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h i g h l i g h t s

• We construct the empirical information network (EIN) using SZSE stock data.
• The statistical validated EINs are obtained.
• The raw EIN exhibits a disassortative mixing pattern.
• The statistically validated EIN is assortative.
• The properties of the giant components of EINs are investigated.
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a b s t r a c t

We construct the empirical information network (EIN) of traders using the order flow
data of the constituent stocks of SZSE 100 Index in 2013. A statistical validation method
is applied to the edges of the network to filter out noises and uncover the intrinsic
interaction behaviors of traders. We investigate the correlation between topological
structures and statistical properties for their largest connected components. We find that
the statistical validated network shows an assortative mixing pattern while the original
network exhibits a disassortative mixing pattern. We consider two definitions of edge
weight for comparison but there is no significant difference in a same network. We also
analyze the mutual relationships among node degree, edge weight and node strength.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Financial markets are heterogeneous complex systems where the trading behaviors of traders are influenced by the
structure of the underlying network [1,2]. Network theory provides us a promising tool to detect how diverse information
signals diffuse over time among traders [3,4]. Information networks play a crucial role in the functioning of financial
markets [3,5–7]. Ozsoylev et al. proposed an empirical information network (EIN) to identify the trading behavior in

∗ Correspondence to: 130 Meilong Road, P.O. Box 114, School of Business, East China University of Science and Technology, Shanghai
200237, China.

E-mail address: wxzhou@ecust.edu.cn (W.-X. Zhou).

https://doi.org/10.1016/j.physa.2019.03.010
0378-4371/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physa.2019.03.010
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2019.03.010&domain=pdf
mailto:wxzhou@ecust.edu.cn
https://doi.org/10.1016/j.physa.2019.03.010


748 R.-Q. Han, M.-X. Li, W. Chen et al. / Physica A 523 (2019) 747–756

the entire stock market. They validated that the EIN captures information diffusion, which is suitable for mapping out
the structure of true information networks. They found extensive evidence of frequent communication information
exchange among stock market traders [4]. Feng and Seasholes found that Chinese trades are highly correlated when
divided geographically, consistent with local communication among traders [8]. Chung et al. considered information flow
as directional and compute the centralization of each firm’s trader network as the proxy for information diffusion [9].

The concept of EIN is relevant to but different from trading networks, which are constructed based on equity
transactions [10,11]. Some structural properties of trading networks have been investigated [10,12], which are correlated
with some financial variables [13]. Trading behaviors are hidden in trading networks [14,15]. Hence, trading network
analysis has the potential to distinguish manipulated stocks [16], identify abnormal network motifs suggesting possible
stock manipulations [17], and predict stock price [18].

The availability of high frequency data and computational capacity of processing them provide us the opportunity
to the large complex network analysis. However, uncovering informative structures of the underlying system has
been constrained by the problem of filtering out spurious information in large-scale weighted network with strong
heterogeneity [19]. Tumminello et al. introduced a filtering method for the spurious links by a statistical validation
test in bipartite complex networks [20]. This method has been used in many different complex systems. Based on the
co-occurrence of the trading activity of the traders of Nokia stock, the statistically validated method has been applied
to identifying the clusters of traders and inferring their trading strategies [1]. Li et al. utilized the approach to the
communication network constructed from mobile call records and performed a comparative analysis for the statistical
properties of the original and the Bonferroni networks [21,22].

In this paper, we follow Ref. [4] to construct the empirical information network (EIN) based on traders’ trading records
on the constituent stocks of the SZSE 100 Index in 2013. Our investigations focus on the correlation between topological
structures and statistical properties. We apply the Bonferroni filtering [20] to the empirical information network and
find significant differences in the statistical property between the original and Bonferroni networks. For example, the
statistically validated network becomes assortative, while the original network exhibits a disassortative mixing pattern.
The rest of this paper is organized as follows. Section 2 describes the data set and the Bonferroni network method used
in this work. Section 3 investigates the basic network characteristics and Section 4 studies the mutual correlations among
them. Section 5 discusses and summarizes the results.

