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Abstract

We find that a universal homogeneous scaling form describes the distributions of cardiac
variations for a group of healthy subjects, which is stable over a wide range of time scales.
However, a similar scaling function does not exist for a group with a common cardiopulmonary
instability associated with sleep apnea. Subtle differences in the distributions for the day- and
night-phase dynamics for healthy subjects are detected. © 1998 Elsevier Science B.V. All rights
reserved.

Time series of beat-to-beat (RR) heart rate intervals obtained from digitized elec-
trocardiograms are known to be nonstationary and exhibit extremely complex behavior
[1,2]. A typical feature of such nonstationary signals is the presence of “patchy” patterns
which change over time. Nonstationarity, an important aspect of biological variability,
can be associated with regimes of different drifts in the mean value of a given signal, or
with changes in its variance which may be gradual or abrupt. Heterogeneous properties
may be even more strongly expressed in certain cases of abnormal heart activity.

Differences between healthy and abnormal cardiac dynamics are known to be re-
flected in different correlations and power spectra [3—5]. However, it is currently
widely assumed [6,7] that the diflerence in time series of interbeat intervals in sick
and healthy adults lies not in the distribution of the interbeat variations but rather in
their time ordering. 1t has been also hypothesized that even if the interbeat variations
are different (e.g. smaller) during illness, the pattern of heart rate variability might be
otherwise very similar to that during health. In such a case, the interbeat variations
for normal and abnormal cardiac dynamics, once normalized, would have the same
distribution. Such assumptions are based on more conventional studies of interbeat in-
tervals or increments which essentially amount to taking derivatives of the heart rate
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signal and thus extracting pointwise characteristics. Here we advocate the idea that:
(1) different dynamical patterns can be observed on different time scales correspond-
ing to the actual time scales of the underlying physiological processes; (ii) masking
effects of nonstationarities have to be properly reduced.

We begin by taking a subset of healthy subjects and analyze the distribution of
interbeat intervals during night. After subtracting the global average, and rescaling the
distributions while preserving the normalization to unit area, we find that the data do
not collapse onto a single curve (Fig. 1). Moreover, we find no difference between
these histograms for the healthy subjects and a group with cardiopulmonary disorder
caused by sleep apnea (Fig. 2). This test clearly demonstrates how nonstationarities
affect data and the necessity to reduce nonstationarities in order to observe hidden
scaling behavior.

To analyze the properties of human cardiac activity we use a method which we call
“cumulative variation amplitude analysis”, designed to address nonstationary behavior
[8]. This method comprises sequential application of a set of algorithms based on
wavelet and Hilbert transform analysis.

The wavelet transform [9] is defined as a convolution of a signal with an analysing
wavelet and is sometimes called a “mathematical microscope” because it allows one to
study properties of the signal on any chosen scale. The wavelet transform allows one to
focus (“extract™) from the data particular features. Since the object of our study is the
variations in the heart rate signal, we choose as analyzing wavelets derivatives of the
Gaussian function, which allow us to extract these variations [10]. One can argue that
the same can be done by simply subtracting consecutive interbeat intervals, but such
standard analysis does not distinguish healthy from unhealthy cardiac dynamics [11].
The reason 1s the wavelet transform in addition to extracting the cumulative variations
in the heart rate signal over given time scale, reduces masking effects of the nonsta-
tionarities, since the analyzing wavelet used is orthogonal to local polynomial trends.

The next step of the “cumulative variation amplitude analysis” is to extract the
amplitudes of the variations in the beat-to-beat signal by means of an analytic signal
approach (Hilbert transform) [12] which also does not require stationarity. The use
of Hilbert transform provides for a statistics reflecting the duration of segments with
different amplitudes of variations in the wavelet-transformed signal.

