
Chapter 1
Network of Interdependent Networks: Overview
of Theory and Applications

Dror Y. Kenett, Jianxi Gao, Xuqing Huang, Shuai Shao, Irena Vodenska,
Sergey V. Buldyrev, Gerald Paul, H. Eugene Stanley and Shlomo Havlin

Abstract Complex networks appear in almost every aspect of science and tech-
nology. Previous work in network theory has focused primarily on analyzing single
networks that do not interact with other networks, despite the fact that many real-
world networks interact with and depend on each other. Very recently an analytical
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framework for studying the percolation properties of interacting networks has been
introduced. Here we review the analytical framework and the results for percola-
tion laws for a network of networks (NON) formed by n interdependent random
networks. The percolation properties of a network of networks differ greatly from
those of single isolated networks. In particular, although networks with broad degree
distributions, e.g., scale-free networks, are robust when analyzed as single networks,
they become vulnerable in a NON. Moreover, because the constituent networks of
a NON are connected by node dependencies, a NON is subject to cascading failure.
When there is strong interdependent coupling between networks, the percolation
transition is discontinuous (is a first-order transition), unlike the well-known con-
tinuous second-order transition in single isolated networks. We also review some
possible real-world applications of NON theory.

1.1 Introduction

The interdisciplinary field of network science has attracted great attention in recent
years [1–26]. This has taken place because an enormous amount of data regarding
social, economic, engineering, and biological systems has become available over
the past two decades as a result of the information and communication revolution
brought about by the rapid increase in computing power. The investigation and grow-
ing understanding of this extraordinary amount of data will enable us to make the
infrastructures we use in everyday life more efficient and more robust. The original
model of networks, random graph theory, developed in the 1960s by Erdős and Rényi
(ER), is based on the assumption that every pair of nodes is randomly connected with
the same probability (leading to a Poisson degree distribution). In parallel, lattice net-
works in which each node has the same number of links have been used in physics
to model physical systems. While graph theory was a well-established tool in the
mathematics and computer science literature, it could not adequately describe mod-
ern, real-world networks. Indeed, the pioneering observation by Barabási in 1999
[2], that many real networks do not follow the ER model but that organizational
principles naturally arise in most systems, led to an overwhelming accumulation of
supporting data, new models, and novel computational and analytical results, and
led to the emergence of a new science: complex networks.

Significant advances in understanding the structure and function of networks,
and mathematical models of networks have been achieved in the past few years.
These are now widely used to describe a broad range of complex systems, from
techno-social systems to interactions amongst proteins. A large number of new mea-
sures and methods have been developed to characterize network properties, includ-
ing measures of node clustering, network modularity, correlation between degrees
of neighboring nodes, measures of node importance, and methods for the identifi-
cation and extraction of community structures. These measures demonstrated that
many real networks, and in particular biological networks, contain network motifs—
small specific subnetworks—that occur repeatedly and provide information about
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functionality [8]. Dynamical processes, such as flow and electrical transport in het-
erogeneous networks, were shown to be significantly more efficient compared to ER
networks [27, 28].

Complex networks are usually non-homogeneous structures that exhibit a power-
law form in their degree (number of links per node) distribution. These systems
are called scale-free networks. Some examples of real-world scale-free networks
include the Internet [3], the WWW [4], social networks representing the relations
between individuals, infrastructure networks such as airlines [29, 30], networks in
biology, in particular networks of protein-protein interactions [31], gene regulation,
and biochemical pathways, and networks in physics, such as polymer networks or
the potential energy landscape network. The discovery of scale-free networks has led
to a re-evaluation of the basic properties of networks, such as their robustness, which
exhibit a character that differs drastically from that of ER networks. For example,
while homogeneous ER networks are vulnerable to random failures, heterogeneous
scale-free networks are extremely robust [4, 5]. An important property of these in-
frastructures is their stability, and it is thus important that we understand and quantify
their robustness in terms of node and link functionality. Percolation theory was intro-
duced to study network stability and to predict the critical percolation threshold [5].
The robustness of a network is usually (i) characterized by the value of the critical
threshold analyzed using percolation theory [32] or (ii) defined as the integrated size
of the largest connected cluster during the entire attack process [33]. The percolation
approach was also extremely useful in addressing other scenarios, such as efficient
attacks or immunization [6, 7, 14, 34, 35], for obtaining optimal path [36] as well as
for designing robust networks [33]. Network concepts were also useful in the analy-
sis and understanding of the spread of epidemics [37, 38], and the organizational
laws of social interactions, such as friendships [39, 40] or scientific collaborations
[41]. Moreira et al. investigated topologically-biased failure in scale-free networks
and controlled the robustness or fragility by fine-tuning the topological bias during
the failure process [42].

Because current methods deal almost exclusively with individual networks treated
as isolated systems, many challenges remain [43]. In most real-world systems an indi-
vidual network is one component within a much larger complex multi-level network
(is part of a network of networks). As technology has advanced, coupling between
networks has become increasingly strong. Node failures in one network will cause
the failure of dependent nodes in other network, and vice-versa [44]. This recursive
process can lead to a cascade of failures throughout the network of networks system.
The study of individual particles has enabled physicists to understand the properties
of a gas, but in order to understand and describe a liquid or a solid the interactions
between the particles also need to be understood. So also in network theory, the study
of isolated single networks brings extremely limited results—real-world noninter-
acting systems are extremely rare in both classical physics and network study. Most
real-world network systems continuously interact with other networks, especially
since modern technology has accelerated network interdependency.
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Fig. 1.1 Example of two interdependent networks. Nodes in network B (communications network)
are dependent on nodes in network A (power grid) for power; nodes in network A are dependent
on network B for control information

To adequately model most real-world systems, understanding the interdependence
of networks and the effect of this interdependence on the structural and functional
behavior of the coupled system is crucial. Introducing coupling between networks is
analogous to the introduction of interactions between particles in statistical physics,
which allowed physicists to understand the cooperative behavior of such rich phe-
nomena as phase transitions. Surprisingly, preliminary results on mathematical mod-
els [44, 45] show that analyzing complex systems as a network of coupled networks
may alter the basic assumptions that network theory has relied on for single networks.
Here we will review the main features of the theoretical framework of Network of
Networks (NON), and present some real world applications.

1.2 Overview

In order to model interdependent networks, we consider two networks, A and B, in
which the functionality of a node in network A is dependent upon the functionality
of one or more nodes in network B (see Fig. 1.1), and vice-versa: the functionality
of a node in network B is dependent upon the functionality of one or more nodes in
network A. The networks can be interconnected in several ways. In the most general
case we specify a number of links that arbitrarily connect pairs of nodes across
networks A and B. The direction of a link specifies the dependency of the nodes it
connects, i.e., link Ai → B j provides a critical resource from node Ai to node B j .
If node Ai stops functioning due to attack or failure, node B j stops functioning as
well but not vice-versa. Analogously, link Bi → A j provides a critical resource
from node Bi to node A j .

To study the robustness of interdependent networks systems, we begin by remov-
ing a fraction 1 − p of network A nodes and all the A-edges connected to these
nodes. As an outcome, all the nodes in network B that are connected to the removed
A-nodes by A → B links are also removed since they depend on the removed nodes
in network A. Their B edges are also removed. Further, the removed B nodes will
cause the removal of additional nodes in network A which are connected to the re-
moved B-nodes by B → A links. As a result, a cascade of failures that eliminates
virtually all nodes in both networks can occur. As nodes and edges are removed, each
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network breaks up into connected components (clusters). The clusters in network A
(connected by A-edges) and the clusters in network B (connected by B-edges) are
different since the networks are each connected differently. If one assumes that small
clusters (whose size is below certain threshold) become non-functional, this may
invoke a recursive process of failures that we now formally describe.

