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Scaling with a parameter, in contrast to ordinary scaling theory, makes predictions concerning
amplitude functions as well as critical-point exponents. We provide the first test of these predictions,
by examining the dependence of the amplitude on the anisotropy parameter R =J,/J xy for the
susceptibility and the second moment of the simple cubic and fcc Ising models with directional
anisotropy. The “double-power-law” behavior found strongly supports the scaling predictions for
thermodynamic functions and the two-spin-correlation function. Our analysis provides a measure of the
ranges of R over which parameter scaling appears to hold for the simple cubic and fcc lattices. The
relative domains of validity on the two lattices are interpretable in terms of the respective lattice

structures.

The scaling hypothesis for thermodynamic func-
tions and the two-spin-correlation function makes
predictions about critical-point exponents but no
predictions about the behavior of the amplitudes of
these functions as the critical point is approached.
However, an additional scaling hypothesis is pos-
sible at special symmetry points where a system
changes its exponents (i.e., crosses over from one
universality class! to another) upon variation of a
parameter R in the Hamiltonian,? The restrictions
imposed by the simultaneous validity of both hypoth-
eses lead to the prediction that functions possess
amplitudes singular in R besides the usual singu-
larity along the critical line T,(R). We call the re-
sulting product of two singular factors a “double-
power” law.

Such laws have been discussed for three different
systems: (i) Riedel and Wegner? treated magnetic
systems with spin anisotropy, where the spin sym-
metry is subject to variation between the Ising and
Heisenberg limits. (ii) Double-power laws were
later proposed®* for the Ising model with lattice
anisotropy (different coupling strengths J,, J,,
in different lattice directions). Here varying the
anisotropy parameter REJ,/J,,, changes the lattice
dimensionality from three to two, (iii) Double-
power laws are also predicted by scaling to occur
for systems displaying tricritical points (e.g.,
metamagnets, He®-He* mixtures),’=’

Whereas the exponent predictions have received
considerable attention, there has to date been no
confirmation of the amplitude predictions. In this
work we test double-power laws near a symmetry
point both for thermodynamic functions and for the
two- spin-correlation function C,(r) = (sgS2) — (Sp){(s#).
Specifically, we employ high-temperature series
expansions to study the amplitudes A,, A, of the
susceptibility x and the second moment of the two-
spin correlation function p,= 3z 2C,(r) for the
Ising model with directional (or “lattice”) anisot-
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Here the first sum is over nearest-neighbor (nn)
spins coupled in an xy plane and the second sum is
over nn spins whose relative displacement vector
has a z component. For R=0 both the fcc and
simple cubic (sc) (d=3) lattices reduce to uncoupled
square (d=2) lattices.

The double-power laws for (1) that are tested in
this work are*

X~R"D/ [T T (R)]” (2a)

and
ua.,R[wzv-(%ZV) i o[T_ TC(R)]-U*ZU) , (2b)

where barred and unbarred exponents refer, re-
spectively, to d=2 and d=3 lattices. The con-
ceptual basis of these laws should be made clear
by the following derivation of Eq. (2a).®

We first make the following scaling hypothesis
about the point R=0: The Gibbs potential G
=G(T,H,R) is a generalized homogeneous function
(GHF) in magnetic field H, 7=T- T,(R=0), and
R, i.e., for all A>0, there exist three positive
numbers a,, ay, ag such that

GOHH, X7, °rR) = \G(H, T, R) . (3)
Since Eq. (3) holds for R=0, the exponents for a

d=2 lattice are expressible in terms of the
“scaling powers” ay, a,. Equation (3) implies®

y0=F2(y1,y2) , (4)

where yo=G/RY %, y,=H/R®# % and y,=7/R¥/%.
The scaled variables y,, y;, y, are invariant under
the transformations (parametrized by 1) G’ =G,
H'=X*H, 7 =X:7, and R’ = ¥rR, Equation (4)
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gives the critical line T (R) as y{* =0, y$® =const
=7 /R¥/ % or T (R)- T,(0)=const RY *, with
¢=ag/a,. Independent arguments®*°® yield ¢=7.
The second scaling hypothesis is about points
on the critical line, It is valid within the cross-
over region (cf. Fig. 1), and expresses invariance
properties with respect to a second group of trans-
formations parametrized by p. In order that the
resulting scaling equation be consistent at small
fixed R with (3), we cast it in terms of the invari-
ants y,, y;, and y,, thereby ensuring that only
changes in the y; are important. The distance from
the critical line at finite R in the H=0 plane (of the
H-T-R field space) may be measured by 7
=T/(R*/ %)~ k=y,- k. We now define a new func-
tion Gly,, vy, —k)= Fy(yy,v,), and postulate that G is
a GHF with scaling powers ay and a,, the appro-
priate d=3 scaling powers (e.g., for the Ising
model, ay ~}, a, ~%, while ay=4, a,=3). Thus

