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Abstract. We review a recently developed approach for analyzing time series with long-range cor-
relations by decomposing the signal increment series into magnitude and sign series and analyzing
their scaling properties. We show that time series with identical long-range correlations can exhibit
different time organization for the magnitude and sign. We apply our approach to series of time
intervals between consecutive heartbeats. Using the detrended fluctuation analysis method we find
that the magnitude series is long-range correlated, while the sign series is anticorrelated and that
both magnitude and sign series may have clinical applications. Further, we study the heartbeat mag-
nitude and sign series during different sleep stages — light sleep, deep sleep, and REM sleep. For
the heartbeat sign time series we find short-range anticorrelations, which are strong during deep
sleep, weaker during light sleep and even weaker during REM sleep. In contrast, for the heartbeat
magnitude time series we find long-range positive correlations, which are strong during REM sleep
and weaker during light sleep. Thus, the sign and the magnitude series provide information which
is also useful for distinguishing between different sleep stages.

A broad class of physical and biological systems exhibits complex dynamics, asso-
ciated with the presence of many components interacting over a wide range of time or
space scales. These often-competing interactions may generate an output signal with
fluctuations that appear “noisy” and “erratic” but reveal scale-invariant structure. One
general approach to study these systems is to analyze the ways that such fluctuations
obey scaling laws [1, 2, 3].

We consider the time series formed by consecutive cardiac interbeat intervals (Fig.
1a) and focus on the correlations in the timeincrements between consecutive beats. This
time series is of general interest, in part because it is the output of a complex integrated
control system, including competing stimuli from the neuroautonomic nervous system
[4]. These stimuli modulate the rhythmicity of the heart’s intrinsic pacemaker, leading
to complex fluctuations. Previous reports indicate that these fluctuations exhibit scale-
invariant properties [5, 6, 7], and are anticorrelated over a broad range of time scales (i.e.,
the power spectrum follows a power-law where the amplitudes of the higher frequencies
are dominant) [8]. By long-range anticorrelations we also mean that the root mean
square fluctuations function of the integrated series is proportional tonα wheren is the
window scale and the scaling exponentα is smaller than 0.5. In contrast, for uncorrelated
behaviorα � 0�5, while for correlated behaviorα � 0�5.

The time series of the fluctuations in heartbeat intervals can be “decomposed” into
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FIGURE 1. (a) An example of 2000 time intervals between successive R peaks (RR intervals) taken
from electrocardiogram (ECG) recording of a healthy subject during daytime. (b) The magnitude series of
a portion of the RR series (beat numbers 800-1300) shown in (a). Patches of more “volatile” increments
with large magnitude (beat numbers 800-1000) are followed by patches of less volatile increments with
small magnitude (beat numbers 1000-1300), consistent with our quantitative conclusion that there is
correlation in the magnitude time series. (c) The sign series (Æ), as well as the∆RR series (�) of a portion
of the RR series (beat numbers 1180-1230) shown in (a). The positive sign (�1) represents a positive
increment, while the negative sign (�1) represents a negative increment in the RR series of interbeat
intervals. The tendency to alternation between�1 and�1 is consistent with our quantitative conclusion
that there is (multiscale) anticorrelation in the sign time series. Adapted from ref. [14].

two different time series. We analyze separately the time series formed by the magnitude
and the sign of the increments in the time intervals between successive heartbeats (Fig.
1b,c). We use 2nd order detrended fluctuation analysis [9, 10, 11, 12] and not the
conventional power spectrum, since it has the ability to accurately estimate correlations
in the heartbeat fluctuations even when they are masked by linear trends. The 1st order
detrended fluctuation analysis (DFA) eliminates constant trends from the original series
(or, equivalently, linear trends from the integrated series); the 2nd order DFA removes
linear trends, and thekth order DFA eliminates polynomial trends of orderk�1.