Our insight based on percolation theory is that when the network is fragmented the
nodes belonging to the giant component connecting a finite fraction of the network
are still functional, but the nodes that are part of the remaining small clusters become
non-functional. Thus in interdependent networks only the giant mutually-connected
cluster is of interest. Unlike clusters in regular percolation whose size distribution
is a power law with a p-dependent cutoff, at the final stage of the cascading failure
process just described only a large number of small mutual clusters and one giant
mutual cluster are evident. This is the case because the probability that two nodes that
are connected by an A-link and their corresponding two nodes are also connected
by a B-link scales as 1/NB, where NB is the number of nodes in network B. So
the centrality of the giant mutually-connected cluster emerges naturally and the
mutual giant component plays a prominent role in the functioning of interdependent
networks. When it exists, the networks preserve their functionality, and when it does
not exist, the networks split into fragments so small they cannot function on their
own.

We ask three questions: What is the critical p = pc below which the size of any
mutual cluster constitutes an infinitesimal fraction of the network, i.e., no mutual
giant component can exist? What is the fraction of nodes P∞(p) in the mutual giant
component at a given p? How do the cascade failures at each step damage the giant
functional component?

Note that the problem of interacting networks is complex and may be strongly
affected by variants in the model, in particular by how networks and dependency
links are characterized. In the following section we describe several of these model
variants.

1.3 Theory of Interdependent Networks

In order to better understand how present-day crucially-important infrastructures in-
teract, Buldyrev et al. [44] recently developed a mathematical framework to study
percolation in a system of two coupled interdependent networks subject to cascad-
ing failure. Their analytical framework is based on a generating function formalism
widely used in studies of single-network percolation and single-network structure
[41, 44, 46]. Using the framework to study interdependent networks, we can fol-
low the dynamics of the cascading failures as well as derive analytic solutions for
the final steady state. Buldyrev et al. [44] found that interdependent networks were
significantly more vulnerable than their noninteracting counterparts. The failure of
even a small number of elements within a single network in a system may trigger a
catastrophic cascade of events that propagates across the global connectivity. For a
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Fig. 1.2 Schematic demon-
stration of first and second
order percolation transitions.
In the second order case, the
giant component is continu-
ously approaching zero at the
percolation threshold p = pc.
In the first order case the giant
component approaches zero
discontinuously. After [47]
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fully coupled case in which each node in one network depends on a functioning node
in another network and vice versa, Buldyrev et al. [44] found a first-order discontin-
uous phase transition, which differs significantly from the second-order continuous
phase transition found in single isolated networks (Fig. 1.2). This interesting phe-
nomenon is caused by the presence of two types of links: (i) connectivity links
within each network and (ii) dependency links between networks. Parshani et al.
[45] showed that, when the dependency coupling between the networks is reduced,
at a critical coupling strength the percolation transition becomes second-order.

We now present the theoretical methodology used to investigate networks of
interdependent networks (see Ref. [47]), and provide examples from different classes
of networks.

1.3.1 Generating Functions for a Single Network

We begin by describing the generating function formalism for a single network that
is also useful when studying interdependent networks. Here we assume that all Ni

nodes in network i are randomly assigned a degree k from a probability distribution
Pi (k), and are randomly connected, the only constraint being that the node with
degree k has exactly k links [48]. We define the generating function of the degree
distribution

Gi (x) ≡
∞∑

k=0

Pi (k)x
k, (1.1)

where x is an arbitrary complex variable. The average degree of network i is

〈k〉i =
∞∑

k=0

k Pi (k) = ∂Gi

∂x

∣∣∣∣
x→1

= G ′
i (1). (1.2)
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In the limit of infinitely large networks Ni → ∞, the random connection process
can be modeled as a branching process in which an outgoing link of any node has a
probability k Pi (k)/〈k〉i of being connected to a node with degree k, which in turn has
k − 1 outgoing links. The generating function of this branching process is defined as

Hi (x) ≡
∑∞

k=0 Pi (k)kxk−1

〈k〉i
= G ′

i (x)

G ′
i (1)

. (1.3)

The probability fi that a randomly chosen outgoing link does not lead to an infinitely
large giant component satisfies a recursive relation fi = Hi ( fi ). Accordingly, the
probability that a randomly chosen node does belong to a giant component is given
by gi = Gi ( fi ). Once a fraction 1− p of nodes is randomly removed from a network,
its generating function remains the same, but must be computed from a new argument
z ≡ px + 1 − p [46]. Thus P∞,i , the fraction of nodes that belongs to the giant
component, is given by [46],

P∞,i = pgi (p), (1.4)

where
gi (p) = 1 − Gi [p fi (p) + 1 − p], (1.5)

and fi (p) satisfies
fi (p) = Hi [p fi (p) + 1 − p]. (1.6)

As p decreases, the nontrivial solution fi < 1 of Eq. (1.6) gradually approaches the
trivial solution fi = 1. Accordingly, P∞,i —selected as an order parameter of the
transition—gradually approaches zero as in the second-order phase transition and
becomes zero when two solutions of Eq. (1.6) coincide at p = pc. At this point the
straight line corresponding to the right hand side of Eq. (1.6) becomes tangent to the
curve corresponding to its left hand side, yielding

pc = 1/H ′
i (1). (1.7)

For example, for Erdős-Rényi (ER) networks [49–51], characterized by the Poisson
degree distribution,

Gi (x) = Hi (x) = exp[〈k〉i (x − 1)], (1.8)

gi (p) = 1 − fi (p), (1.9)

fi (p) = exp{p〈k〉i [ fi (p) − 1]}, (1.10)

and

pc = 1

〈k〉i
. (1.11)
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Finally, using Eqs. (1.4), (1.9), and (1.10), one obtains a direct equation for P∞,i

P∞,i = p[1 − exp(−〈k〉i P∞,i )]. (1.12)

1.3.2 Two Networks with One-to-One Correspondence
of Interdependent Nodes

To initiate an investigation of the multitude of problems associated with interacting
networks, Buldyrev et al. [44] restricted themselves to the case of two randomly
and independently connected networks with the same number of nodes, specified
by their degree distributions PA(k) and PB(k). They also assumed every node in
the two networks to have one B → A link and one A → B link connecting the
same pair of nodes, i.e., the dependencies between networks A and B establish a
isomorphism between them that allows us to assume that nodes in A and B coincide
(e.g., are at the same corresponding geographic location—if a node in network A
fails, the corresponding node in network B also fails, and vice versa). We also assume,
however, that the A-edges and B-edges in the two networks are independent.

Unlike the percolation transition in a single network, the mutual percolation tran-
sition in this model is a first-order phase transition at which the order parameter (i.e.,
the fraction of nodes in the mutual giant component) abruptly drops from a finite
value at pc +ε to zero at pc −ε. Here ε is a small number that vanishes as the size of
network increases N → ∞. In this range of p, a removal of single critical node may
lead to a complete collapse of a seemingly robust network. The size of the largest
component drops from N P∞ to a small value, which rarely exceeds 2.

Note that the value of pc is significantly larger than in single-network percolation.
In two interdependent ER networks, for example, pc = 2.4554/〈k〉, while in a single
network, pc = 1/〈k〉. For two interdependent scale-free networks with a power-law
degree distribution PA(k) ∼ k−λ, the mutual percolation threshold is pc > 0, even
for 2 < λ ≤ 3, when the percolation threshold in a single network is zero.

