we assign a value Wα(ki ) to each node, which represents the541

probability that a node i with ki degree will be initially attacked and become inactive,542

i.e.,543

Wα(ki ) = kαi∑N
i=1 kαi

,−∞ < α < +∞. (1.36)544

When α > 0, higher-degree nodes are more vulnerable to intentional attack. When545

α < 0, higher-degree nodes are less vulnerable and have a have a lower probability546

of failure. The case α = 0, W0 = 1
N , represents the random removal of nodes [43].547
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Fig. 1.8 The fraction of nodes in the giant component P∞ as a function of p for three different
examples discussed in Sect. 3.4. (a) For a tree-like fully (q = 1) interdependent NON is shown P∞
as a function of p for k = 5 and several values of n. The results obtained using Eq. (1.28). Note that
increasing n from n = 2 yields a first order transition. (b) For a loop-like NON, P∞ as a function
of p for k = 6 and two values of q. The results obtained using Eq. (1.33). Note that increasing q
yields a first order transition. (c) For an RR network of ER networks, P∞ as a function of p, for two
different values of m when q = 0.5. The results are obtained using Eq. (1.35) , and the number of
networks, n, can be any number with the condition that any network in the NON connects exactly to
m other networks. Note that changing m from 2 to m > 2 changes the transition from second order
to first order (for q = 0.5). Simulation results are in excellent agreement with theory. After [46]

In the interdependent networks model with networks A and B described in Ref.548

[43], a fraction 1 − p of the nodes from one network are removed with a probability549

Wα(ki ) [Eq. (1.36)]. The cascading failures are then the same as those described in550

Ref. [43]. To analytically solve the targeted attack problem we must find an equivalent551

network A′, such that the targeted attack problem on interdependent networks A and552

B can be solved as a random attack problem on interdependent networks A′ and B.553

We begin by finding the new degree distribution of network A after using Eq. (1.36)554

to remove a 1 − p fraction of nodes but before the links of the remaining nodes that555

connect to the removed nodes are removed. If Ap(k) is the number of nodes with556

degree k and Pp(k) the new degree distribution of the remaining fraction p of nodes557

in network A, then558
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Pp(k) = Ap(k)

pN
. (1.37)559

When another node is removed, Ap(k) changes as560

A(p−1/N )(k) = Ap(k) − Pp(k)kα

〈k(p)α〉 , (1.38)561

where 〈k(p)α〉 ≡ ∑
Pp(k)kα. In the limit of N → ∞, Eq. (1.38) can be presented562

in terms of a derivative of Ap(k) with respect to p,563

d Ap(k)

dp
= N

Pp(k)kα

〈k(p)α〉 . (1.39)564

Differentiating Eq. (1.37) with respect to p and using Eq. (1.39), we obtain565

− p
d Pp(k)

dp
= Pp(k) − Pp(k)kα

〈k(p)α〉 , (1.40)566

which is exact for N → ∞. In order to solve Eq. (1.40), we define a function567

Gα(x) ≡ ∑
k P(k)xkα , and substitute f ≡ G−1

α (p). We find by direct differentiation568

that [45]569

Pp(k) = P(k)
f kα

Gα( f )
= 1

p
P(k) f kα , (1.41)570

571

〈k(p)α〉 = f G ′
α( f )

Gα( f )
, (1.42)572

satisfy the Eq. (1.40). With this degree distribution, the generating function of the573

nodes left in network A before removing the links to the removed nodes is574

G Ab(x) ≡
∑

k

Pp(k)xk = 1
p

∑

k

P(k) f kαxk . (1.43)575

Because network A is randomly connected, the probability of a link emanating from576

a remaining node is equal to the ratio of the number of links emanating from the577

remaining nodes to the total number of links emanating from all the nodes of the578

original network,579

p̃ ≡ pN 〈k(p)〉
N 〈k〉 =

∑
k P(k)k f kα

∑
k P(k)k

, (1.44)580

where 〈k〉 is the average degree of the original network A, and 〈k(p)〉 is the average581

degree of remaining nodes before the links that are disconnected are removed. Re-582

moving the links that connect to the deleted nodes of a randomly connected network583

is equivalent to randomly removing a (1 − p̃) fraction of links of the remaining584

312219_1_En_1_Chapter ! TYPESET DISK LE ! CP Disp.:23/11/2013 Pages: 36 Layout: T1-Standard