The magnitude/sign decomposition consists of the following steps: (i) given a series
of successive interbeat intervalsRRi we create the increment series,∆RRi�RRi�1�RRi;
(ii) we decompose the increment series into a magnitude series (�∆RR�) and a sign
series (sign�∆RR�); (iii) to avoid artificial trends we subtract from the magnitude and
sign series their average; (iv) because of limitations in the accuracy of the detrended
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FIGURE 2. (a) Root mean square fluctuation,F�n�, for� 6 hour record (� 32�000 data points) for the
interbeat intervalRRi series (�) of healthy subject. Here,n indicates the time scale (in beat numbers) over
which each measure is calculated. The scaling is obtained using 2nd order detrended fluctuation analysis,
and indicates long-range anticorrelations in the heartbeat interval increment series∆RR i [17]. As expected,
the scaling properties of the heartbeat interval increment series remain unchanged after the Fourier phase
randomization (�). (b) The root mean square fluctuation of the integrated magnitude series (�) indicates
long-range correlations in the magnitude series�∆RR i� (group average exponent ofα �1� 0�74�0�08
whereF�n��n ∝ nα�1). After Fourier phase randomization of the interbeat interval increment series we
find random behavior with exponent 0.5 (�). This change in the scaling (after removing the nonlinear
features in the time series) suggests that the magnitude series carries information about the nonlinear
properties of the heartbeat dynamics. (c) The root mean square fluctuation of the integrated sign series
(�) indicates anticorrelated behavior in sign�∆RRi� (group average exponent ofα � 1 � 0�42� 0�03
whereF�n��n ∝ nα�1). The scaling properties of the sign series remain unchanged after the Fourier
phase randomization (�), which suggests that the sign series relates to linear properties of the heartbeat
interval time series. We note the apparent crossovers atn� 20 beats andn� 100 beats. A gradual loss of
anticorrelation in the sign series is observed at time scales larger thann� 100 beats. The numbers in the
figure indicate the scaling exponents before and after the phase-randomization procedure. Adapted from
ref. [14]

fluctuation analysis method for estimating the scaling exponents of anticorrelated signals
(α � 0�5), we integrate the magnitude and sign series; (v) we perform a scaling analysis
using 2nd order detrended fluctuation analysis on the integrated magnitude and sign
series; (vi) to obtain the scaling exponents for the magnitude and sign series we measure
the slope ofF�n��n on a log-log plot, whereF�n� is the root mean square fluctuation
function andn is the scale of analysis (in beat numbers).
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We find for each subject in a group of 18 healthy individuals [13], that the time series
of the magnitudes exhibits correlated behavior (Fig. 2b) (unlike the original heartbeat in-
crement time series, which is anticorrelated, Fig. 2a). The sign series, however, exhibits
anticorrelated behavior (Fig. 2c). Correlation in the magnitude series indicates that an
increment with large magnitude is more likely to be followed by an increment with large
magnitude. Anticorrelation in the sign series indicates that a positive increment is more
likely to be followed by a negative increment. Our result for the temporal organization of
heartbeat fluctuations thus suggests that, under healthy conditions, a large increment in
the positive direction is more likely to be followed by a large increment in the negative
direction [14]. We find that this empirical “rule” holds over a broad range of time scales
from several up to hundreds of beats (Fig. 2) [15].

To show that fluctuations following an identical scaling law can exhibit different time
ordering for the magnitude and sign, we perform a Fourier transform on a heartbeat
interval increment time series, preserving the amplitudes of the Fourier transform but
randomizing the Fourier phases. Then we perform an inverse Fourier transform to create
a surrogate series. This procedure eliminates non-linearities, preserving only the linear
features (i.e. two-point correlations) of the original time series [16]. The new surrogate
series has thesame power spectrum as the original heartbeat interval increment time
series, with a scaling exponent indicating long-range anticorrelations in the interbeat
increments (Fig. 2a). Our analysis of the sign time series derived from this surrogate
signal shows scaling behavior almost identical to the one for the sign series from the
original data (Fig. 2c). However, the magnitude time series derived from the surrogate
(linearized) signal exhibitsuncorrelated behavior — a significant change from the
stronglycorrelated behavior observed for the original magnitude series (Fig. 2b). Thus,
the increments in the surrogate series do not follow the empirical “rule” observed for
the original heartbeat series, although these increments follow a scaling law identical
to the original heartbeat increment series. Moreover, our results raise the interesting
possibility that the magnitude series carries information about the nonlinear properties
of the heartbeat series, while the sign series relates importantly to linear properties.