Note also that, in this new model, networks with a broader degree distribution are
less robust against random attack than networks having a narrower degree distribution
but the same average degree. This behavior also differs from that found in single
networks. To understand this we note that (i) in interdependent networks, nodes
are randomly connected—high degree nodes in one network can connect to low
degree nodes in other networks, and (ii) at each time step, failing nodes in one
network cause their corresponding nodes (and their edges) in the other network
to also fail. Thus although hubs in single networks strongly contribute to network
robustness, in interdependent networks they are vulnerable to cascading failure. If a
network has a fixed average degree, a broader distribution means more nodes with
low degree to balance the high degree nodes. Since the low degree nodes are more
easily disconnected the advantage of a broad distribution in single networks becomes
a disadvantage in interdependent networks.
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The following features have been investigated analytically in Ref. [52], a study
that assumes that the degrees of the interdependent nodes exactly coincide, but that
both networks are randomly and independently connected by their connectivity links.
Reference [52] shows that, for two networks with the same degree distribution PA(k)
of connectivity links and random dependency links, studied in Ref. [44], the fraction
of nodes in the giant component is

P∞ = p[1 − GA(z)]2, (1.13)

where 0 ≤ z ≤ 1 is a new variable z = 1 − p + p fA satisfying equation

[1 − HA(z)][1 − GA(z)]
1 − z

= 1

p
. (1.14)

while in case of coinciding degrees of interdependent nodes Eqs. (1.13) and (1.14)
become respectively

P∞ = p[1 − 2GA(z) + GA(z
2)] (1.15)

and
1 − (1 + z)HA(z) + zHA(z2)

1 − z
= 1

p
. (1.16)

The left-hand side of Eq. (1.14) always has a single maximum at 0 < zc < 0, and
the solution abruptly disappear if p becomes less than pc, the inverse left hand side
at zc. This situation corresponds to the first order transition. In contrast, the left-hand
side of Eq. (1.16) has a maximum only if H ′

A(1) converges, which corresponds to
λ > 3 when there is a power law tail in the degree distribution. In this case, pc is the
inverse maximum value of the left-hand side of Eq. (1.16), e.g., for ER networks,
pc = 1.7065/〈k〉. When λ < 3, H ′(z) diverges for z → 1 and pc = 0, P∞ = 0
as in the case of regular percolation on a single network, for which Eqs. (1.4), (1.5),
and (1.6) give

P∞ = p[1 − GA(z)], (1.17)

and
1 − HA(z)

1 − z
= 1

p
. (1.18)

Thus for networks with coinciding degrees of the interdependent nodes for λ < 3,
the transition becomes a second-order transition with pc = 0. In the marginal case
of λ = 3, pc > 0, but the transition is second-order.

From Eqs. (1.13)–(1.18) it follows that, if H ′
A(1) converges, the networks with

coinciding degrees of interdependent nodes are still less robust than single networks,
still undergo collapse via a first-order phase transition, but are always more robust
than networks with uncorrelated degrees of interdependent nodes. If the average
degree is fixed, the robustness of the networks with coinciding degrees of inter-
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dependent nodes increases as the degree distribution broadens in the same way as
for single networks. Similar observations have been made in numerical studies of
interdependent networks with correlated degrees of interdependent nodes [53]. In
conclusion, the robustness of interdependent networks increases if the degrees of the
interdependent nodes are correlated, i.e., if the hubs are more likely to depend on
hubs than on low-degree nodes. For the case of common connectivity links in both
networks see Dong et al. [54] and Cellai et al. [55].

1.3.3 Framework of Two Partially Interdependent Networks

A generalization of the percolation theory for two fully interdependent networks
was developed by Parshani et al. [45], who studied a more realistic case of a pair
of partially-interdependent networks. Here both interacting networks have a certain
fraction of completely autonomous nodes whose function does not directly depend
on nodes in the other network. They found that when the fraction of autonomous
nodes increases above a certain threshold, the collapse of the interdependent networks
characterized by a first-order transition observed in Ref. [44] changes, at a critical
coupling strength, to a continuous second-order transition as in classical percolation
theory [32].

We now describe in more detail the framework developed in [45]. This framework
consists of two networks A and B with the number of nodes NA and NB, respectively.
Within network A, the nodes are randomly connected by A edges with degree distri-
bution PA(k), and the nodes in network B are randomly connected by B edges with
degree distribution PB(k). In addition, a fraction qA of network A nodes depends on
the nodes in network B and a fraction qB of network B nodes depends on the nodes in
network A. We assume that a node from one network depends on no more than one
node from the other network, and if Ai depends on B j , and B j depends on Ak , then
k = i . The latter “no-feedback” condition (see Fig. 1.3) disallows configurations that
can collapse without taking into account their internal connectivity [56]. Suppose
that the initial removal of nodes from network A is a fraction 1 − p.

We next present the formalism for the cascade process, step by step (see Fig. 1.4).
The remaining fraction of network A nodes after an initial removal of nodes is
ψ′

1 ≡ p. The initial removal of nodes disconnects some nodes from the giant
component. The remaining functional part of network A thus contains a frac-
tion ψ1 = ψ′

1gA(ψ
′
1) of the network nodes, where gA(ψ

′
1) is defined by Eqs.

(1.5) and (1.6). Since a fraction qB of nodes from network B depends on nodes
from network A, the number of nodes in network B that become nonfunctional is
(1 − ψ1)qB = qB[1 − ψ′

1gA(ψ
′
1)]. Accordingly, the remaining fraction of network

B nodes is φ′
1 = 1 − qB[1 − ψ′

1gA(ψ
′
1)], and the fraction of nodes in the giant

component of network B is φ1 = φ′
1gB(φ

′
1).

Following this approach we construct the sequence, ψ′
t and φ′

t , of the remaining
fraction of nodes at each stage of the cascade of failures. The general form is given by
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(a)

(b)

Fig. 1.3 Description of differences between the (a) feedback condition and (b) no-feedback con-
dition. In the case (a), node A3 depends on node B2, and node B3 
= B2 depends on node A3, while
in case (b) this is forbidden. In case (a), when q = 1 both networks will collapse if one node is
removed from one network, which is far from being real. So in our model, we use the no-feedback
condition [case (b)]. The blue links between two networks show the dependency links and the red
links in each network show the connectivity links which enable each network to function. After [47]

ψ′
1 ≡ p,

φ′
1 = 1 − qB[1 − pgA(ψ

′
1)],

ψ′
t = p[1 − qA(1 − gB(φ

′
t−1))],

φ′
t = 1 − qB[1 − pgA(ψ

′
t−1)].

(1.19)

To determine the state of the system at the end of the cascade process we look at
ψ′

τ and φ′
τ at the limit of τ → ∞. This limit must satisfy the equations ψ′

τ = ψ′
τ+1

and φ′
τ = φ′

τ+1 since eventually the clusters stop fragmenting and the fractions of
randomly removed nodes at step τ and τ +1 are equal. Denoting ψ′

τ = x and φ′
τ = y,

we arrive at the stationary state to a system of two equations with two unknowns,

x = p{1 − qA[1 − gB(y)]},
y = 1 − qB[1 − gA(x)p]. (1.20)

The giant components of networks A and B at the end of the cascade of failures
are, respectively, P∞,A = ψ∞ = xgA(x) and P∞,B = φ∞ = ygB(y). The nu-
merical results were obtained by iterating system (1.19), where gA(ψ

′
t ) and gB(φ

′
t )

are computed using Eqs. (1.9) and (1.10). Figure 1.5 shows excellent agreement
between simulations of cascading failures of two partially interdependent networks
with N = 2 × 105 nodes and the numerical iterations of system (1.19). In the simu-
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(a)

(b)

(c)

(d)

(e)

Fig. 1.4 Description of the dynamic process of cascading failures on two partially interdependent
networks, which can be generalized to n partially interdependent networks. In this figure, the black
nodes are the survived nodes, the yellow node represents the initially attacked node, the red nodes
are the nodes removed because they do not belong to the largest cluster, and the blue nodes are the
nodes removed because they depend on the failed nodes in the other network. In each stage, for one
network, we first remove the nodes that depend on the failed nodes in the other network or on the
initially attacked nodes. Next we remove the nodes which do not belong to the largest cluster of the
network. After [47]

lations, pc can be determined by the sharp peak in the average number of cascades
(iterations), 〈τ 〉, before the network either stabilizes or collapses [15].

