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Of particular current interest is the critical behavior of functions on crossing over from one

lattice dimensionality to another.

To this end, we report high-temperature series for an Ising

model with lattice anisotropy—i.e., with different excha.n‘ge constants for different lattice di-
rections. The Hamiltonian is ¥ ays=—Joy N85y 555 = e 2018185 ==y (Liis) S555+ R Dhiysisy)
where s;==1, the first summation is over all nearest-neighbor pairs in the xy plane, and the

second sum is over pairs coupled in the z direction.

The susceptibility, second moment, and

specific-heat series are explicitly presented for arbitrary J,y and J, for the simple cubic (sc)

and face-centered cubic (fcc) lattices to tenth order in inverse temperature.

The general-R

series are essential if one wishes to study the Riedel-Wegner crossover exponent appropriate
to changing lattice dimensionality, since for R=J, /ny=0: both the sc and fcc lattices reduce
to two-dimensional square lattices, while in the limit R— «, the sc reduces to noninteracting

linear chains.

1. INTRODUCTION

Ising-model Hamiltonians with “lattice anisotro-
py,” i.e., different exchange constants in different
lattice directions, have recently been considered
in two different but related contexts in the field of
critical phenomena. The first context concerns
testing the “universality hypothesis, ”™® which was
put forth to describe just which features of the in-
teraction Hamiltonian determine the critical indices.
For example, according to universality, the expo-
nents should retain their values for the nearest-
neighbor (nn) isotropic model Hamiltonian when
second-neighbor interactions or unequal exchange
constants on the lattice are introduced. A change
in the exponents is expected, however, when the
effective dimensionality of the system is altered. 3

In their investigations of these predictions,
various authors*™® have utilized high-temperature
series expansions to study the Ising Hamiltonian

xy 2
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where s;=+ 1, the first sum is over all nn pairs in
an x¥-y plane, and the second sum is over all nn
pairs whose relative displacement vector has a

z component, High-temperature series were ana-
lyzed for a range of values of the parameter R by
both groups. **° In one case, ° conclusions consis-
tent with universality are reached, i.e., for all

R >0 the indices are three dimensional, and at

R =0 they change discontinuously to their two-di-
mensional values. The other work® claims to find
exponents varying continuously with R for small R,
in violation of the universality hypothesis. In view
of this discrepancy in the literature (between Refs.
4 and 5), other workers should have available to

TABLE I. Coefficients a,; in reduced susceptibility series for the sc lattice,

o n
X =kpTx/Np? ?:;;:6 ayy tanh™ (8 J,,) tanh?(gJ,).
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3 4 5 6 7 8 9 10
0 1
1 4 2
2 12 16 2
3 36 80 32 2
4 100 336 240 48 2
5 276 1264 1392 512 64 2
6 740 4432 6680 3888 888 80 2
7 1972 14768 29136 23600 8544 1376 96 2
8 5172 47376 116528 124720 63216 16 080 1968 112 2
9 13492 147504 442368 593856 400032 142416 27216 2672 128 2
10 34876 448 336 1595896 2621232 2224312 1054 864 281048 42672 3480 144 2
K 365
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them series for general R in order to conduct fur-
ther tests of universality. While Ref. 4 obtained
such series only for the simple cubic (sc) suscep-
tibility X*, we present here five additional general-
R series: X™°, u3®, p3*, C¥, and Ci°, where ¥,
Lo, and Cp (the reduced susceptibility, second mo-
ment of the correlation function, and the reduced
specific heat) are defined below in Egs. (2. 1)-(2. 3), o
respectively.

The anisotropic Hamiltonian (1. 1) has also re-

ceived considerable attention in connection with a
““crossover” exponent®®” ¢ and, in our view, an
even more compelling motivation to focus upon the
general-R series is their applicability to calcula-
tions of ¢. The exponent ¢ describes the singular
behavior of the quantity T (R)~ T.(R=0) as the
system “crosses over” from one universality class?
to another, i.e., as the system approaches its
two-dimensional limit (R - 0).

