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Abstract 

We generalize the conventional model of two-dimensional site percolation by including 
both (1) continuous deposition of particles on a two-dimensional substrate, and (2) 
diffusion of these particles in two-dimensions. This new model is motivated by recent thin 
film deposition experiments using the low-energy cluster beam deposition (LECBD) 
technique. Depending on various parameters such as deposition flux, diffusion constant, 
and system size, we find a rich range of fractal morphologies including diffusion limited 
aggregation (DLA), cluster-cluster aggregation (CCA), and percolation. 

1. Introduction and motivation 

The simple model of random percolation has, historically, been the most 
common model adopted to deal with systems where connectivity plays the leading 
role [ 1,2]. The percolation model is indeed helpful in understanding the influence 
of connectedness on the properties of the systems. However, if one is interested 
also on more quantitative features, there exist numerous experimental systems 
that cannot be accurately described by this model. Here we generalize the 
percolation model by including both particle deposition and diffusion. This idea 
arises from experiments performed with the low-energy cluster beam deposition 
(LECBD) technique. LECBD is a new deposition technique that allows one to 
deposit on a surface, instead of atoms as in the usual deposition techniques, 
preformed clusters (giant “molecules”, -5 nm diameter containing -2000 atoms). 
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For more experimental details, see [3]. It has been shown [4] that the percolation 

model is useful for understanding some features in the first stages (thickness less 

than a monolayer) of the growth of thin films prepared by LECBD. However, 

experimental evidence [5] indicates that clusters do diffuse on the substrate. In 

order to take into account this phenomenon, we allow diffusion of the deposited 

particles and interactions between them in the percolation model. Hereafter we 

call “particles” the preformed clusters. This new model is expected to give some 

insight in the growth of films prepared by LECBD (roughly until a thickness of a 

monolayer has been deposited). The model may also be of general interest in 

other situations where diffusion occurs in the presence of continuous deposition. 

2. Model 

The 2D percolation model can be interpreted as a progressive filling of a 2D 

lattice by randomly “depositing” particles (i.e., occupying sites) on it. In the 

classic percolation model, once a particle has been deposited in a particular site of 

the lattice, it will remain at this place forever. Here we propose a generalized 

model in which particles or clusters (i.e. the sets of connected particles, not to be 

confused with the 2000-atom clusters being deposited experimentally) diffuse 

during deposition of the other particles. We introduce a parameter F, the flux, 

that is the number of particles that are added to the lattice per lattice site per unit 

diffusion time. “Unit diffusion time” is the time needed to try to move all the 

clusters already present on the lattice. For example, for a flux of 10m4 and a lattice 

of L X L = 100 X 100 sites, on average, a single particle is deposited while 

attempting to move all the clusters (i.e. per unit time). For high fluxes (F + l), we 

recover the classical static percolation model since diffusion becomes negligible. It 

will be seen that actually two physical processes are present in the simulations: 

diffusion and deposition. The system generated will be the result of the 

competition between these two physical ingredients, the flux F controlling their 

relative strength. In this paper, we focus on the growth process until the system 

reaches criticality, i.e., until the first connecting path occurs between the two 

edges of the system (“spanning time”). 

The simulations are carried out on a square lattice with periodic boundary 

conditions. The rule for diffusion is the following: clusters are picked at random 

and moved with a probability proportional to their mobility by one lattice spacing 

in one of four equally probable directions. The mobility of a cluster has been 

taken to be inversely proportional to its mass (its number of particles). The only 

interaction between particles that we study in this paper is that two particles are 

connected if they are nearest neighbors. They stick and diffuse together as in the 

cluster-cluster aggregation (CCA) model [6,7]. 
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3. Results 

As stated above, for very large fluxes we recover the static percolation model. 
The question is: what happens when diffusion becomes important? For example, 
in the case of classic percolation, clusters grow just by random (static) contact of 
two particles, leading to the well-know characteristics of percolation clusters [2]. 
Clearly diffusion and deposition change this picture (see Fig. 1). 

For a fixed flux F, the morphology of the system changes as a function of the 
system size L. We find three regimes of behavior delimited by two crossover 
length scales L, and L,, with L, < L,. These length scales depend on the flux, 
both increasing when the flux decreases but we find that L, increases much faster 
than L,. What is the physical meaning of these two length scales? We argue that 
L, is the length scale set by the diffusion of the single particles. This means that 
for systems smaller than L, , the most important mechanism governing the growth 
of the clusters is the particle diffusion. This is so because, for that particular flux, 
the system size is so small that every particle added is likely to have enough time 
to diffuse and find the already existing cluster before another particle is added to 
the system. The growth of the cluster should then be very similar to the growth of 
a diffusion limited aggregation (DLA) cluster [7,8]. Indeed, at short times, the 
cluster looks very similar to DLA (Fig. 2a). Due to the deposition of particles 
inside the cluster, at the spanning time (Fig. 2b), the cluster is more similar to 
multiparticle DLA [9]. 