Gty p*tlyz=k))=pGlyy, y2—k). (5)
From Eq. (5) it follows that

Glyy, y2—k)= (92 —k)Y *Fy (y,/y"4 °r). (6)

Rewriting, we obtain

E(H, ?,R)=R1/‘TR (?/R‘-r/‘rn - B ey

1
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| |
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R—
FIG. 1. Schematic diagram of the H-T-R “field” space

for H=0. Shown are the critical lines T5°(R) and T**(R).
[T,(0) is the square-lattice critical temperature]. The
shaded regions denote the crossover regions within which
two scaling hypotheses should be simultaneously valid.
The “ cutoffs” at R =0, 015 and R =0, 050 for the fcc and
sc lattices, respectively, are based upon considerations
discussed in the text (cf. Fig. 2). The vertical dotted
arrow corresponds to an experiment (or series analysis)
at a fixed R=R,. The crossover region is appreciably
broader for the fcc than the sc (cf. text).
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Next, differentiation with respect to H and setting
H=0 results in

(8)

7 (1-2a,)/ o,
T

~ pll=2f )/ & _
X R H R(WR— k

Finally, upon using the relations - ¥= (1 - 2a,)/ a,,
-v=(1-2ay)/a,, and v=a,/a =7, we arrive at
Eq. (2a).

The analogous double-power law for u,, Eq. (2b),
is obtained in the same fashion beginning with the
two GHF hypotheses for C,(H,7,R,T). Upon sub-
stituting the numerical values for the d=2 and
d=3 Ising models,®y=¢=%}, v=1, y=%, v=~0.638,
we find A,(R)~R"¥", A,(R)~ R,

The amplitudes for (1) were calculated from
general-R high-temperature series for a range of
R from 0. 001 to 0. 100 on the sc and from 0. 001
to 0. 050 on the fcc. ! For any given value for R,
the following procedure for obtaining the A,(R) was
used. First, the universality prediction of a con-
stant § power-law divergence is assumed, so that
the series [x(R)]" ® should show a simple pole at
T,(R). After forming the series [x(R)]¥ °, we fit
it by Padé approximants (PA’s). From the re-
sulting Padé table of singularities, we determine
the critical temperature Tc(R) and the correspond-
ing residue [A,(R)]¥ %, predicted by (2a) to vary as
R-0-229

An identical procedure is carried out on the
u2(R) series, except here the PA’s are to the
series raised to the inverse of (y+2v)~2, 526,

The PA’s to [p,(R)[Y ¢”*3 again should converge to
the critical temperature T,(R), with a residue at
the pole of [A,(R)]Y 2528, The residue is pre-
dicted by (2b) to vary as R-%-277,

Figure 2 displays (for both the sc and fcc lattices)
log-log plots for Ay versus R and A, vs R. As
expected, series convergence was generally better
for larger R values. Our estimates of the error
bars for the amplitudes are based on the extent of
convergence of the Padé tables. Where no explic-
it error bars are indicated, the size of the points
may be taken to represent an upper limit on the
uncertainty. Although estimates of the T,(R) from
the x and p, Padé tables are fairly consistent with
each other, the convergence of the x Padé is al-
ways superior. Therefore, the T, determined from
the x series is used in the evaluation of the A,.
The straight lines in the plots are the theoretical
scaling predictions.

a. Susceptibility amplitudes A,, Examining
first the A, plots of Fig. 2(a), we see that a line of
slope 0. 229 appears to provide an excellent fit on
the fcc lattice in the range from R =0, 004 - 0. 015,
and on the sc from R=0,01-0.05. Points begin
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to fall below the line for R outside these intervals,
The deviation at higher R may be explained by the
fact that the scaling hypothesis in the parameter

R is assumed to hold about R =0 and has diminishing
validity for increasing R. Indeed, the estimates
given above give some indication of how far out

in R the scaling hypothesis in R holds. Why the

sc seems to scale in R further out than the fcc may
be understood from consideration of the respective
lattice structures. The fcc has four in-plane (xy)
bonds and eight out-of-plane (z) bonds. In the sc,
the ratio is exactly reversed, with four in-plane
and only two out-of-plane bonds. Hence, it is
quite plausible that two-dimensional behavior ap-
pears to set in sooner for the sc than the fcc as R
is decreased. More precisely, the sc is more
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“two-dimensional” in character than the fcc in the
sense that, for a fixed small value of R, one must
get closer to T,(R) to find out the lattice is really
three dimensional (cf. Fig. 1). We therefore ex-
pect the range of influence of R scaling to be
greater for the sc than the fcc.