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

24 D. Y. Kenett et al.

0 5 10
α

0

0.2

0.4

0.6

0.8

1

p c

SF,<k>=4,λ=2.8
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Fig. 1.9 Dependence of pc on α for SF single and interdependent networks with average degree
〈k〉 = 4 for targeted attacks described in Sect. 3.5. The lower cut-off of the degree is m = 2. The
horizontal lines represent the upper and lower limits of pc. The black dashed line represents pc for
SF free network. After [59]

nodes. We can show that the generating function of the remaining nodes after ran-585

dom removal of (1 − p̃) fraction of links is equal to the original distribution of the586

network with a new argument z = 1 − p̃ + x p̃. Thus the generating function of the587

new degree distribution of the nodes left in network A after their links to the removed588

nodes are also removed is589

G Ac(x) ≡ G Ab(1 − p̃ + p̃x). (1.45)590

The only difference in the cascading process under targeted attack from the case591

under random attack is in the first stage when network A is attacked. If we find a592

network A′ with generating function G̃ A0(x) such that after a random attack with593

a (1 − p) fraction of nodes removed the generating function of nodes left in A′ is594

the same as G Ac(x), then the targeted attack problem on interdependent networks595

A and B can be solved as a random attack problem on interdependent networks A′
596

and B. We find G̃ A0(x) by solving the equation G̃ A0(1 − p + px) = G Ac(x) and597

from, Eq. (1.45),598

G̃ A0(x) = G Ab(1 + p̃
p
(x − 1)). (1.46)599

This formalism allows us to map the problem of cascading node failure in interdepen-600

dent networks caused by an initial targeted attack to the problem of random attack.601

We note that the evolution of equations only depends on the generating function of602

network A, and not on any information concerning how the two networks interact603

with each other. Thus this approach can be applied to the study of other general604

interdependent network models.605

Finally we analyze the specific class of scale-free (SF) networks. Figure 1.9 shows606

the critical thresholds pc of SF networks. Note that pc in interdependent SF networks607
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is nonzero for the entire range ofα because failure of the least-connected nodes in one608

network may lead to failure of well-connected nodes in a second network, making609

interdependent networks significantly more difficult to protect than a single network.610

A significant role in the vulnerability to random attacks is also played by network611

assortativity [62].612

1.3.7 Interdependent Clustered Networks613

Clustering quantifies the propensity of two neighbors in the same vertex to also614

be neighbors of each other, forming triangle-shaped configurations in the network615

[1, 10, 63]. Unlike random networks in which there is little or no clustering, real-616

world networks exhibit significant clustering. Recent studies have shown that, for617

single isolated networks, both bond percolation and site percolation have percolation618

and epidemic thresholds that are higher than those in unclustered networks [64–69].619

Here we review a mathematical framework for understanding how the robustness of620

interdependent networks is affected by clustering within the network components.621

We extend the percolation method developed by Newman [64] for single clustered622

networks to coupled clustered networks. Huang et al. [61] found that interdepen-623

dent networks that exhibit significant clustering are more vulnerable to random node624

failure than networks with low significant clustering. They studied two networks, A625

and B, each having the same number of nodes N . The N nodes in A and B have626

bidirectional dependency links to each other, establishing a one-to-one correspon-627

dence. Thus the functioning of a node in network A depends on the functioning of the628

corresponding node in network B and vice versa. Each network is defined by a joint629

distribution Pst (generating function G0(x, y) = ∑∞
s,t=0 Pst xs yt ) that specifies the630

fraction of nodes connected to s single edges and t triangles [64]. The conventional631

degree of each node is thus k = s + 2t . The clustering coefficient c is632

c =
∑

st t Pst∑
k k(k − 1)P(k)/2

. (1.47)633

1.3.7.1 Percolation on Interdependent Clustered Networks634

To study how clustering within interdependent networks affects a system’s robust-635

ness, we apply the interdependent networks framework [43]. In interdependent net-636

works A and B, a fraction (1 − p) of nodes is first removed from network A. Then637

the size of the giant components of networks A and B in each cascading failure step638

is defined to be p1, p2, ..., pn , which are calculated iteratively639

pn = µn−1gA(µn−1), n is odd,
pn = µngB(µn), n is even,

(1.48)640
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where µ0 = p and µn are intermediate variables that satisfy641