An investigation of Eq. (1.20) can be illustrated graphically by two curves crossing
in the (x, y) plane. For sufficiently large qA and qB the curves intersect at two points
(0 < x0, 0 < y0) and (x0 < x1 < 1, y0 < y1 < 1). Only the second solution (x1, y1)
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Fig. 1.5 Cascade of failures in two partially interdependent ER networks. The giant component
φt for every iteration of the cascading failures is shown for the case of a first order phase transition
with the initial parameters p = 0.8505, a = b = 2.5, qA = 0.7 and qB = 0.8. In the simulations,
N = 2 × 105 with over 20 realizations. The gray lines represent different realizations. The squares
is the average over all realizations and the black line is the theory, Eq. (1.19). After [47]

has any physical meaning. As p decreases, the two solutions become closer to each
other, remaining inside the unit square (0 < x < 1; 0 < y < 1), and at a certain
threshold p = pc they coincide: 0 < x0 = x1 = xc < 1, 0 < y0 = y1 = yc < 1.
For p < pc the curves no longer intersect and only the trivial solution gA(x) =
gB(y) = 0 remains. For sufficiently large qA and qB, P∞,A and P∞,B as a function
of p show a first order phase transition. As qB decreases, P∞,A as a function of p
shows a second order phase transition. For the graphical representation of Eq. (1.20)
and all possible solutions see Fig. 3 in Ref. [45].

In a recent study [33, 57], it was shown that a pair of interdependent networks can
be designed to be more robust by choosing the autonomous nodes to be high degree
nodes. This choice mitigates the probability of catastrophic cascading failure.

1.3.4 Framework for a Network of Interdependent Networks

In many real systems there are more than two interdependent networks, and di-
verse infrastructures—water and food supply networks, communications networks,
fuel networks, financial transaction networks, or power station networks—can be
coupled together [58]. Understanding the way system robustness is affected by such
interdependencies is one of the major challenges when designing resilient infrastruc-
tures.

Here we review the generalization of the theory of a pair of interdependent net-
works [44, 45] to a system of n interacting networks [59, 60], which can be graph-
ically represented (see Fig. 1.6) as a network of networks (NON). We review an
exact analytical approach for percolation of an NON system composed of n fully
or partially coupled randomly interdependent networks. The approach is based on
analyzing the dynamical process of the cascading failures. The results generalize the



16 D. Y. Kenett et al.

Fig. 1.6 Schematic representation of a network of networks. Circles represent interdependent
networks, and the arrows connect the partially interdependent pairs. For example, a fraction of q3i
of nodes in network i depend on the nodes in network 3. The networks which are not connected by
the dependency links do not have nodes that directly depend on one another. After [47]

known results for percolation of a single network (n = 1) and the n = 2 result found
in [44, 45], and show that while for n = 1 the percolation transition is a second-order
transition, for n > 1 cascading failures occur and the transition becomes first-order.
Our results for n interdependent networks suggest that the classical percolation the-
ory extensively studied in physics and mathematics is a limiting case of n = 1 of a
general theory of percolation in NON. As we will discuss here, this general theory
has many novel features that are not present in classical percolation theory.

In our generalization, each node in the NON is a network itself and each link
represents a fully or partially dependent pair of networks. We assume that each
network i (i = 1, 2, ..., n) of the NON consists of Ni nodes linked together by
connectivity links. Two networks i and j form a partially dependent pair if a certain
fraction q ji > 0 of nodes of network i directly depends on nodes of network j , i.e.,
they cannot function if the nodes in network j on which they depend do not function.
Dependent pairs are connected by unidirectional dependency links pointing from
network j to network i . This convention indicates that nodes in network i get a
crucial commodity from nodes in network j , e.g., electric power if network j is a
power grid.

We assume that after an attack or failure only a fraction of nodes pi in each network
i will remain. We also assume that only nodes that belong to a giant connected
component of each network i will remain functional. This assumption helps explain
the cascade of failures: nodes in network i that do not belong to its giant component
fail, causing failures of nodes in other networks that depend on the failing nodes of
network i . The failure of these nodes causes the direct failure of dependency nodes
in other networks, failures of isolated nodes in them, and further failure of nodes in
network i and so on. Our goal is to find the fraction of nodes P∞,i of each network
that remain functional at the end of the cascade of failures as a function of all fractions
pi and all fractions qi j . All networks in the NON are randomly connected networks
characterized by a degree distribution of links Pi (k), where k is a degree of a node
in network i . We further assume that each node a in network i may depend with
probability q ji on only one node b in network j with no feed-back condition.
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To study different models of cascading failures, we vary the survival time of
the dependent nodes after the failure of the nodes in other networks on which they
depend, and the survival time of the disconnected nodes. We conclude that the final
state of the networks does not depend on these details but can be described by a
system of equations somewhat analogous to the Kirchhoff equations for a resistor
network. This system of equations has n unknowns xi . These represent the fraction
of nodes that survive in network i after the nodes that fail in the initial attack are
removed and the nodes depending on the failed nodes in other networks at the end of
cascading failure are also removed, but without taking into account any further node
failure due to the internal connectivity of the network. The final giant component of
each network is P∞,i = xi gi (xi ), where gi (xi ) is the fraction of the remaining nodes
of network i that belongs to its giant component given by Eq. (1.5).

The unknowns xi satisfy the system of n equations, [53]

xi = pi

K∏

j=1

[q ji y ji g j (x j ) − q ji + 1], (1.21)

where the product is taken over the K networks interlinked with network i by partial
dependency links (see Fig. 1.6) and

yi j = xi

p j q ji y ji g j (x j ) − q ji + 1
, (1.22)

is the fraction of nodes in network j that survives after the damage from all the net-
works connected to network j except network i is taken into account. The damage
from network i must be excluded due to the no-feedback condition. In the absence
of the no-feedback condition, Eq. (1.21) becomes much simpler since y ji = x j .
Equation (1.21) is valid for any case of interdependent NON, while Eq. (1.22) rep-
resents the no-feedback condition.

A more the most general case of interdependency links was studied by Shao et al.
[56]. They assumed that a node in network i is connected by s supply links to s
nodes in network j from which it gets a crucial commodity. If s = ∞, the node does
not depend on nodes in network j and can function without receiving any supply
from them. The generating function of the degree distribution Pi j (s) of the supply
links G ji (x) = ∑∞

i=0 P ji (s)xs does not include the term P ji (∞) = 1 − q ji , and
hence G ji (1) = q ji ≤ 1. It is also assumed that nodes with s < ∞ can function
only if they are connected to at least one functional node in network j . In this case,
Eq. (1.21) must be changed to

xi = pi

K∏

j=1

{1 − G ji [1 − x j g j (x j )}. (1.23)

When all dependent nodes have exactly one supply link, Gi j (x) = xqi j and Eq. (1.23)
becomes
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xi = pi

K∏

j=1

[1 − q ji + q ji x j g j (x j )], (1.24)

analogous to Eq. (1.21) without the no-feedback condition.

1.3.5 Examples of Classes of Network of Networks

Finally, we present four examples that can be explicitly solved analytically: (i) a
tree-like ER NON fully dependent, (ii) a tree-like random regular (RR) NON fully
dependent, (iii) a loop-like ER NON partially dependent, and (iv) an RR network
of partially dependent ER networks. All cases represent different generalizations of
percolation theory for a single network.

1.3.5.1 Tree-Like NON of ER Networks

We solve explicitly the case of a tree-like NON (see Fig. 1.7) formed by n ER [49–51]
networks with average degrees k1, k2, ...ki , ..., kn , p1 = p, pi = 1 for i 
= 1 and
qi j = 1 (fully interdependent). Using Eqs. (1.21) and (1.22) for xi and taking into
account Eqs. (1.8), (1.9) and (1.10), we find that

fi = exp

⎡

⎣−pki

n∏

j=1

(1 − f j )

⎤

⎦ , i = 1, 2, ..., n. (1.25)

These equations can be solved analytically [59]. They have only a trivial solution
( fi = 1) if p < pc, where pc is the mutual percolation threshold. When the n
networks have the same average degree k, ki = k (i = 1, 2, ..., n), we obtain from
Eq. (1.25) that fc ≡ fi (pc) satisfies

fc = exp

[
fc − 1

n fc

]
. (1.26)

where the solution can be expressed in terms of the Lambert function W−(x), fc =
−[nW−(− 1

n e− 1
n )]−1, where W−(x) is the most negative of the two real roots of the

Lambert equation e[W (x)]W (x)=x for x < 0.
Once fc is known, we can obtain pc and the giant component at pc P∞,n ≡ P∞

pc = [nk fc(1 − fc)
(n−1)]−1,

P∞(pc) = 1− fc
nk fc

.
(1.27)
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Fig. 1.7 Three types of loopless networks of networks composed of five coupled networks. All
have same percolation threshold and same giant component. The dark node is the origin network
on which failures initially occur. After [47]

Equation (1.27) generalizes known results for n = 1, 2. For n = 1, we obtain the
known result pc = 1/k, Eq. (1.11), of an ER network [49–51] and P∞(pc) = 0,
which corresponds to a continuous second-order phase transition. Substituting n = 2
in Eqs. (1.26) and (1.27) yields the exact results of [44].