2. Statistically validated empirical information network

We use the order flow data of the constituent stocks of the SZSE 100 Index over a period of 12 months (238 trading
days), from 4 January 2013 to 31 December 2013. The SZSE 100 Index focuses on the large-cap sector of the market and
consists of the top 100 A-share listed companies listing and trading on the Shenzhen Stock Exchange (SZSE) of China
ranked by total market capitalization, free-float market capitalization and turnovers. There are 381,345 active traders
trading the 100 stocks during the sample period. To protect the privacy of traders, each trader is identified by a surrogate
number following the order of trading time. For each trading day, we construct the daily trader information network
where nodes are traders. We connect two traders with an undirected link if and only if traders i and j trade the same
stock in the same direction at least three times within a time window of ∆t = 1 min [4]. We can quantify the weight of
edge (i, j) as the number of times of trading the same stock in the same direction within ∆t = 1 min for the two traders.

We construct the empirical information network with nodes covering all the traders during the whole year. An edge
is drawn between the traders i and j as long as they were connected for at least once in any trading day of 2013. There
are two definitions for the edge weight. The number-of-days based edge weight wD

ij is total number of daily networks in
which the traders i and j are connected. The number-of-times based edge weight wT

ij is the cumulative sum of the edge
weights between i and j in all the daily networks. The empirical information network has 381,345 nodes and 8,134,541
edges, containing 2357 components. There are 376,242 nodes and 8,130,953 edges in the giant component (GCEIN) of the
EIN.

For each edge in the network, we perform a statistical test to check whether the edge is statistically validated against
a null hypothesis assuming the heterogeneity of random matching among traders. Edges that fail to reject the null
hypothesis are removed together with the nodes that become isolated. The statistical test is implemented as follows.
We define N as the sum total of all the edge weights in the network. Let us denote Ni (Nj) as the sum of weights of the
edges incident to the node i (j). Nij is the weight of the edge (i, j). Assuming that X is the number of days (times) when we
observe the co-occurrence of trading behavior of two traders, the probability of observing X days (times) for the traders
i and j is described by the hypergeometric distribution [20,23]

H(X |N,Ni,Nj) =
CX
Ni
C
Nj−X
N−Ni

C
Nj
N

, (1)

where CX
Ni

is a binomial coefficient. We can associate a p-value to the observed Nij as follows:

p(Nij) = 1 −

Nij−1∑
X=0

H(X |N,Ni,Nj). (2)
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Fig. 1. Edge weight distributions for the GCEIN (blue) and the SVGCEIN (red) based on two different edge weights. (a) Distributions of number-of-days
based edge weight wD . (b) Distributions of number-of-times based edge weight wT .

The test assigns a p-value to each pair of traders. We compare the p-values with a statistical threshold p. When a large
number of statistical tests are performed simultaneously, the validity of the statistical test can be decreased by massive
false positives unless a multiple-hypothesis test correction is used. In this case, we use the Bonferroni correction which
is the strictest amongst all possible corrections controlling the familywise error rate [22]. The Bonferroni correction for
the multiple testing hypothesis is pb = 0.01/NE , where NE is the number of performed tests. If the estimated p(Nij) is less
than the statistical threshold pb, we keep the edge between i and j in the statistically validated network. When the test
does not reject the null hypothesis, the edge between two nodes is removed.

Comparing the different influences to the Bonferroni network, we perform the statistical validation on the edges of
GCEIN based on the two definitions of edge weights. In Fig. 1(a) and (b), we show the edge weight distributions of wD

ij
and wT

ij respectively. Fig. 2(a) presents number of links as a function of the p-value for the EIN. The red symbols describe
the histogram for all links. Symbols of different color refer to the number of links of pairs of traders with weight wD

ij
equal to 1 (green), 5 (purple), 10 (blue), 20 (yellow) and 40 (black). The vertical line indicates the Bonferroni threshold.
Links located to the left of the threshold are reserved in the Bonferroni network. The network is obtained by considering
the entire period. We find that the links with weight wD

ij = 1 are characterized by a p-value which is larger than the
Bonferroni threshold (indicated as a vertical line). The links that are filtered out from the GCEIN comprise essentially all
the links with weight 1. In Fig. 2(b), only part of the links with minimum weight wT

ij = 3 are filtered out from the GCEIN.
The links with minimum weight cannot reflect the interaction between the traders. We choose the edge weight wD

ij for
the statistical tests. The statistically validated network (SVGCEIN) of GCEIN has 25,244 nodes and 254,281 edges. The giant
component GCSVGCEIN of SVGCEIN has 20,542 nodes and 227,855 edges.