To derive the equation defining ¢, we start from
the assumption that the Gibbs potential is a gen-
eralized homogeneous function (GHF) in the variable
R as well as in the variables 7= [T-T,(0)]/T,(0)
and H,

G(\% T, \“FH, \°RR)=2G(, H, R) . (1.2)

10

Equation (1. 2) is assumed to hold for all x>0 and
small values of the arguments (i.e., in the vicinity
of the two-dimensional critical point 7=H=R=0).
Now, for a given value of R;>0, the right-hand
side of (1.2) certainly has a singularity at the value
of temperature critical for a system with this R,
that is, for a value To(R) = [T (Ry) - T.(0)]/T.(0)
=CR,, where ¢ is some constant. But then by the
functional form of (1. 2), there exists an entire

line of singularities given by 7o(R)~R%/°R  or

s tanh™J (8 J,) tanh!(8J).

.

”
EgTX/NW2=), Y a,
n=0 =0

T,(R)- To(0)~RY?® (1.3)

X=

where ¢ is defined to be ag/a.,.

A second prediction of the GHF hypothesis for
the parameter R is that there exists a constant
“gap” exponent for successive derivatives with
respect to R of the thermodynamic functions derived
from the Gibbs potential. Consider, e.g., the
reduced susceptibility ¥, for which we define

any
xm = ") 1.4
X ( aR" ol . ( . )

First we find the two-dimensional susceptibility
exponent yo=— in terms of the scaling powers. To
dothis, differentiate (1. 2) twice with respect to H
and set H=0,

TABLE II. Coefficients a,; in reduced susceptibility series for the fcc lattice,

X @ (%7, 0, \*RR) = 2121 F (1, O, R). (1.5) o

Now setting A% T equal to a small positive constant,

and letting R=0, we get for the asymptotic form of e

=
x()

n

| =3

224 679 864

34 268 104
1273 786 304

5201048
174446 208
3135441872%

789032

23 593 536
380 935 552
4411 833 200*

118760
3119984
44673920
462863408
3884437 504*

17864

404 224
5045856

46 095 360
344 472640
22319411522

2648

50 304
535568
4235872
27760032
159435424
829 616 496*

392

6016
52896
353024
1987168
9942656
45593 696
195429 888

56

656

4544
24720
116 288
495 504
1964 352
7369168
26462688

320
1344
5056

17728
59072
189504
590016
1793 344

36
100
276
740

1972
5172
13492

34876
#Uncertainty in last quoted digit.
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TABLE IIl. Coefficients b,; in second-moment series for the sc lattice,
— hd n
p=Y IFI2C,® =3, z;b,,, tanh™! (8 J,,) tanh!(gJ,).
n=( f=
N 0 1 2 3 4 5 6 7 8 9 10
0 0
1 4 2
2 32 32 8
3 164 272 128 18
4 704 1696 1248 352 32
5 2708 8816 9168 4032 768 50
6 9696 40608 56160 34656 10368 1440 72
7 32948 171504 301488 245936 103328 22688 2432 98
8 107648 678432 1468704 1517408 840576 259 744 44128 3808 128
9 340916 2549552 6630368 8412544 5889248 2398416 574320 78512 5632 162
10 1052960 9193120 28179552 42859360 36779200 18910752 5966816 1149792 130368 7968 200

FO g e gon (1.8)

Differentiating Eq. (1.5) # times with respect to R
changes the scaling power on the right-hand side
by nag, so that

X (7, 0, \*RR)=\"2a"RY ") 0, R). (1.7)
Then setting R=0,

X" (1, 0, 0)~ 772 aymaRd o 7 (1.8)
where
Yn=Yo+ 1P (1.9)

Similar equations hold for the specific-heat deriva-
tives; for all »

8"Cy
aR"

E!(l")(T: 0, O)E < ) HeRe0 N[T_ Tc(o)]-m” ’

(1.10)
where

Ay = Qg+ NP (1.11)

and «, is the two-dimensional specific-heat index
a(): 0.