We studied the distribution of the amplitudes of the beat-to-beat variations for a
group of healthy subjects (N = 18: 5 males and 13 females; age: 20-50, mean -
34) and a group of subjects with obstructive sleep apnea [13] (N = 16 males; age:
32-56, mean — 43). To minimize nonstationarity due to changes in the level of activ-
ity, we begin by considering night phase (12pm-6am) records of interbeat intervals
(=10 beats) for both groups. Inspection of the distribution functions of the amplitudes
of the cumulative variations reveals marked differences between individuals (Fig. 2a
in Ref. [8]). These differences are not surprising, given the underlying physiologi-
cal differences among healthy subjects. To test the hypothesis that there is a hidden,
possibly universal structure to these heterogeneous time series, we rescale the dis-
tributions and find for all hcalthy subjects that the data conform to a single scaled
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Fig. 1. Distributions of the interbeat intervals, where x denotes the interbeat interval time (a) for a random
subset of nine healthy subjects and (b) nine subjects with sleep apnea. The same distributions are presented
after subtracting the global average in (c) and (d). No data collapse is observed after rescaling of these
distributions for the healthy (e) and the apnea (f) subjects. Compare with Fig. 3.

plot (“data collupse™) (Fig. 2b in Ref. [8]). We find the rescaled data is well fit
with a homogeneous gamma distribution, defined with a single parameter. Such be-
havior is reminiscent of a wide class of well-studied physical systems with universal
scaling propertics [14,15]. In contrast, the subjects with sleep apnea show individual
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Fig. 2. Averaged distributions (from Fig. 1c and Fig. If) of the interbeat intervals are identical for the
healthy and apnea group.
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Fig. 3. (a) Plots of the day- and night-phase distributions. Data is averaged over a subset of I8 healthy
subjects. (b) The solid line is an analytic fit of the rescaled distributions of the beat-to-beat variation
amplitudes of 18 healthy subjects during day hours to a Gamma distribution with v = 1.8 & 0.1, thereby
showing that the observed common structurc for the healthy heart dynamics is not confined to the nocturnal
phase. (¢) Group average of the rescaled distributions of the cumulative variation amplitudes for the healthy
individuals during nocrurnal hours. Note that the observed Gamma scaling is stable for a wide range of the
wavelet transform scale.
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Fig. 4. Color-coded wavelet analysis of RR signals. The x-axis represents time (==2000 beats) and the y-axis
indicates the scale of the wavelet used (a = 1,2,...,60) with large scales at the top. The brighter colors
indicate larger values of the wavelet amplitudes. The wavelet analysis uncovers a hierarchical scale invariance
(Fig. 3c) and reveals a self-similar fractal structure in the healthy cardiac dynamics (A) and a loss of this
fractal structure in cascs with sleep apnea (B).

probability distributions which fail to collapse (Fig. 2d in Ref. [8]). The collapse of
the individual distributions for all healthy subjects after rescaling their “individual”
parameter is indicative of a “universal” structure. The term “‘universal” is used in the
sense that a closed mathematical scaling form is established describing in a unified
quantitative way the cardiac dynamics of all studied healthy subjects.
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An analysis of the heart rate dynamics for healthy subjects during the daytime (noon-
6 pm) indicates that the observed, apparently universal, behavior holds not only for the
night phase but for the day phase as well (Fig. 3b). Semilog plots of the averaged
distributions show a crossover (slower decay) in the tails of the night-phase distribu-
tions, whereas the day-phase distributions follow the exponential form over practically
the entire range (Fig. 3a). Note that the tail of the observed distribution for the night
phase indicates higher probability of larger variations in the healthy heart dynamics
during sleep hours in comparison with the daytime dynamics.

We observe for the healthy group good data collapse with a stable scaling form for
wavelet scales of 2 up to 64 (Fig. 3c¢). The stability of this scaling form (Fig. 3¢) indi-
cates that the underlying dynamical mechanisms regulating the healthy heartbeat have
similar statistical properties on different time scales. Such statistical self-similarity is
an important characteristic of fractal objects [3—5]. The wavelet decomposition of
beat-to-beat heart rate signals can be used to provide a visual representation of this
fractal structure (Fig. 4A). The wavelet transform enables us to identify self-similar
patterns (arches) in these variations even when the signals change as a result of back-
ground interference. Data from sick heart (sleep apnea) lack these patterns (Fig. 4B).

In summary, we believe that the method proposed here can pick up differences that
are missed by other approaches for two reasons: it can “filter out” dominant features
related to nonstationarities and thereby become sensitive to hidden scaling features; and
is sensitive to the time ordering of events provided a sensible choice is made for the
scale parameter.
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