3. Node and link properties

3.1. Degree distribution

For the undirected networks, The degree is the number of links connected to the node. In terms of the adjacency matrix
A = (aij), the degree of a node i is defined as

ki =

∑
j

aij. (3)

Fig. 3 shows the degree distributions of the two giant components GCEIN and GCSVGCEIN. We can find that the
two degree distributions have no power-law property. Due to the fat tails, neither normal distribution nor exponential
distribution is suitable for fitting them. For the k < 100, the two distribution curves are very similar and share quite a
few common features. The degree distribution of the GCSVGCEIN declines fast at the tail and the largest node degree of
the GCSVGCEIN is much less than the GCEIN. Compared with the GCSVGCEIN, the GCEIN has a larger proportion of the
high-degree nodes.

3.2. Mixing patterns

In most cases social networks are considered to be assortative, which means that people with many friends are
connected to others who also have many social contacts. This gives rise to degree-degree correlations in the network,
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Fig. 2. Number of links as a function of the p-value for the GCEIN based on two different edge weights. The red symbols describe the histogram
for all links. The vertical line indicates the Bonferroni threshold. (a) number-of-days based edge weight wD . Symbols of different color refer to the
number of links of pairs of traders with weight wD

ij equal to 1 (green), 5 (purple), 10 (blue), 20 (yellow) and 40 (black). (b) number-of-times based
edge weight wT . Symbols of different color refer to the number of links of pairs of traders with weight wT

ij equal to 3 (green), 5 (purple), 10 (blue),
20 (yellow) and 50 (black).

Fig. 3. Degree distributions of the largest connected components of the EIN and the SVGCEIN.

suggesting that the degree of a node positively correlates to the average degree of its neighborhood. The average nearest
neighbors degree of a node i is defined as

knn,i = (1/ki)
∑
j∈Ni

kj, (4)

where Ni denotes the neighborhood of node i. By averaging this value over all nodes in the network for a given degree k,
one can calculate the average nearest neighbors degree denoted by ⟨knn|k⟩ [24,25]. A network is said to be assortatively
mixed if ⟨knn|k⟩ increases with k and disassortatively mixed if it decreases as a function of k [26].

Fig. 4(a) presents the dependence of ⟨knn|k⟩ as a function of k for the giant components of GCEIN and GCSVGCEIN.
We find that GCEIN exhibits a disassortative mixing pattern for the decrease of ⟨knn|k⟩ with the increasing degree k.
For the GCSVGCEIN, the ⟨knn|k⟩ function shows a slow rise tendency and the curve becomes horizontal gradually. The
statistically validated network GCSVGCEIN becomes assortative indicating that it has characteristics similar with social
networks. The disassortative behavior of the GCEIN implies that the majority of the links are randomly formed so that
highly active traders trade usually simultaneously with less active retailer traders. In contrast, the GCSVGCEIN contains
statistically validated links which very possibly represent the mutual contacts between informed traders. The traders in
the statistically validated EIN form a true social network that could be institutions or individuals with frequent information
exchanges and active traders are more likely to exchange information with other active traders [17,27].
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Fig. 4. (a) Average nearest neighbor degree ⟨knn|k⟩ as a function of degree k for the GCEIN and the GCSVGCEIN. (b) Weighted average nearest
neighbor degree ⟨kDnn|k⟩ and ⟨kTnn|k⟩ as a function of degree k for the GCEIN and the GCSVGCEIN.