The same homogeneity arguments for the vari-
able R applied to the pair correlation function make
predictions for the second-moment function pu, :

n
wg" (1,0,0)= ( 8a§ﬁ) ~[T = T “o*®e™e) |
7yHa R=0

(1.12)
where vg=1, 'yo=—1— as before, and ¢ must be the
same crossover exponent as for thermodynamic
functions by virtue of the fluctuation-dissipation
theorem connecting the correlation function to the
bulk susceptibility.

Abe® and Suzuki’ first presented arguments im-
plying ¢ =y, based upon an additional assumption
concerning “scaling” properties of multispin cor-
relation functions. However, more recently ¢ has
been proven® rigorously equal to y, without making

the Abe—Suzuki assumptions. The latter work®
starts directly from the high-temperature expan-
sion of the susceptibility and considers graphical
contributions with one out-of-plane bond to show
By Eq. (1.9) it follows that if a constant
gap exponent exists it must equal y,.

Hence the general-R high-temperature series for
X, Cy, and p, serve several worthwhile purposes
with regard to the crossover problem. They are

y(l) ~ 7-270'

" useful in determining whether a constant gap index

@ exists at all, and, if it does, whether it checks
with the expected value of y,. This provides a sen-
sitive test of scaling in the parameter R for both
thermodynamic functions and the two-spin correla-
tion function. Previous work has been restricted
to the existing general-R X*°° series, * which have
been analyzed®!? by various techniques with the
conclusions in dispute. In Paper II following, !

all six functions ¥, X', C¥, C%°, u3°, and ui*®
are considered, and it is concluded there is stronger
evidencg in favor of a constant gap exponent of
P=Yo=7.

Il. METHOD OF CALCULATION

We use a computer program based upon the re-
normalized linked-cluster expansion theory of
Wortis, Jasnow, and Moore. ** The two-spin cor-
relation function C,(T)= (s¢s )~ (So)(s3) was expanded
to tenth order in inverse temperature for a range
of specific values for J,, and J, in the Hamiltonian
ty. _

From Cz(f), series for the reduced zero-field
isothermal susceptibility

X=X sy, J,):§ C,(¥), (2.1)

the “second moment” of the correlation function
Be= Na(ny,J¢)=ZF>|;IZEg(-I"), (2.2)

and reduced specific heat
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TABLE IV. Coefficients b,; in second-moment series for the fcc lattice,

> 35
n=0 =0

=

4 tanh™? (8J, ) tanh?(g J,).

By=2, ITI2C,@) =

10

128

2240
21920
159 584
964 736
5125216
24741 858

128
1088
6784

35264
162432

32
164
704

2708

1416
29120
332192
21791 232
19289 440
116102080

13568
324128
4249 984

40 609 344
316188800
21269957122

119 240
3261248
48473 696
520119872
45104456362

5
6

F. HARBUS AND H. E. STANLEY 7

992768

30639 872

509 670 048
6072599 068
58073 240 288°

9696
32948
107648

794 840

273 549 440

5038560000
66042641 872°

686016
27131728

7
8
9
10

61865 216
2349 806 1442
47492 359 200°

470875848
19572937 312P 3521954816

629 896 4162
1052960 36772480 468578816* 3150446672% 12806963 904° 33555757 568°

340916 10198208 110909 248

®Uncertainty in last three quoted digits.

bUncerl:ainty in last two quoted digits.

#Uncertainty in last quoted digit.

— — ‘] - -
Cy=CyWu, J)==3T 55 22J:C,(F)  1.3)
r

were calculated. Here the coefficients of the re-
spective high-temperature series depend upon the
particular values of J,, and J, set at the beginning
of the computer program. Given the coefficients
for eleven different combinations of J,, and J,,
we were able to solve simultaneous linear equations
to determine the general series coefficients for
arbitrary values of these parameters to tenth or-
der.