We test our analysis on a group of 12 subjects with congestive heart failure [13].
Compared to the healthy subjects, the magnitude exhibits weaker correlations with a
scaling exponent closer to the exponent of an uncorrelated series. The change in the
magnitude exponent for the heart failure subjects is consistent with a previously reported
loss of nonlinearity with disease [18, 19, 20, 21]. The sign time series of heart failure
subjects shows scaling behavior similar to the one observed in the original time series,
but significantly different from the healthy subjects (Table 1).

Next, we investigate how the heart rhythms of healthy subjects change within the
different sleep stages. Typically the differences in cardiac dynamics during wake or sleep
state, and during different sleep stages are reflected in the average and standard deviation
of the interbeat interval time series [22, 23]. Recent studies show that changes in cardiac
control due to circadian rhythms or different sleep stages can lead to systematic changes
in the correlation (scaling) properties of the heartbeat dynamics. In particular it was
found that the long-range correlations in heartbeat dynamics change during wake and
sleep periods [24], indicating different regimes of intrinsic neuroautonomic regulation
of the cardiac dynamics, which may switch on and off with the circadian rhythms.

Healthy sleep consists of cycles of approximately 1–2 hours duration. Each cycle is
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TABLE 1. Comparison of the statistics of the root mean square fluctuation,F�n� (cal-
culated using the 2nd order detrended fluctuation analysis method [9, 11, 12] wheren is
the time scale in beat numbers over which each measure is calculated), and the scaling
exponents for 18 healthy subjects and 12 subjects with heart failure [13] (obtained from
6-hour records during the day). The scaling features of the magnitude and sign change
significantly for the subjects with heart failure, raising the possibility of bedside appli-
cations.α is the best fit to the range 6� n � 1024.F�n� is estimated at the crossover
position (n � 16) (Fig. 2b) where the largest separation between the two groups is es-
timated. Since we observe two apparent crossovers in the scaling behavior of the sign
series, we calculate the scaling exponents in three different regions : (i) the short range
regime for time scales 6� n� 16 with scaling exponentα1, (ii) the intermediate regime
for time scales 16� n � 64 with scaling exponentα2, (iii) and the long range regime
for time scales 64� n � 1024 with scaling exponentα3. For each measure, the group
average� 1 standard deviation is presented. The values which show highly significant
differences (p � 0�01 by Student’st-test) between the healthy and heart failure groups
are indicated in boldface. We note, surprisingly, that the short range and the intermedi-
ate range scaling exponentsα1 andα2 of the sign series may provide even more robust
separation between healthy and heart failure compared to previous reports [17] based
on the scaling exponents of the original heartbeat series.

magnitude

measure healthy heart failure p value

log10F�n� �1�49�0�16 �1�92�0�17 1�10�7

α 1�74�0�08 1�66�0�06 0.01

α1 1�55�0�08 1�6�0�08 0.13

α2 1�66�0�08 1�61�0�08 0.14

α3 1�82�0�1 1�71�0�1 4�10�3

sign

measure healthy heart failure p value

log10F�n� 0�14�0�05 0�02�0�06 1�10�6

α 1�42�0�03 1�44�0�02 0�08

α1 1�43�0�12 1�15�0�12 7�10�7

α2 1�27�0�07 1�41�0�07 1�10�5

α3 1�53�0�065 1�49�0�04 0.04

characterized by a sequence of sleep stages usually starting with light sleep, followed
by deep sleep, and rapid eye movement (REM) sleep [25]. While the specific functions
of the different sleep stages are not yet well understood, many believe that deep sleep
is essential for physical rest, while REM sleep is important for memory consolidation
[25]. Different sleep stages during nocturnal sleep were found to relate to a specific type
of correlations in the heartbeat intervals [26], suggesting a change in the mechanism of
cardiac regulation in the process of sleep.

We considered 24 records of interbeat intervals obtained from 12 healthy individuals
during sleep [28]. The records have an approximate duration of 7.5 hours. The anno-
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FIGURE 3. The average values of the fluctuation exponentsα mag for the magnitude series andαsign for
the sign series for the different phases (wake state, REM sleep, light sleep, and deep sleep). For each of
the 24 records from 12 healthy subjects the corresponding 2nd order DFA fluctuation functionsF�n� have
been fit in the range of 8� n � 13 and 11� n � 150 heartbeats forα sign andαmag, respectively, where
the most significant differences between the sleep stages occur. After ref. [28]