From Eqs. (1.21)–(1.22) we obtain an exact expression for the order parameter
P∞(pc), the size of the mutual giant component for all p, k, and n values,

P∞ = p[1 − exp(−k P∞)]n . (1.28)

Solutions of Eq. (1.28) are shown in Fig. 1.8a for several values of n. Results are
in excellent agreement with simulations. The special case n = 1 is the known ER
second-order percolation law, Eq. (1.12), for a single network [49–51]. In contrast,
for any n > 1 the solution of (1.28) yields a first-order percolation transition, i.e., a
discontinuity of P∞ at pc.

To analyze pc as a function of n for different k values, we find fc from Eq. (1.26),
substitute it into Eq. (1.27), and obtain pc. Figure 1.8 shows that the NON becomes
more vulnerable with increasing n or decreasing k (pc increases when n increases
or k decreases). Furthermore, when n is fixed and k is smaller than a critical number
kmin(n), pc ≥ 1, which means that when k < kmin(n) the NON will collapse even if
a single node fails. The minimum average degree kmin as a function of the number
of networks is

kmin(n) = [n fc(1 − fc)
(n−1)]−1. (1.29)

Equations (1.25)–(1.29) are valid for all tree-like structures such as those shown in
Fig.1.7. Note that Eq. (1.29) together with Eq. (1.26) yield the value of kmin(1) = 1,
reproducing the known ER result, that 〈k〉 = 1 is the minimum average degree
needed to have a giant component. For n = 2, Eq. (1.29) also yields results obtained
in [44], i.e., kmin = 2.4554.
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1.3.5.2 Tree-Like NON of RR Networks

We review the case of a tree-like network of interdependent RR networks [59, 61]
in which the degree of each network is assumed to be the same k (Fig. 1.7). By

introducing a new variable r = f
1

k−1 into Eqs. (1.21) and (1.22) and the generating
function of RR network [59], the n equations reduce to a single equation

r = (rk−1 − 1)p(1 − rk)n−1 + 1, (1.30)

which can be solved graphically for any p. The critical case corresponds to the
tangential condition leading to critical threshold pc and P∞

pc = r − 1

(rk−1 − 1)(1 − rk)n−1 , (1.31)

P∞ = p

⎛

⎜⎝1 −

⎧
⎪⎨

⎪⎩
p

1
n P

n−1
n∞

⎡

⎢⎣

(
1 −

(
P∞
p

) 1
n
) k−1

k

− 1

⎤

⎥⎦ + 1

⎫
⎪⎬

⎪⎭

k⎞

⎟⎠

n

. (1.32)

Comparing this with the results of a tree-like ER NON, we find that the robustness
of n coupled RR networks of degree k is significantly higher than the n interdependent
ER networks of average degree k. Although for an ER NON there exists a critical
minimum average degree k = kmin that increases with n below which the system
collapses, there is no such analogous kmin for a RR NON system. For any k > 2,
the RR NON is stable, i.e., pc < 1. In general, this is the case for any network with
any degree distribution such that Pi (0) = Pi (1) = 0, i.e., for a network without
disconnected and singly-connected nodes [61].

1.3.5.3 Loop-Like NON of ER Networks

In the case of a loop-like NON (for dependencies in one direction) of n ER networks,
all the links are unidirectional and the no-feedback condition is irrelevant. If the initial
attack on each network is the same 1 − p, qi−1i = qn1 = q, and ki = k, using Eqs.
(1.21) and (1.22) we find that P∞ satisfies

P∞ = p(1 − e−k P∞)(q P∞ − q + 1). (1.33)

Note that when q = 1 Eq. (1.33) has only a trivial solution P∞ = 0, but when q = 0
it yields the known giant component of a single network, Eq. (1.12), as expected.
We present in Fig. 1.8b numerical solutions of Eq. (1.33) for two values of q. Note
that when q = 1 and the structure is tree-like, Eqs. (1.28) and (1.32) depend on n,
but for loop-like NON structures, Eq. (1.33) is independent of n.
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1.3.5.4 RR Network of ER Networks

Now we review results [47] for a NON in which each ER network is dependent
on exactly m other ER networks. This system represents the case of RR network
of ER networks. We assume that the initial attack on each network is 1 − p, and
each partially dependent pair has the same q in both directions with no-feedback
condition. The n equations of Eq. (1.21) are exactly the same due to symmetries, and
hence pc and P∞ can be solved analytically,

pI I
c = 1

k(1 − q)m
, (1.34)

P∞ = p

2m
(1 − e−k P∞)[1 − q +

√
(1 − q)2 + 4q P∞]m . (1.35)

where pI I
c denotes the critical threshold for the second order phase transition.

Again, as in the case of the loop-like structure, it is surprising that both the critical
threshold and the giant component do not depend on the number of networks n, in
contrast to tree-like NON, but only on the coupling q and on both degrees k and m.
Numerical solutions of Eq. (1.35) are shown in Fig. 1.8. In the special case of m = 0,
Eqs. (1.34) and (1.35) coincide with the known results for a single ER network, Eqs.
(1.11) and (1.12) separately. It can be shown that when q < qc we have “weak cou-
pling” represented by a second-order phase transition and when qc < q < qmax we
have “strong coupling” and a first-order phase transition. When q > qmax the system
become unstable due to the “very strong coupling” between the networks. In the last
case, removal of a single node in one network may lead to the collapse of the NON.

1.3.6 Resilience of Networks to Targeted Attacks

In real-world scenarios, initial system failures seldom occur randomly and can be the
result of targeted attacks on central nodes. Such attacks can also occur in less cen-
tral nodes in an effort to circumvent central node defences, e.g., heavily-connected
Internet hubs tend have more effective firewalls. Targeted attacks on high degree
nodes [4, 6, 7, 13, 42] or high betweenness nodes [62] in single networks dramatically
affect their robustness. To study the targeted attack problem on interdependent net-
works [13, 63–65] we assign a value Wα(ki ) to each node, which represents the prob-
ability that a node i with ki degree will be initially attacked and become inactive, i.e.,

Wα(ki ) = kα
i∑N

i=1 kα
i

,−∞ < α < +∞. (1.36)

When α > 0, higher-degree nodes are more vulnerable to intentional attack. When
α < 0, higher-degree nodes are less vulnerable and have a lower probability of
failure. The case α = 0, W0 = 1

N , represents the random removal of nodes [44].
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Fig. 1.8 The fraction of nodes in the giant component P∞ as a function of p for three different
examples discussed in Sects. 1.3.5.2–1.3.5.4. (a) For a tree-like fully (q = 1) interdependent NON
is shown P∞ as a function of p for k = 5 and several values of n. The results obtained using Eq.
(1.28). Note that increasing n from n = 2 yields a first order transition. (b) For a loop-like NON,
P∞ as a function of p for k = 6 and two values of q. The results obtained using Eq. (1.33). Note
that increasing q yields a first order transition. (c) For an RR network of ER networks, P∞ as a
function of p, for two different values of m when q = 0.5. The results are obtained using Eq. (1.35)
, and the number of networks, n, can be any number with the condition that any network in the NON
connects exactly to m other networks. Note that changing m from 2 to m > 2 changes the transition
from second order to first order (for q = 0.5). Simulation results are in excellent agreement with
theory. After [47]