Tables I and II present coefficients a,; through
n =10 for the reduced susceptibility series

ad n
X=2 JZ& a,ytanh™ (B7,,) tanh? (87,) , (2.4)

n=0 j=i

with B=1/k5T and the a,; integers related to a class

of graphs on the lattice with (# —j) bonds in the

% -y plane and j bonds in the z direction, *

Tables III and IV present the corresponding in-
teger coefficients b,; in the second-moment series:

By = Z l’f[a-C_z('f)=i Z"Db,,,tanh""’ (BJ,y) tanh? (BJ,).
r n=0 j=0

2.5
From the double tanh expansions one may ree>({pan)d
to obtain for the coefficient of 8" a polynomial in
R through R",

While X and p, have contributions to tenth order
from correlation functions to lattice points up to
ten lattice spacings away from the origin, the
specific heat has contributions from the correla-
tion function to only the nearest neighbors of the
origin, On the sc lattice, the form for Cy is

_ [ n
C,sf - TC;C/N=Z> 2 canxyn-szj Bn-l
n=2 j=0

= 27 dy" (Cpo+ CpaRE+ o . +CopR™) B™,
neven (2. 6)
since all odd » coefficients vanish and only even

TABLE V. Coefficients c¢,; in reduced specific heat
series for the sc lattice,

— © n Rl n
Cy=TCy/N= 22 oy I pri= 3 J,’;(IEO c,,,R") - i
n=2 f= =

n=2

coefficients with » or j odd are zero.

2 2 1
4 10 24 -1
6 21% 500 20 2
8 944 5306 } 28314 4 -¥
10 3634 50688+ 81320% 546632 3 &




|3

GENERAL-R HIGH-TEMPERATURE SERIES FOR THE... 369

TABLE VI. Coefficients ¢, in reduced specific heat series for the fcc lattice,

% o n ’
Cy=TCy/N= 22 !to Cny J’?;fJi gl= 2 Iy E CnJRJ g™
n= = n=2 i=0

coefficients with j odd are zero.

N 0 2 4 6 8 10

2 2 4

3 0 48

4 10 240 140

5 0 10662 21333

6 214 3920 18 680 39622

7 0 13484 4 123946 2 88942}

8 94 4 43655 ¢ 693 441 % 1109895 4 124004 %

9 0 135789 4 3437056 101472422 3708635

10 363 12 406877 4 15538 010% 75708 8422 60036413 & 4127967 §
11% 0 1186 519,99 65349 340.11 487998 490. 56 696 672551.98 153890 822.39

2Computer round-off error was too great to allow determination of the exact fractions for the » =11 coefficients.

powers of R enter for the even#, For the fcc,
odd-order # are now nonzero as well:

n
- -1
on Coygd ey T3 "

Ms

Ciee = TCEY/N =

n

n
o

o«
=20 Juy" (€pgR24 CpgR 4 - - +C oy R™) B™1,
n=2

(2.7
where n’=n if n is even, n’=n— 1if n is odd. Here
Ccn0=0, and again only even powers of R contribute.
The specific heat coefficients ¢,; appear in Tables
V and VI.

III. CHECKS ON SOLUTIONS

The series in the limits R=0 and R =% are known,
as is the isotropic R=1 case. For R=0, both the
anisotropic sc and fcc lattices reduce to two-dimen-
sional square lattices. The R=co limit (J,, = 0,

J, finite) on the anisotropic sc gives a set of non-
interacting one-dimensional linear chains, and on
the fcc it gives a body-centered cubic (bcc) lattice.