We also calculate two weighted average nearest neighbors degrees defined as [28]

kDnn,i =

∑
j∈Ni

kjwD
ij

sDi
, (5)

and

kTnn,i =

∑
j∈Ni

kjwT
ij

sTi
, (6)

where wD
ij is total number of daily networks where the traders i and j are connected, and wT

ij is the cumulative sum of the
edge weights in the daily networks where the two traders are connected. We average these two weighted degrees over
all nodes with the same degree k to get ⟨kDnn|k⟩ and ⟨kTnn|k⟩, which measure the effective affinity to connect with neighbors
of a given degree while taking the magnitude of the interactions into account. Fig. 4(b) shows the relationship between
weighted average nearest neighbors degrees and the degree k. We note that there is no significant difference between
the two curves based on two definitions of edge weight. The weighted curve of the GCSVGCEIN shows the similar trend
as that in Fig. 4(a). For the GCEIN, weighted average nearest neighbors degrees ⟨kDnn,i|k⟩ and ⟨kTnn,i|k⟩ decrease slowly as k
grows. The curve tends to be steady in the middle and then slowly increases, showing a decline trend near the tail.

3.3. Link weight

We have defined two kinds of weight for each edge to quantify the strengths of the link (i, j) between two traders. The
edge weight wD

ij (w
T
ij ) denotes the number of days (times) when we observe the co-occurrence of trading behavior for the

traders i and j. Fig. 5(a) presents distributions of edge weight wD for the GCEIN and the GCSVGCEIN. It can be seen that the
distribution for the GCEIN exhibiting a decreasing trend cannot be exactly described by power law. The distribution for
the GCSVGCEIN shows a short increasing trend for small values of wD < 4. After reaching the maximum, the distribution
curve declines as wD increases. The proportion of the minimum weighted links is much lower in comparison with the
GCEIN. It is revealed that the statistical validation test has filtered out the majority of links with very small weight.

The distributions of number-of-times based edge weight wT are shown in Fig. 5(b). We notice that the overall shapes of
the distributions are qualitatively similar to that of number-of-days based weight wD for each network. The distribution for
the GCEIN presents an general decreasing trend and fluctuates slightly for the smaller values, whereas the distribution for
the GCSVGCEIN is approximately increasing with slight fluctuations and then shows a pronounced decrease after reaching
the peak.

3.4. Node strength

For each node i in the weighted networks, we define two strengths of the node corresponding to the number-of-days
and number-of-times based edge weights respectively:

sDi =

∑
j∈Ni

wD
ij , (7)
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Fig. 5. Edge weight distributions for the GCEIN and the GCSVGCEIN based on two different edge weights. (a) Distributions of number-of-days based
edge weight wD . (b) Distributions of number-of-times based edge weight wT .

Fig. 6. Node strength distributions for the GCEIN and the GCSVGCEIN based on two different edge weights. (a) Distributions of number-of-days
based node strength sD . (b) Distributions of number-of-times based node strength sT .

and

sTi =

∑
j∈Ni

wT
ij . (8)

We investigate the node strength distributions for the two networks.
The distributions of number-of-days based node strength sD are shown in Fig. 6(a). Both distributions of node strength

exhibit a decline trend with fat tails. We observe a broader tail for the distribution of the GCSVGCEIN with a rapidly
decaying trend close to the end when compared to the GCEIN. The nodes with minimum strength in the original
network were removed by the statistical validation method. Thus the proportion of the nodes with larger strength for
the statistically validated network increased. Given that more than 90% of links have been filtered out from the original
network, the largest value of node strengths for the GCSVGCEIN is far less than that of the GCEIN.

Fig. 6(b) shows the distributions of number-of-times based node strength sT for the two networks. Qualitatively similar
to that of number-of-days based node strength sD in Fig. 6(a), both distributions of number-of-times based node strength
decrease with respect to sT . The distribution of the GCEIN exhibits an obvious breakpoint at sTij ≈ 5. It indicates a sharp
decline for the proportion of the nodes with strength sTij ≈ 5.

3.5. Summary statistics

The giant component GCEIN contains 376,242 traders classified into three categories: institutional traders, individual
traders and others according to the trader type. There are 7843 institutional traders and 360,922 individual traders
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Table 1
Summary of the average values and the standard deviations of the statistics for different categories of traders.