In the interdependent networks model with networks A and B described in Ref.
[44], a fraction 1 − p of the nodes from one network are removed with a probability
Wα(ki ) [Eq. (1.36)]. The cascading failures are then the same as those described in
Ref. [44]. To analytically solve the targeted attack problem we must find an equivalent
network A′, such that the targeted attack problem on interdependent networks A and
B can be solved as a random attack problem on interdependent networks A′ and B.
We begin by finding the new degree distribution of network A after using Eq. (1.36)
to remove a 1 − p fraction of nodes but before the links of the remaining nodes that
connect to the removed nodes are removed. If Ap(k) is the number of nodes with
degree k and Pp(k) the new degree distribution of the remaining fraction p of nodes
in network A, then
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Pp(k) = Ap(k)

pN
. (1.37)

When another node is removed, Ap(k) changes as

A(p−1/N )(k) = Ap(k) − Pp(k)kα

〈k(p)α〉 , (1.38)

where 〈k(p)α〉 ≡ ∑
Pp(k)kα. In the limit of N → ∞, Eq. (1.38) can be presented

in terms of a derivative of Ap(k) with respect to p,

d Ap(k)

dp
= N

Pp(k)kα

〈k(p)α〉 . (1.39)

Differentiating Eq. (1.37) with respect to p and using Eq. (1.39), we obtain

− p
d Pp(k)

dp
= Pp(k) − Pp(k)kα

〈k(p)α〉 , (1.40)

which is exact for N → ∞. In order to solve Eq. (1.40), we define a function
Gα(x) ≡ ∑

k P(k)xkα
, and substitute f ≡ G−1

α (p). We find by direct differentiation
that [46]

Pp(k) = P(k)
f kα

Gα( f )
= 1

p
P(k) f kα

, (1.41)

〈k(p)α〉 = f G ′
α( f )

Gα( f )
, (1.42)

satisfy the Eq. (1.40). With this degree distribution, the generating function of the
nodes left in network A before removing the links to the removed nodes is

G Ab(x) ≡
∑

k

Pp(k)x
k = 1

p

∑

k

P(k) f kα
xk . (1.43)

Because network A is randomly connected, the probability of a link emanating from
a remaining node is equal to the ratio of the number of links emanating from the
remaining nodes to the total number of links emanating from all the nodes of the
original network,

p̃ ≡ pN 〈k(p)〉
N 〈k〉 =

∑
k P(k)k f kα

∑
k P(k)k

, (1.44)

where 〈k〉 is the average degree of the original network A, and 〈k(p)〉 is the average
degree of remaining nodes before the links that are disconnected are removed. Re-
moving the links that connect to the deleted nodes of a randomly connected network
is equivalent to randomly removing a (1 − p̃) fraction of links of the remaining
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Fig. 1.9 Dependence of pc on α for SF single and interdependent networks with average degree
〈k〉 = 4 for targeted attacks described in Sect. 3.5. The lower cut-off of the degree is m = 2. The
horizontal lines represent the upper and lower limits of pc. The black dashed line represents pc for
single SF network. After [63]

nodes. It is known [46] that the generating function of the remaining nodes after
random removal of (1 − p̃) fraction of links is equal to the original distribution of
the network with a new argument z = 1 − p̃ + x p̃. Thus the generating function
of the new degree distribution of the nodes left in network A after their links to the
removed nodes are also removed is

G Ac(x) ≡ G Ab(1 − p̃ + p̃x). (1.45)

The only difference in the cascading process under targeted attack from the case
under random attack is in the first stage when network A is attacked. If we find a
network A′ with generating function G̃ A0(x) such that after a random attack with
a (1 − p) fraction of nodes removed the generating function of nodes left in A′ is
the same as G Ac(x), then the targeted attack problem on interdependent networks
A and B can be solved as a random attack problem on interdependent networks A′
and B. We find G̃ A0(x) by solving the equation G̃ A0(1 − p + px) = G Ac(x) and
from, Eq. (1.45),

G̃ A0(x) = G Ab(1 + p̃

p
(x − 1)). (1.46)

This formalism allows us to map the problem of cascading node failure in interdepen-
dent networks caused by an initial targeted attack to the problem of random attack.
We note that the evolution of equations only depends on the generating function of
network A, and not on any information concerning how the two networks interact
with each other. Thus this approach can be applied to the study of other general
interdependent network models.

Finally we analyze the specific class of scale-free (SF) networks. Figure 1.9 shows
the critical thresholds pc of SF networks. Note that pc in interdependent SF networks

http://dx.doi.org/10.1007/978-3-319-03518-5_3
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is nonzero for the entire range of α because failure of the least-connected nodes in one
network may lead to failure of well-connected nodes in a second network, making
interdependent networks significantly more difficult to protect than a single network.
A significant role in the vulnerability to random attacks is also played by network
assortativity [66].

1.3.7 Interdependent Clustered Networks

Clustering quantifies the propensity of two neighbors of the same vertex to also
be neighbors of each other, forming triangle-shaped configurations in the network
[1, 10, 67]. Unlike random networks in which there is little or no clustering, real-
world networks exhibit significant clustering. Recent studies have shown that, for
single isolated networks, both bond percolation and site percolation have percolation
and epidemic thresholds that are higher than those in unclustered networks [68–73].
Here we review a mathematical framework for understanding how the robustness of
interdependent networks is affected by clustering within the network components.
We extend the percolation method developed by Newman [68] for single clustered
networks to coupled clustered networks. Huang et al. [65] found that interdepen-
dent networks that exhibit significant clustering are more vulnerable to random node
failure than networks with low significant clustering. They studied two networks, A
and B, each having the same number of nodes N . The N nodes in A and B have
bidirectional dependency links to each other, establishing a one-to-one correspon-
dence. Thus the functioning of a node in network A depends on the functioning of
the corresponding node in network B and vice versa. Each network is defined by a
joint degree distribution Pst (generating function G0(x, y) = ∑∞

s,t=0 Pst xs yt ) that
specifies the fraction of nodes connected to s single edges and t triangles [68]. The
conventional degree of each node is thus k = s + 2t . The clustering coefficient c is

c =
∑

st t Pst∑
k k(k − 1)P(k)/2

. (1.47)

1.3.7.1 Percolation on Interdependent Clustered Networks

To study how clustering within interdependent networks affects a system’s robust-
ness, we apply the interdependent networks framework [44]. In interdependent net-
works A and B, a fraction (1 − p) of nodes is first removed from network A. Then
the size of the giant components of networks A and B in each cascading failure step
is defined to be p1, p2, ..., pn , which are calculated iteratively

pn = μn−1gA(μn−1), n is odd,
pn = μngB(μn), n is even,

(1.48)
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where μ0 = p and μn are intermediate variables that satisfy

μn = pgA(μn−1), n is odd,
μn = pgB(μn−1), n is even.

(1.49)

As interdependent networks A and B form a stable mutually-connected giant com-
ponent, n → ∞ and μn = μn−2, the fraction of nodes left in the giant component is
p∞. This system satisfies

x = pgA(y),
y = pgB(x),

(1.50)

where the two unknown variables x and y can be used to calculate p∞ = xgB(x) =
ygA(y). Eliminating y from these equations, we obtain a single equation

x = pgA[pgB(x)]. (1.51)

The critical case (p = pc) emerges when both sides of this equation have equal
derivatives,

1 = p2 dgA

dx
[pgB(x)]dgB

dx
(x)|x=xc,p=pc , (1.52)

which, together with Eq. (1.51), yields the solution for pc and the critical size of the
giant mutually-connected component, p∞(pc) = xcgB(xc).