We verified that the general series for X, p,,
and C, reproduced the expected known series in
all cases. For example, reading down the “zeroth”
column in any table gives the Ising-square-lattice
series, while summing the numbers in a given row
across corresponds to R =1 and yields the appro-
priate coefficient for the respective isotropic lat-
tice (sc or fcc).14 Reading the last entry in each
row down a table checks the R= limits—for ex-

ample, we immediately recognize the familiar
linear chain results in the sc susceptibility table
(cf. Table I).

Further checks on the tabulated numbers are
provided by the very recent rigorous results of
Liu and Stanley, ® who show

XY = g8y (X ),

pa® =g BT [R)2 2K 1),

where g is the number of out-of-plane nn bonds
(g=2, 8for the sc, fcc, respectively). Here, of
course, X and uz‘o’ are the reduced susceptibility
and second moment for the square lattice (obtained
by reading down the zeroth column), and ¥ and
1o are as defined in Egs. (1.4) and (1.12). We
have verified that the numbers in Tables I-IV satis-
fy Egqs. (3.1) and (8. 2).

Note added in proof. The reader will note that
all the entries except the main diagonal and the
first column of Tables I and III (sc lattice) are
divisible by 8, while for Tables II and IV (fcc lat-

(3.1)

(3.2)

tice) they are divisible by 186.
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Series for the reduced susceptibility X, the reduced specific heat (_3,,, and second moment
Ko of the static correlation function for the three-dimensional S=% Ising model on both the
simple cubic (sc) and face-centered cubic (fcc) lattices with different coupling strengths in
different lattice directions have been analyzed to determine the crossover exponent ¢ describ-
ing the behavior of the critical temperature as a function of the anisotropy parameter R in
the Hamiltonian 5= —J,, 5%y 5;5; =g D0ijy SiSy = —Jyy (28, i85 +RY 515y 518;) . Here s;=2 1,
the first sum is over all nearest-neighbor pairs in the xy plane, and the second sum is over
all pairs coupled in the z direction. The constant gap exponent we obtain for successive de-
rivatives of ¥ and Cy with respect to R confirms the exponent predictions of scaling in the
parameter R for thermodynamic functions, while the results of the u, series confirm the ex-
ponent predictions of scaling with respect to R for the two-spin correlation function. Our
results agree with the predictions for ¢ of Abe and Suzuki, and also with rigorous relations
satisfied by the exponents describing the derivatives of the various functions. Our results
do not agree with previously published results, which are based on an analysis of only the

susceptibility on only the sc lattice.

I. INTRODUCTION

Interest has recently focused'™ on magnetic
model systems with different coupling strengths in
different lattice directions (“lattice anisotropy ”)
described by the Hamiltonian

Xy

Z
¥==d,, 2 $;8;=d, 2 548,
(1) (15

Z
E—ny< 3 $;S;+R 23 s,s,), (1.1)
m

(is)
thereby defining R=J,/J,, as the ratio of inter-
planar to intraplanar coupling strengths. Here
s;==1, the first sum is over nearest-neighbor (nn)
spins in the xy plane, while the second sum is over
spins whose relative displacement vector has a z
component. The Hamiltonian (1. 1) has previously
been studied'™ with two purposes in mind: (a) to
test the predictions of the “universality hypothe-

sis,”® and (b) to examine critical behavior upon
crossing over from a three-dimensional to a two-
dimensional lattice as R—~0. Of particular interest
is the “crossover exponent” ¢ giving the variation
of critical temperature T,(R) with R for small R,

T,R)- T,(0)~RY"*, (1.2)

and its relation to various scaling predictions.

In the preceding paper! (hereafter referred to as
Paper I), the reduced susceptibility ¥, the reduced
specific heat Cj, and the second moment L, were
defined, and high-temperature series for arbitrary

- R were presented for these quantities on both the

sc and fcc lattices, The implications of scaling of
thermodynamic functions and of the pair correlation
function with respect to the parameter R were dis-
cussed. In particular, the consequences of assum-
ing the Gibbs potential to be a generalized homo-
geneous function (GHF) of the variables 7= T