The deviations at small R we attribute to the
failure of the finite high-temperature series to
locate the correct critical temperatures. The se-
ries in this region overestimate the 7,(R) and
hence underestimate the amplitudes, and they be-
come steadily worse for decreasing R. As the
crossover region shrinks, an increasing number of
series coefficients would be required to effectively
penetrate the crossover region and locate the true
critical temperature (cf. Fig. 1). For the same
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FIG. 2. (a) Log-log plot
of the susceptibility ampli-
tude [A4,(R)]*/® vs R. Upper

Ol points are data from sc
series, lower from fcc se-
ries. Straight lines shown
have slope of Y[ty —=¥)/ ]
=-0, 229, as predicted by
scaling theory. (b) Log-

1/2.526

log plot of amplitude
[4,(R)]}/%%26 ys R, Upper
points are sc series data,
lower are fcc data,
Straight lines have slope
of @v+y)t(2v+y-2v-7)/
@]1=-0.2717.
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FIG. 3. Log-log plot of 7@ (R)=kp[ T (R) — T,(0)]/Jy
vs R. Upper points are data from fcc series, lower from
sc series. Straight lines have slope of ¥"1=4, as pre-
dicted by parameter scaling exponent relatiorle that 7©
~R'%, plus the rigorous result that ¢ =7.

reasons stated in the last paragraph, one expects
such deviations at small R to occur earlier (i.e.,
at larger R) for the more “two-dimensional” sc
lattice than for the fcc, and this we indeed observe.
It is to be noted that the error bars for the
points at very small R are inconsistent with the
scaling prediction. This is because the Padé€ ta-
bles have converged to some extent, but not to the
true T,(R). We emphasize that as R gets smaller,
any small error in T,(R) is amplified in the corre-
sponding amplitude A(R) since both A, and 4, di-
verge as R—~0. The amplitudes should be dis-
counted when the T,(R) from which they are calcu-
lated are no longer reliable. As an independent test
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on the accuracy of the T,(R), we have used the ex-
ponent parameter scaling prediction that T ©
=[T,(R) - T,(0)] ~RY/® = R'/?, The exponent scaling
predictions for this model have been strongly sup-
ported by previous numerical work.'? On a log-log
plot of 7 vs R, a line of slope 1/7=- fits the
small-R data well down to R £0.002 on the fcc and
to R =0, 010 on the sc (cf. Fig. 3). These values
therefore are estimates below which the amplitudes
should be regarded as unreliable.

b. Second-moment amplitudes A,. The A, plots
of Fig. 2(b) are again well described by the theo-
retical scaling prediction over a significant range
of R values. A detailed analysis for the sc in-
dicates that the scaling prediction fits the series
data further out in R than for A,; for small R, the
deviation sets in at R=0,015. For the fcc A, data,
the region where the scaling line provides an ex-
cellent fit is also shifted slightly to the right com-
pared to the A, plot. The correct T,(R) for very
small R should, for the reasons explained above,
raise the A, closer to the theoretical prediction
on both lattices.

In conclusion, the results from series analysis
provide strong evidence supporting the double-pow-
er-law predictions, Eqs. (2a) and (2b), for the
Ising model with directional anisotropy. These
results constitute the first such test in the litera-
ture and include both thermodynamic scaling and
correlation function scaling. Further numerical
(and experimental) studies on double-power laws
for models (and real materials) with crossover
behavior would be very welcome, **
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FIG. 1. Schematic diagram of the H-T-R *“field” space
for H=0, Shown are the critical lines T5°(R) and T'*(R).
[T.(0) is the square-lattice critical temperature]. The
shaded regions denote the crossover regions within which
two scaling hypotheses should be simultaneously valid.
The ““ cutoffs” at R =0. 015 and R =0. 050 for the fec and
sc lattices, respectively, are based upon considerations
discussed in the text (cf. Fig. 2). The vertical dotted
arrow corresponds to an experiment (or series analysis)
at a fixed R=Ry. The crossover region is appreciably
broader for the fcc than the sc (cf. text).