Consider for example the case in which networks A and B have Poisson degree
distributions P A

st and P B
st for both s and t :

P A
st = e−μA−νA

μs
Aνt

A

s!t ! ,

P B
st = e−μB−νB

μs
Bν t

B

s!t ! . (1.53)

Using techniques in Ref. [68] it is possible to show that in this case x = p(1 − uA),
y = p(1 − uB), where

uA = vA = e[μA y+2y(1−y)μA](uA−1)+νA p2(v2
A−1),

uB = vB = e[μBx+2x(1−x)μB](uB−1)+νB p2(v2
B−1).

(1.54)

If the two networks have the same clustering, μ ≡ μA = μB and ν ≡ νA = νB, p∞
is then

p∞ = p(1 − eν p2∞−(μ+2ν)p∞)2. (1.55)

Here μ and ν are the average number of single links and triangles per node respec-
tively.

The giant component, p∞, for interdependent clustered networks can thus be
obtained by solving Eq. (1.55). Note that when ν = 0 we obtain from Eq. (1.55) the



1 Network of Interdependent Networks 27

0 10 20 30 40

step n

0

0.1

0.2

0.3

0.4

0.5

0.6

p n

c=0.1, p=0.7
c=0.1, p=0.66
c=0.1, p=0.64

0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

∞

c=0
c=0.1
c=0.2
shuffled from c=0.2

0 0.05 0.1 0.15 0.2
clustering c

0.64

0.68

0.72

p c

p

Fig. 1.10 Behavior of interdependent networks with different clustering coefficients. a Size of
mutually connected giant component as a function of cascading failure steps n. Results are for
c = 0.1, p = 0.64 (below pc), p = 0.66 (at pc) and p = 0.7 (above pc). Lines represent theory
(Eqs. (1.48) and (1.49)) and dots are from simulations. Note that at pc there are large fluctuations. b
Size of giant component, p∞, in interdependent networks with both networks having clustering via
Poisson degree distributions of Eq. (1.53) and average degree 〈k〉 = μA+2νA = 4, as a function of p.
Dashed lines are number of interactions (NOI) before cascading failure stops obtained by simulation
[74]. Inset: Green line is the critical threshold pc in interdependent networks as function of clustering
coefficient c. Red dashed line represents critical threshold of shuffled interdependent networks which
originally has clustering coefficient c. The shuffled networks have zero clustering and degree-degree
correlation, but has the same degree distribution as the original clustered networks. Symbols and
dashed lines represent simulation, solid curves represent theoretical results. After [65]

result obtained in Ref. [44] for random interdependent ER networks. Figure 1.10,
using numerical simulation, compares the size of the giant component after n stages
of cascading failure with the theoretical prediction of Eq. (1.48). When p = 0.7 and
p = 0.64, which are not near the critical threshold (pc = 0.6609), the agreement with
simulation is perfect. Below and near the critical threshold, the simulation initially
agrees with the theoretical prediction but then deviates for large n due to the random
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fluctuations of structure in different realizations [44]. By solving Eq. (1.55), we have
p∞ as a function of p in Fig. 1.10 for a given average degree and several values
of clustering coefficients. The figure shows that the interdependent networks with
higher clustering become less robust than the networks with low clustering and the
same average degree k, i.e., pc is a monotonically increasing function of c (see inset
of Fig. 1.10).

1.4 Application to Infrastructure

In interacting networks, the failure of nodes in one network generally leads to the fail-
ure of dependent nodes in other networks, which in turn may cause further damage
to the first network, leading to cascading failures and catastrophic consequences.
It is known, for example, that blackouts in various countries have been the re-
sult of cascading failures between interdependent systems such as communication
and power grid systems [75] (Fig. 1.11). Furthermore, different kinds of critical
infrastructures are also coupled together, e.g., systems of water and food supply,
communications, fuel, financial transactions, and power generation and transmis-
sion (Fig. 1.11). Modern technology has produced infrastructures that are becoming
increasingly interdependent, and understanding how robustness is affected by these
interdependencies is one of the major challenges faced when designing resilient
infrastructures [56, 58, 75, 76].

Blackouts are a demonstration of the important role played by the dependencies
between networks. For example, the 28 September 2003 blackout in Italy resulted in a
widespread failure of the railway network, healthcare systems, and financial services
and, in addition, severely influenced communication networks. The partial failure
of the communication system in turn further impaired the power grid management
system, thus producing a negative feedback on the power grid. This example empha-
sizes how interdependence can significantly magnify the damage in an interacting
network system [44, 45, 58, 75].

Thus understanding the coupling and interdependencies of networks will enable
us to design and implement future infrastructures that are more efficient and robust.

1.5 Application to Finance and Economics

Financial and economic networks are neither static nor independent of one another.
As global economic convergence progresses, countries increasingly depend on each
other through such links as trade relations, foreign direct investments, and flow of
funds in international capital markets. Economic systems such as real estate markets,
bank borrowing and lending operations, and foreign exchange trading are intercon-
nected and constantly affect each other. As economic entities and financial markets
become increasingly interconnected, a shock in a financial network can provoke



1 Network of Interdependent Networks 29

Fig. 1.11 Left: Power grid and Internet dependence in Italy. Analysis of this system can explain the
cascade failure that led to the 2003 blackout. Right: Inter-dependence of fundamental infrastructures.
A further example is a recent event in Cyprus (July 2011), where an explosion caused a failure of
the electrical power lines, which in turn caused the countries water supply to shut down, due to the
strong coupling between these two networks

significant cascading failures throughout the global economic system. Based on the
success of complex networks in modeling interconnected systems, applying complex
network theory to study economic systems has been given much attention [77–84].

The strong connectivity in financial and economic networks allows catastrophic
cascading node failure to occur whenever the system experiences a shock, especially
if the shocked nodes are hubs or are highly central in the network [7, 63, 76, 85, 86].
To thus minimize systemic risk, financial and economic networks should be designed
to be robust to external shocks.

In the wake of the recent global financial crisis, increased attention has been given
to the study of the dynamics of economic systems and to systemic risk in particular.
The widespread impact of the current EU sovereign debt crisis and the 2008 world
financial crisis show that, as economic systems become increasingly interconnected,
local exogenous or endogenous shocks can provoke global cascading system failure
that is difficult to reverse and that can cripple the system for a prolonged period of
time. Thus policy makers are compelled to create and implement safety measures
that prevent cascading system failures or that soften their systemic impact.

To study the systemic risk to financial institutions, we analyze a coupled (bipartite)
bank-asset network in which a link between a bank and a bank asset exists when the
bank has the asset on its balance sheet. Recently, Huang et al. [87] presented a



30 D. Y. Kenett et al.

model that focuses on real estate assets to examine banking network dependencies
on real estate markets. The model captures the effect of the 2008 real estate market
failure on the US banking network. Between 2000 and 2007, 27 banks failed in
the US, but between 2008 and early 2013 the number rose to over 470. The model
proposes a cascading failure algorithm to describe the risk propagation process during
crises. This methodology was empirically tested with balance sheet data from US
commercial banks for the year 2007, and model predictions are compared with the
actual failed banks in the US after 2007 as reported by the Federal Deposit Insurance
Corporation (FDIC). The model identifies a significant portion of the actual failed
banks, and the results suggest that this methodology could be useful for systemic
risk stress testing for financial systems. The model also indicates that commercial
rather than residential real estate markets were the major culprits for the failure of
over 350 US commercial banks during the period 2008–2011.

There are two main channels of risk contagion in the banking system, (i) di-
rect interbank liability linkages between financial institutions and (ii) contagion via
changes in bank asset values. The former, which has been given extensive empirical
and theoretical study [88–92], focuses on the dynamics of loss propagation via the
complex network of direct counterpart exposures following an initial default. The
latter, based on bank financial statements and financial ratio analysis, has received
scant attention. A financial shock that contributes to the bankruptcy of a bank in
a complex network will cause the bank to sell its assets. If the financial market’s
ability to absorb these sales is less than perfect, the market prices of the assets that
the bankrupted bank sells will decrease. Other banks that own similar assets could
also fail because of loss in asset value and increased inability to meet liability oblig-
ations. This imposes further downward pressure on asset values and contributes to
further asset devaluation in the market. Damage in the banking network thus con-
tinues to spread, and the result is a cascading of risk propagation throughout the
system [93, 94].