µn = pgA(µn−1), n is odd,
µn = pgB(µn−1), n is even. (1.49)642

As interdependent networks A and B form a stable mutually-connected giant com-643

ponent, n → ∞ and µn = µn−2, the fraction of nodes left in the giant component is644

p∞. This system satisfies645

x = pgA(y),

y = pgB(x),
(1.50)646

where the two unknown variables x and y can be used to calculate p∞ = xgB(x) =647

ygA(y). Eliminating y from these equations, we obtain a single equation648

x = pgA[pgB(x)]. (1.51)649

The critical case (p = pc) emerges when both sides of this equation have equal650

derivatives,651

1 = p2 dgA

dx
[pgB(x)]dgB

dx
(x)|x=xc,p=pc , (1.52)652

which, together with Eq. (1.51), yields the solution for pc and the critical size of the653

giant mutually-connected component, p∞(pc) = xcgB(xc).654

Consider for example the case in which networks A and B have Poisson degree655

distributions P A
st and P B

st for both s and t :656

P A
st = e−µA−νA

µs
Aν

t
A

s!t ! ,657

P B
st = e−µB−νB

µs
Bν

t
B

s!t ! . (1.53)658
659

Using techniques in Ref. [64] it is possible to show that in this case x = p(1 − uA),660

y = p(1 − uB), where661

uA = vA = e[µA y+2y(1−y)µA](uA−1)+νA p2(v2
A−1),

uB = vB = e[µBx+2x(1−x)µB](uB−1)+νB p2(v2
B−1).

(1.54)662

If the two networks have the same clustering, µ ≡ µA = µB and ν ≡ νA = νB, p∞663

is then664

p∞ = p(1 − eν p2∞−(µ+2ν)p∞)2. (1.55)665

Here µ and ν are the average number of single links and triangles per node respec-666

tively.667

The giant component, p∞, for interdependent clustered networks can thus be668

obtained by solving Eq. (1.55). Note that when ν = 0 we obtain from Eq. (1.55) the669

312219_1_En_1_Chapter ! TYPESET DISK LE ! CP Disp.:23/11/2013 Pages: 36 Layout: T1-Standard



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

1 Network of Interdependent Networks 27

result obtained in Ref. [43] for random interdependent ER networks. Figure 1.10,670

using numerical simulation, compares the size of the giant component after n stages671

of cascading failure with the theoretical prediction of Eq. (1.48). When p = 0.7 and672

p = 0.64, which are not near the critical threshold (pc = 0.6609), the agreement with673

simulation is perfect. Below and near the critical threshold, the simulation initially674

agrees with the theoretical prediction but then deviates for large n due to the random675

fluctuations of structure in different realizations [43]. By solving Eq. (1.55), we have676

p∞ as a function of p in Fig. 1.10 for a given average degree and several values677

of clustering coefficients. The figure shows that the interdependent networks with678

higher clustering become less robust than the network with low clustering and the679

same average degree k, i.e., pc is a monotonically increasing function of c (see inset680

of Fig. 1.10).681

1.4 Application to Infrastructure682

In interacting networks, the failure of nodes in one network generally leads to the fail-683

ure of dependent nodes in other networks, which in turn may cause further damage684

to the first network, leading to cascading failures and catastrophic consequences.685

It is known, for example, that blackouts in various countries have been the re-686

sult of cascading failures between interdependent systems such as communication687

and power grid systems [71] (Fig. 1.11). Furthermore, different kinds of critical688

infrastructures are also coupled together, e.g., systems of water and food supply,689

communications, fuel, financial transactions, and power generation and transmis-690

sion (Fig. 1.11). Modern technology has produced infrastructures that are becoming691

increasingly interdependent, and understanding how robustness is affected by these692

interdependencies is one of the major challenges faced when designing resilient693

infrastructures [53, 55, 71, 72].694

Blackouts are a demonstration of the important role played by the dependencies695

between networks. For example, the 28 September 2003 blackout in Italy resulted in a696

widespread failure of the railway network, healthcare systems, and financial services697

and, in addition, severely influenced communication networks. The partial failure698

of the communication system in turn further impaired the power grid management699

system, thus producing a negative feedback on the power grid. This example empha-700

sizes how interdependence can significantly magnify the damage in an interacting701

network system [43, 44, 55, 71].702

Thus understanding the coupling and interdependencies of networks will enable703

us to design and implement future infrastructures that are more efficient and robust.704

1.5 Application to Finance and Economics705

Financial and economic networks are neither static nor independent of one another.706