GCEIN GCSVGCEIN

Institution Male Female Institution Male Female

num 7843 216840 144082 996 11876 7217

ki mean 273 40 37 17 24 21
std 1179 202 181 27 42 38

knn mean 3854 3948 3930 47 81 78
std 4753 6344 6341 47 53 53

kDnn mean 4184 4047 4025 55 95 91
std 4879 6377 6376 56 60 61

kTnn mean 4308 4074 4052 54 97 93
std 4957 6397 6398 56 61 62

sD mean 534 78 66 396 378 324
std 2360 656 526 874 1178 1011

sT mean 2040 269 228 1806 1463 1262
std 8760 2452 1962 3883 4882 4223

sDnn mean 7645 8111 8055 1433 1701 1625
std 9891 13259 13243 1883 1663 1653

sTnn mean 27970 29733 29529 6246 6943 6597
std 36357 48744 48698 8110 7017 6914

EC mean×103 0.252 0.135 0.110 0.086 1.124 0.990
std×103 1.246 1.781 1.428 1.118 7.343 6.826

including 216,840 male traders and 144,082 female traders. The GCSVGCEIN contains 996 institutional traders and 19,093
individual traders including 11,876 male traders and 7217 female traders. We summarize the average value and standard
deviation of the statistics for each type of traders in Table 1. The average node degree and node strength of institutional
traders in the GCEIN are significantly larger than that of individual traders, implying that the nodes corresponding to
institutional traders tend to be connected with more nodes, but the similar results cannot be observed in the GCSVGCEIN.

4. Mutual relationship

4.1. Node strength and its average nearest node strength

In addition to the degree-degree correlations for nodes, we also consider to study the correlations between node
strengths. The average nearest neighbor strengths of a node i are defined as follows,

sDnn,i = (1/ki)
∑
j∈Ni

sDj , (9)

and

sTnn,i = (1/ki)
∑
j∈Ni

sTj , (10)

By averaging the values of sD and sT over all nodes with a given strength s in the network, we can calculate the average
strength of nearest neighbors ⟨sDnn|s

D
⟩ and ⟨sTnn|s

T
⟩.

Fig. 7(a) shows the dependence of ⟨sDnn|s
D
⟩ as a function of sD for the GCEIN and the GCSVGCEIN. We observe a

decreasing trend for the ⟨sDnn|s
D
⟩ curve of the GCEIN. It suggests that the nodes with large values of sD prefer to be

connected to those of small strength. The curve of the GCSVGCEIN increases sharply for small sD < 10 and then shows a
very slow rise for large values of sD.

We also plot ⟨sTnn|s
T
⟩ as a function of sT for the two trader networks in Fig. 7(b). The ⟨sTnn|s

T
⟩ curve shares a similar

shape with the ⟨sDnn|s
D
⟩ curve in Fig. 7(a) for each network. We can see different behaviors between the ⟨sTnn|s

T
⟩ curves

of the original network and its statistically validated network. Whereas the ⟨sTnn|s
T
⟩ curve of the GCEIN declines with

sT , the ⟨sTnn|s
T
⟩ function for the GCSVGCEIN goes up rapidly for sT < 20 and exhibits a slight increasing trend for large

values. For the statistically validated network, The average numbers of times of the trading behavior co-occurrence for
the high-strength traders are larger than that of low-strength traders.

The quantitative differences between the corresponding curves in Figs. 4 and 7 are naturally due to the differences in
the variables. We stress that qualitative similarity between the corresponding curves and argue that the patterns in Fig. 7
have the same origins as these in Fig. 4.
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Fig. 7. (a) Average number-of-days based node strength ⟨sDnn|s
D
⟩ as a function of sD for the GCEIN and the GCSVGCEIN. (b) Average number-of-times

based node strength ⟨sTnn|s
T
⟩ as a function of sT for the GCEIN and the GCSVGCEIN.

Fig. 8. (a) Dependence of the average node strength ⟨sD|k⟩ and ⟨sT |k⟩ on the node degree for the GCEIN and the GCSVGCEIN. (b) Dependence of
⟨sDi s

D
j |kikj⟩ and ⟨sTi s

T
j |kikj⟩ on the degree product kikj for the GCEIN and the GCSVGCEIN.