Using this coupled bank-asset network model, we can test the influence of each
particular asset or group of assets on the overall financial system. If the value of
agricultural assets drop by 20 %, we can determine which banks are vulnerable to
failure and offer policy suggestions, e.g., requiring mandatory reduction in exposure
to agricultural loans or closely monitoring the exposed bank, to prevent such failure.

The model shows that sharp transitions can occur in the coupled bank-asset system
and that the network can switch between two distinct regions, stable and unstable,
which means that the banking system can either survive and be healthy or collapse.
Because it is important that policy makers keep the world economic system in the
stable region, we suggest that our model for systemic risk propagation might also
be applicable to other complex financial systems, e.g., to model how sovereign debt
value deterioration affects the global banking system or how the depreciation or
appreciation of certain currencies impact the world economy.
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1.5.1 Cascading Failures in the US Banking System

During the recent financial crisis, 371 US commercial banks failed between 1 January
2008 and 1 July 2011. The Failed Bank List from the Federal Deposit Insurance
Corporation (FBL-FDIC) records the names of failed banks and the dates of their
failure. We use this list as an experimental benchmark for our model. The dataset used
as input to the model is the US Commercial Banks Balance Sheet Data (CBBSD)
from Wharton Research Data Services, which contains the amount of assets in each
category that the US commercial banks have on their balance sheets.

To build a sound bank-asset coupled system network and systemic risk cascad-
ing failure model, it is important to study the properties of the failed banks and
compare them with the properties of the banks that survive. Thus the asset portfo-
lios of commercial banks containing asset categories such as commercial loans or
residential mortgages are carefully examined. The banks are modeled according to
how they construct their asset portfolios (see the upper panel of Fig. 1.12). For each
bank, the CBBSD contains 13 different non-overlapping asset categories, e.g., bank
i owns amounts Bi,0, Bi,1, ..., Bi,12 of each asset, respectively. The total asset value
Bi and total liability value Li of a bank i are obtained from CBBSD dataset. The
weight of each asset m in the overall asset portfolio of a bank i is then defined as
wi,m ≡ Bi,m/Bi . From the perspective of the asset categories, we define the total
market value of an asset m as Am ≡ ∑

i Bi,m . Thus the market share of bank i in
asset m is si,m ≡ Bi,m/Am .

Studying the properties of failed banks between 2008 and 2011 reveals that, for
certain assets, asset weight distributions for all banks differ from the asset weight
distributions for failed banks. Failed banks cluster in a region heavily weighted with
construction and development loans and loans secured by nonfarm nonresidential
properties while having fewer agricultural loans in their asset portfolios than the
banks that survived. These results confirm the nature of the most recent financial
crisis of 2008–2011 in which bank failures were largely caused by real estate-based
loans, including loans for construction and land development and loans secured by
nonfarm nonresidential properties [95]. In this kind of financial crisis, banks with
greater agricultural loan assets are more financially robust [96]. Failed banks also
tend to have lower equity-to-asset ratios, i.e., higher leverage ratios than the banks
that survived during the financial crisis of 2008–2011 [97].

A financial crisis usually starts with the bursting of an economic or financial
bubble. For example, with the bursting of the dot-com bubble, the technology-heavy
NASDAQ Composite index lost 66 % of its value, plunging from 5048 in 10 March
2000 to 1720 in 2 April 2001. In our current model, the shock in the bank-asset
coupled system originated with the real estate bubble burst. The two categories
of real estate assets most relevant to the failure of commercial banks during the
2008–2011 financial crisis were construction and land development loans and loans
secured by nonfarm and non-residential properties. Although it is widely believed
that the financial crisis was caused by residential real estate assets, the coupled
bank-asset network model does not find evidence that loans secured by 1–4 family
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Fig. 1.12 Bank-asset coupled network model with banks as one node type and assets as the other
node type. Link between a bank and an asset exists if the bank has the asset on its balance sheet.
Upper panel: illustration of bank-node and asset-node. Bi,m is the amount of asset m that bank i
owns. Thus, a bank i with total asset value Bi has wi,m fraction of its total asset value in asset m. si,m
is the fraction of asset m that the bank holds out. Lower panel: illustration of the cascading failure
process. The rectangles represent the assets and the circles represent the banks. From left to right,
initially, an asset suffers loss in value which causes all the related banks’ total assets to shrink. When
a bank’s remaining asset value is below certain threshold (e.g., the bank’s total liability), the bank
fails. Failure of the bank elicits disposal of bank assets which further affects the market value of the
assets. This adversely affects other banks that hold this asset and the total value of their assets may
drop below the threshold which may result in further bank failures. This cascading failure process
propagates back and forth between banks and assets until no more banks fail. After [87]

residential properties were responsible for the commercial bank failures. This result
is consistent with the conclusion of Ref. [95]: that the cause of commercial bank
failure between 2008 and 2011 were commercial real estate-based loans rather than
residential mortgages. For more details regarding the coupled bank-asset model see
Ref. [87].

1.6 Summary and Outlook

In summary, this paper presents the recently-introduced mathematical framework
of a Network of Networks (NON). In interacting networks, when a node in one
network fails it usually causes dependent nodes in other networks to fail which,
in turn, may cause further damage in the first network and result in a cascade of
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failures with catastrophic consequences. Our analytical framework enables us to fol-
low the dynamic process of the cascading failures step-by-step and to derive steady
state solutions. Interdependent networks appear in all aspects of life, nature, and
technology. Examples include (i) transportation systems such as railway networks,
airline networks, and other transportation systems [53, 98]; (ii) the human body as
studied by physiology, including such examples of interdependent NON systems
as the cardiovascular system, the respiratory system, the brain neuron system, and
the nervous system [99]); (iii) protein function as studied by biology, treating pro-
tein interaction—the many proteins involved in numerous functions—as a system
of interacting networks; (iv) the interdependent networks of banks, insurance com-
panies, and business firms as studied by economics; (v) species interactions and the
robustness of interaction networks to species loss as studied by ecology, in which
it is is essential to understand the effects of species decline and extinction [100];
and (vi) the topology of statistical relationships between distinct climatologically
variables across the world as studied by climatology [101].

Thus far only a few real-world interdependent systems have been thoroughly an-
alyzed [53, 98]. We expect our work to provide insights leading further analysis of
real data on interdependent networks. The benchmark models presented here can be
used to study the structural, functional, and robustness properties of interdependent
networks. Because in real-world NONs individual networks are not randomly con-
nected and their interdependent nodes are not selected at random, it is crucial that
we understand the many types of correlation that exist in real-world systems and that
we further develop the theoretical tools to take them into account. Further studies
of interdependent networks should focus on (i) an analysis of real data from many
different interdependent systems and (ii) the development of mathematical tools for
studying real-world interdependent systems. Many real networks are embedded in
space, and the spatial constraints strongly affect their properties [20, 102, 103].
There is a need to understand how these spatial constraints influence the robustness
properties of interdependent networks [98]. Other properties that influence the ro-
bustness of single networks, such as the dynamic nature of the configuration in which
links or nodes appear and disappear and the directed nature of some links, as well as
problems associated with degree-degree correlations and clustering, should be also
addressed in future studies of coupled network systems. An additional critical issue
is the improvement of the robustness of interdependent infrastructures. Our studies
thus far shown that there are three methods of achieving this goal (i) by increasing
the fraction of autonomous nodes [45], (ii) by designing dependency links such that
they connect the nodes with similar degrees [44, 53], and (iii) by protecting the high-
degree nodes against attack [33]. Achieving this goal will provide greater safety and
stability in today’s socio-techno world.

Networks dominate every aspect of present-day living. The world has become
a global village that is steadily shrinking as the ways that human beings interact
and connect multiply. Understanding these connections in terms of interdependent
networks of networks will enable us to better design, organize, and maintain the
future of our socio-techno-economic world.
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