As global economic convergence progresses, countries increasingly depend on each707
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Fig. 1.10 Behavior of interdependent networks with different clustering coefficients. a Size of
mutually connected giant component as a function of cascading failure steps n. Results are for
c = 0.1, p = 0.64 (below pc), p = 0.66 (at pc) and p = 0.7 (above pc). Lines represent
theory (Eqs. (1.48) and (1.49)) and dots are from simulations. Note that at pc there are large
fluctuations. b Size of giant component, p∞, in interdependent networks with both networks having
clustering via Poisson degree distributions of Eq. (1.53) and average degree 〈k〉 = µA + 2νA = 4,
as a function of p. Dashed lines are number of interactions (NOI) before cascading failure stops
obtained by simulation [70]. The star curve is for shuffled c = 0.2 network, which keeps the
same degree distribution but without clustering and without degree-degree correlation. Inset: Green
interdependent networks as a function of clustering coefficient c. Red dashed line represents critical
threshold of shuffled interdependent networks which originally has clustering coefficient c. The
shuffled networks have zero clustering and degree-degree correlation, but has the same degree
distribution as the original clustered networks. Symbols and dashed lines represent simulation,
solid curves represent theoretical results. After [61]

another through such links as trade relations, foreign direct investments, and flow of708

funds in international capital markets. Economic systems such as real estate markets,709

bank borrowing and lending operations, and foreign exchange trading are intercon-710

nected and constantly affect each other. As economic entities and financial markets711
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Fig. 1.11 Left: Power grid and Internet dependence in Italy. Analysis of this system can explain the
cascade failure that led to the 2003 blackout. Right: Inter-dependence of fundamental infrastructures.
A further example is a recent event in Cyprus (July 2011), where an explosion caused a failure of
the electrical power lines, which in turn caused the countries water supply to shut down, due to the
strong coupling between these two networks

become increasingly interconnected, a shock in a financial network can provoke712

significant cascading failures throughout the global economic system. Based on the713

success of complex networks in modeling interconnected systems, applying complex714

network theory to study economical systems has been given much attention [73–80].715

The strong connectivity in financial and economic networks allows catastrophic716

cascading node failure to occur whenever the system experiences a shock, especially717

if the shocked nodes are hubs or are highly central in the network [7, 59, 72, 81, 82].718

To thus minimize systemic risk, financial and economic networks should be designed719

to be robust to external shocks. AQ2720

In the wake of the recent global financial crisis, increased attention has been given721

to the study of the dynamics of economic systems and to systemic risk in particular.722

The widespread impact of the current EU sovereign debt crisis and the 2008 world723

financial crisis show that, as economic systems become increasingly interconnected,724

local exogenous or endogenous shocks can provoke global cascading system failure725

that is difficult to reverse and that can cripple the system for a prolonged period of726

time. Thus policy makers are compelled to create and implement safety measures727

that prevent cascading system failures or that soften their systemic impact.728

To study the systemic risk to financial institutions, we analyze a coupled (bipartite)729

bank-asset network in which a link between a bank and a bank asset exists when the730

bank has the asset on its balance sheet. Recently, Huang et al. [83] presented a731
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model that focuses on real estate assets to examine banking network dependencies732

on real estate markets. The model captures the effect of the 2008 real estate market733

failure on the US banking network. Between 2000 and 2007, 27 banks failed in734

the US, but between 2008 and early 2013 the number rose to over 470. The model735

proposes a cascading failure algorithm to describe the risk propagation process during736

crises. This methodology was empirically tested with balance sheet data from US737

commercial banks for the year 2007, and model predictions are compared with the738

actual failed banks in the US after 2007 as reported by the Federal Deposit Insurance739

Corporation (FDIC). The model identifies a significant portion of the actual failed740

banks, and the results suggest that this methodology could be useful for systemic741

risk stress testing for financial systems. The model also indicates that commercial742

rather than residential real estate markets were the major culprits for the failure of743

over 350 US commercial banks during the period 2008–2011.744

There are two main channels of risk contagion in the banking system, (i) di-745

rect interbank liability linkages between financial institutions and (ii) contagion via746

changes in bank asset values. The former, which has been given extensive empirical747

and theoretical study [84–88], focuses on the dynamics of loss propagation via the748

complex network of direct counterpart exposures following an initial default. The749

latter, based on bank financial statements and financial ratio analysis, has received750