4.2. Node degree versus node strength

We investigate the correlation between node strength and node degree. Fig. 8(a) illustrates the dependence of the node
strengths on the node degrees for the GCEIN and the GCSVGCEIN. Average node strength conditional on degree measured
in terms of the number of days ⟨sD|k⟩ and times ⟨sT |k⟩ exhibit almost the same behaviors for each network. The curves
exhibit a clear power-law dependence ⟨s|k⟩ ∼ kα . The high-degree traders have larger numbers of days and times for the
trading behavior co-occurrence on average. For any given degree k, the average node strength of the network GCSVGCEIN
is larger than that of the GCEIN. This observation is due to the fact that the statistical validation approach has removed
the nodes with very small strength.

We plot average strength product ⟨sisj|kikj⟩ as a function of kikj in Fig. 8(b). The curves based on the two different edge
weights are very similar for each network. In this case we also observe a power-law dependence ⟨sisj|kikj⟩ ∼ (kikj)β . The
fitting power-law exponents are estimated as βD

≈ 1.11 and βT
≈ 1.13 for the GCEIN, βD

≈ 1.34 and βT
≈ 1.29 for the

GCSVGCEIN. If there is no correlation between node degree and the weights of the edges adjacent to the node, we expect
that ⟨si⟩ = ki⟨w⟩ and obtain ⟨sisj|kikj⟩ = ⟨w⟩

2
⟨kikj⟩, where ⟨w⟩ is the average edge weight in the network. However, the

discrepancy of β ̸= 1 indicates the existence of correlations.
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Fig. 9. (a) Average edge weight ⟨wD
ij |kikj⟩ and ⟨wT

ij |kikj⟩ as a function of degree product kikj for the GCEIN and the GCSVGCEIN. (b) Average edge
weight ⟨wD

ij |s
D
i s

D
j ⟩ and ⟨wT

ij |s
T
i s

T
j ⟩ as a function of strength product sisj for the GCEIN and the GCSVGCEIN.

4.3. Link weight versus node degree and strength

We present the correlation between edge weight and degree product kikj for adjacent nodes in Fig. 9(a). The ⟨wD
ij |kikj⟩

curve and the ⟨wT
ij |kikj⟩ curve in the same network are similar. The dependence of ⟨wij|kikj⟩ on kikj reveals a positive

correlation between them for the GCSVGCEIN. We note that the curves for the GCEIN can be divided into two parts. For
the small kikj < kkx, the edge weights are independent of the degree product kikj. The values of ⟨wij|kikj⟩ increase as
a function of kikj for the large values, indicating the larger average numbers of days and times for the trading behavior
co-occurrence between two traders with higher degree product.

We also study the dependence of ⟨wij|sisj⟩ on sisj as shown in Fig. 9(b). The plots for ⟨wij|sisj⟩ measured in terms of wD
ij

and wT
ij exhibit similar behaviors. We observe a general trend of increase for the ⟨wij|sisj⟩ curves of the GCSVGCEIN. The

adjacent trader pairs with higher node strength product have larger numbers of days and times for the trading behavior
co-occurrence on average. For the network GCEIN, the behavior of the ⟨wij|sisj⟩ curve is different. Similar to Fig. 9(a),
independence can be observed for small values of sisj, whereas the increase of ⟨wij|sisj⟩ is observed for large values.

5. Conclusion

In this paper we have studied the empirical information network based on the co-occurrence of the trading behaviors of
the traders over the sample period. We have constructed statistically validated networks and investigated the correlation
between topological structures and statistical properties of their largest connected components. We found that the size
of statistically validated network is significantly smaller than the original network. We have analyzed the distributions
of the degree, the edge weight, the node strength and their mutual correlations for the giant components GCEIN and
GCSVGCEIN. Both distributions of degree are fat tailed without power-law property. The GCEIN exhibits a disassortative
mixing pattern, while we observe the opposite situation for the statistical validated network that the traders with many
information partners are more likely to interact with others who also have large numbers of counterparts. This finding
shows the importance of statistical validation method that makes it easier to uncover the true interaction behaviors of
traders. The statistically validated network has a larger proportion of the high-degree nodes due to the fact that the nodes
with minimum strength were removed from the original network. We also considered the dependence of average node
strength on node degree that revealed a positive correlation between them. The similar results can be observed for the
correlation between edge weight and node degree product as well as the correlation between edge weight and node
strength product.
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