Figs. 3 and 4 show snapshots of the systems for L, <L <L, (Fig. 3) and for 
L > L, (Fig. 4). What follows is a tentative interpretation of the morphologies 
observed. An essential result is that now two phases of growth appear. At early 
times, in phase 1, “blobs” of linear size L, are formed. At later times, in phase 2, 
these blobs diffuse and connect with one another. The connection of these blobs 
creates large clusters of blobs (“super-blobs”) and this, combined to the 
continuous deposition of single particles, eventually leads to the formation of a 
spanning cluster. 

Let us study these two phases in more detail, beginning with phase 1. At short 
times, several clusters are formed - separated by a typical distance L, set by the 
diffusion of the single particles (Figs. 3a and 4a). The clusters grow by both 
aggregation of single deposited particles and diffusion of small clusters. There- 
fore, these clusters look similar to those obtained in the CCA model. A 
measurement of the fractal dimension confirms this similarity. As time increases, 
the clusters grow and eventually get very close to one another. At that time, the 
linear size of these “blobs” is roughly L,. This is the end of phase 1. Next, two 
mechanisms will compete to grow a spanning cluster: (i) the diffusion of the blobs 
and of the “super-blobs” and (ii) the deposition of the individual particles. Even 
if clusters do not move, spanning will occur merely because of the filling of the 
lattice, just as in percolation. Diffusion of the clusters will speed the spanning. 
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Fig. 1. Influence of diffusion. (a) and (b) arc snapshots of two systems at the same fraction of 

occupied sites or “coverage” (0.15), same size (L = 400) but with different fluxes. (a) F= 1O’4 
(negligible diffusion), (b) F = 10m4. 

To find the physical interpretation of L,, let us fix the flux and change the 
system size. For spanning to occur, super-blobs of sizes comparable to that of the 
system have to be grown. If the system size is very large, the super-blobs are very 
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size smaller than L,. Shown are two stages of the growth for F= 10V9 (L, = 500) and 
a) coverage = 0.02, (b) spanning point: coverage = 0.27 (the spanning clusi er is Iii ;ht). 
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Fig. 3. System size between 15, and L,. Shown are two stages of the growth for F = 10e6 (L, = 90 

L, = = 6000) and L = 300. (a) coverage = 0.1, (b) spanning point: coverage = 0.31 (the spanning GIL 

is re d). 

and 

lster 



(i 

Fig. 

L,= 
red) 

0 
4. Syste 

: 36) and 

m size larger than L,. Shown are two stages of the growth for F = lo-’ (L, = 17 and 

L = 300. (a) coverage = 0.1, (b) spanning point: coverage = 0.49 (the spanning clust er is 



226 P. Jensen et al. I Physica A 207 (1994) 219-227 

large (they contain many blobs of size L,) and therefore their diffusion coefficient 
is extremely small. Then deposition dominates and connects the system in a 
percolation-like way before diffusion can do it. For smaller systems (with smaller 
super-blobs), diffusion is more effective and dominates the connectivity of the 
system. The boundary between these two system sizes is set by L,. Indeed, the 
morphology of the system in Fig. 4b (L > L2) looks like a percolation network. 
This is not the case for Fig. 3b (L, <L < L2) because here connectivity was 
dominated by diffusion. 

4. Summary 

For L CL,, the growth mechanism is very similar to DLA. The cluster grows 
by single addition of particles and the system spans when this cluster is large 
enough to “touch” the two sides of the lattice. For L > L,, two growth phases 
appear. First “blobs” of linear size L, are grown. Two cases must be dis- 
tinguished. For L, < L < L,, the growth of the spanning cluster is dominated by 
the diffusion of the blobs. For L > L,, deposition becomes dominant and the 
system behaves as a percolation system. 

We found that the introduction of deposition and diffusion in the percolation 
model has interesting consequences. Depending on the flux and on the system 
size, different fractal morphologies are generated, as different as CCA, DLA or 
percolation clusters. From the experimental point of view, the structures obtained 
in Figs. 3a and 4a (low coverages) look very similar to some experimental images 
obtained by LECBD (see Fig. 3 of [5]) on substrates held at low temperatures. To 
account for the experimental results obtained at room temperature, in particular 
to understand the strong dependence of the threshold on the incident flux [lo], we 
need to use more realistic interactions between the particles by taking into 
account the experimentally observed [4] coalescence of particles. This will be 
done in future studies. 
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Note added in proof 

After this work was completed, Roder et al. [ll] published a series of 
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remarkable experiments documenting the formation of nanometer-scale surface 
structures. Our model mimics the same process, and produces morphologies that 
remarkably resemble the experimental structures (e.g., Fig. 2c bears a striking 
similarity to Fig. Id of [ll], as sketched briefly in [12]. Also, after this work was 
submitted, we learned of a careful study [13] that treats a related model in which 
clusters do not diffuse. 
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