scant attention. A financial shock that contributes to the bankruptcy of a bank in751

a complex network will cause the bank to sell its assets. If the financial market’s752

ability to absorb these sales is less than perfect, the market prices of the assets that753

the bankrupted bank sells will decrease. Other banks that own similar assets could754

also fail because of loss in asset value and increased inability to meet liability oblig-755

ations. This imposes further downward pressure on asset values and contributes to756

further asset devaluation in the market. Damage in the banking network thus con-757

tinues to spread, and the result is a cascading of risk propagation throughout the758

system [89, 90].759

Using this coupled bank-asset network model, we can test the influence of each760

particular asset or group of assets on the overall financial system. If the value of agri-761

cultural assets drop by 20 determine which banks are vulnerable to failure and offer762

policy suggestions, e.g., requiring mandatory reduction in exposure to agricultural763

loans or closely monitoring the exposed bank, to prevent such failure.764

The model shows that sharp transitions can occur in the coupled bank-asset system765

and that the network can switch between two distinct regions, stable and unstable,766

which means that the banking system can either survive and be healthy or collapse.767

Because it is important that policy makers keep the world economic system in the768

stable region, we suggest that our model for systemic risk propagation might also769

be applicable to other complex financial systems, e.g., to model how sovereign debt770

value deterioration affects the global banking system or how the depreciation or771

appreciation of certain currencies impact the world economy.772
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1.5.1 Cascading Failures in the US Banking System773

During the recent financial crisis, 371 US commercial banks failed between 1 January774

2008 and 1 July 2011. The Failed Bank List from the Federal Deposit Insurance775

Corporation (FBL-FDIC) records the names of failed banks and the dates of their776

failure. We use this list as an experimental benchmark for our model. The dataset used777

as input to the model is the US Commercial Banks Balance Sheet Data (CBBSD)778

from Wharton Research Data Services, which contains the amount of assets in each779

category that the US commercial banks have on their balance sheets.780

To build a sound bank-asset coupled system network and systemic risk cascad-781

ing failure model, it is important to study the properties of the failed banks and782

compare them with the properties of the banks that survive. Thus the asset portfo-783

lios of commercial banks containing asset categories such as commercial loans or784

residential mortgages are carefully examined. The banks are modeled according to785

how they construct their asset portfolios (see the upper panel of Fig. 1.12). For each786

bank, the CBBSD contains 13 different non-overlapping asset categories, e.g., bank787

i owns amounts Bi,0, Bi,1, ..., Bi,12 of each asset, respectively. The total asset value788

Bi and total liability value Li of a bank i are obtained from CBBSD dataset. The789

weight of each asset m in the overall asset portfolio of a bank i is then defined as790

wi,m ≡ Bi,m/Bi . From the perspective of the asset categories, we define the total791

market value of an asset m as Am ≡ ∑
i Bi,m . Thus the market share of bank i in792

asset m is si,m ≡ Bi,m/Am .793

Studying the properties of failed banks between 2008 and 2011 reveals that, for794

certain assets, asset weight distributions for all banks differ from the asset weight795

distributions for failed banks. Failed banks cluster in a region heavily weighted with796

construction and development loans and loans secured by nonfarm nonresidential797

properties while having fewer agricultural loans in their asset portfolios than the798

banks that survived. These results confirm the nature of the most recent financial799

crisis of 2008–2011 in which bank failures were largely caused by real estate-based800

loans, including loans for construction and land development and loans secured by801

nonfarm nonresidential properties [91]. In this kind of financial crisis, banks with802

greater agricultural loan assets are more financially robust [92]. Failed banks also803

tend to have lower equity-to-asset ratios, i.e., higher leverage ratios than the banks804

that survived during the financial crisis of 2008–2011 [93].805

A financial crisis usually starts with the failure of a economic bubble. With the806

failure of the dot-com bubble, the technology-heavy NASDAQ Composite index lost807

66 % of its value, plunging from 5048 in 10 March 2000 to 1720 in 2 April 2001.808