tation and duration of the sleep stages were determined based on standard procedures
[27]. We applied the detrended fluctuation analysis (DFA) method [9, 10, 11, 12] on
both the sign and the magnitude time series. We found that the sign series exhibits anti-
correlated behavior at short time scales which is characterized by a correlation exponent
with smallest value for deep sleep, larger value for light sleep, and largest value for
REM sleep. The magnitude series, on the other hand, exhibits uncorrelated behavior for
deep sleep, and long-range correlations are found for light and REM sleep, with a larger
exponent for REM sleep. The observed increase in the values of both the sign and mag-
nitude correlation exponents from deep through light to REM sleep is systematic and
significant. We also found that the values of the sign and magnitude exponents for REM
sleep are very close to the values of these exponents for the wake state [28].

The mean values and their standard deviations for the different sleep stages are shown
in Fig. 3. We estimate the exponentsα from the slopes in the log-log plot ofF�n�
versusn for all records. Since the most significant differences for the short-range sign
correlations occur in the range of 8� n � 13 heartbeats, we use this fitting range for
the exponentsαsign. For the magnitude exponentαmag, we use the range 11� n� 150,
since the long-range correlations occurring in light and REM sleep can be observed best
in this region. We find that there is a significant difference in the sign series exponent
αsign observed for all three sleep stages (thep-value, obtained by the Student’st-test, is
below 0�001). The magnitude correlation exponents for REM sleep and for intermediate
wake states are significantly larger than those for the non-REM stages (light and deep
sleep). Here also, thep-values are less than 0.001. Note that we do not find a significant
difference between the average exponents for REM sleep and for the intermediate wake
states. This is not surprising because heartbeat activity during REM sleep is very close
to heartbeat activity during the wake state and the heartbeat time series during REM and
wake exhibit similar scaling properties [24, 26]

More significant than the differences for the average exponents are the differences
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FIGURE 4. The values of the effective fluctuation exponentsα for the integrated sign series (a) and the
integrated magnitude series (b) are shown for all 12 healthy subjects (second night of recording). While
the α values are fluctuating, for REM sleep theα is larger than theα for light sleep, which is larger
than theα for deep sleep (the 3 arrows indicate the cases which are not ordered in the same way as the
majority). The exponent values have been determined over the fitting ranges as described in the caption
of Fig. 3. After ref. [28].

between the exponents for each individual. Figure 4 shows theα values for REM, light,
and deep sleep for all 12 healthy subjects (second night only). In almost all cases the
exponent of the REM sleep is the largest, the exponent of the light sleep is intermediate,
and the exponent of the deep sleep is smallest (there are three exceptions, indicated
by arrows). In our group of 24 records from 12 healthy individuals, we find larger
exponents in REM sleep than in deep sleep for 100% of the sign series and for 88%
of the magnitude series.

Our results suggest that the empirical “rule” mentioned above also applies to REM
sleep, while in deep sleep small and large increments seem to appear in a random
fashion. On the other hand, the stronger sign anticorrelations in deep sleep indicate
that a positive increment is more likely — even more likely than in REM sleep — to
be followed by a negative increment. Thus, the correlation behavior of the heartbeat
increments and their signs and magnitudes during daytime activity is similar to the
behavior we find in REM sleep, but quite different from the behavior we observe in
deep sleep. This is consistent with our finding [Fig. 3] of average exponent values for
the wake episodes similar to the exponent values for REM sleep.

We conclude that series with identical correlation properties can have completely
different time ordering which can be characterized by different scaling exponents for
the magnitude and sign series. Moreover, we show that the magnitude series carries
information regarding the nonlinear properties of the original series while the sign series
carries information regarding the linear properties of the original series. The significant
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decrease in the short-range scaling exponent for the sign series in heart failure may
be related to perturbed vagal control affecting relatively high frequency fluctuations.
The decrease of the long-range scaling exponent for the magnitude series of the heart
failure patients indicates weaker correlations and loss of nonlinearity which may be
related to impaired feedback mechanisms of neurohormonal cardiac regulation. Further
we observe short-range anticorrelations in the sign of the interbeat interval increments
which are stronger during deep sleep, weaker during light sleep, and even weaker during
REM sleep. In contrast, the magnitude of the increments is long-range correlated with
a larger exponent during REM sleep suggesting stronger nonlinear contributions to the
heartbeat dynamics in this stage compared with weaker nonlinear contributions in the
non-REM stages.
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