In our current model, the shock in the bank-asset coupled system came with the burst809

of the real estate bubble. The two categories of real estate assets most relevant to the810

failure of commercial banks during the 2008–2011 financial crisis were construc-811

tion and land development loans and loans secured by nonfarm and non-residential812

properties. Although it is widely believed that the financial crisis was caused by813

residential real estate assets, the coupled bank-asset network model does not find814

evidence that loans secured by 1–4 family residential properties were responsible for815
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Fig. 1.12 Bank-asset coupled network model with banks as one node type and assets as the other
node type. Link between a bank and an asset exists if the bank has the asset on its balance sheet.
Upper panel: illustration of bank-node and asset-node. Bi,m is the amount of asset m that bank i
owns. Thus, a bank i with total asset value Bi has wi,m fraction of its total asset value in asset m. si,m
is the fraction of asset m that the bank holds out. Lower panel: illustration of the cascading failure
process. The rectangles represent the assets and the circles represent the banks. From left to right,
initially, an asset suffers loss in value which causes all the related banks’ total assets to shrink. When
a bank’s remaining asset value is below certain threshold (e.g., the bank’s total liability), the bank
fails. Failure of the bank elicits disposal of bank assets which further affects the market value of the
assets. This adversely affects other banks that hold this asset and the total value of their assets may
drop below the threshold which may result in further bank failures. This cascading failure process
propagates back and forth between banks and assets until no more banks fail. After [83]

the commercial bank failures. This result is consistent with the conclusion of Ref.816

[91]: that the cause of commercial bank failure between 2008 and 2011 were com-817

mercial real estate-based loans rather than residential mortgages. For more details818

regarding the coupled bank-asset model see Ref. [83].819

1.6 Summary and Outlook820

In summary, this paper presents the recently-introduced mathematical framework821

of a Network of Networks (NON). In interacting networks, when a node in one822

network fails it usually causes dependent nodes in other networks to fail which,823

in turn, may cause further damage in the first network and result in a cascade of824

failures with catastrophic consequences. Our analytical framework enables us to fol-825
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low the dynamic process of the cascading failures step-by-step and to derive steady826

state solutions. Interdependent networks appear in all aspects of life, nature, and827

technology. Examples include (i) transportation systems such as railway networks,828

airline networks, and other transportation systems [52, 94]; (ii) the human body as829

studied by physiology, including such examples of interdependent NON systems830

as the cardiovascular system, the respiratory system, the brain neuron system, and831

the nervous system [95]); (iii) protein function as studied by biology, treating pro-832

tein interaction—the many proteins involved in numerous functions—as a system833

of interacting networks; (iv) the interdependent networks of banks, insurance com-834

panies, and business firms as studied by economics; (v) species interactions and the835

robustness of interaction networks to species loss as studied by ecology, in which836

it is is essential to understand the effects of species decline and extinction [96];837

and (vi) the topology of statistical relationships between distinct climatologically838

variables across the world as studied by climatology [97].839

Thus far only a few real-world interdependent systems have been thoroughly an-840

alyzed [52, 94]. We expect our work to provide insights leading further analysis of841

real data on interdependent networks. The benchmark models presented here can be842

used to study the structural, functional, and robustness properties of interdependent843

networks. Because in real-world NONs individual networks are not randomly con-844

nected and their interdependent nodes are not selected at random, it is crucial that845

we understand the many types of correlation that exist in real-world systems and that846

we further develop the theoretical tools to take them into account. Further studies847

of interdependent networks should focus on (i) an analysis of real data from many848

different interdependent systems and (ii) the development of mathematical tools for849

studying real-world interdependent systems. Many real networks are embedded in850

space, and the spatial constraints strongly affect their properties [20, 98, 99]. There851

is a need to understand how these spatial constraints influence the robustness proper-852

ties of interdependent networks [94]. Other properties that influence the robustness853

of single networks, such as the dynamic nature of the configuration in which links854

or nodes appear and disappear and the directed nature of some links, as well as855

problems associated with degree-degree correlations and clustering, should be also856

addressed in future studies of coupled network systems. An additional critical issue857

is the improvement of the robustness of interdependent infrastructures. Our studies858

thus far shown that there are three methods of achieving this goal (i) by increasing859

the fraction of autonomous nodes [44], (ii) by designing dependency links such that860

they connect the nodes with similar degrees [43, 52], and (iii) by protecting the high-861

degree nodes against attack [32]. Achieving this goal will provide greater safety and862

stability in today’s socio-techno world.863

Networks dominate every aspect of present-day living. The world has become864

a global village that is steadily shrinking as the ways that human beings interact865

and connect multiply. Understanding these connections in terms of interdependent866

networks of networks will enable us to better design, organize, and maintain the867

future of our socio-techno-economic world.868
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