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The first phase diagram explicitly exhibiting intersecting lines of tricritical points is pre-
sented. Their point of intersection is a critical point of order 4. The system is a simple as-
sembly of ferromagnetic Ising planes coupled with an arbitrary interplanar interaction, with

Hamiltonian
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where J>0, s;=+1, and u is the magnetic moment per spin. The first sum is over nearest-
neighbor (nn) spins in an x-y plane, the second sum over nn spins coupled along the z direction,
H is the magnitude of a uniform magnetic field, and H’ is a staggered magnetic field which

acts oppositely on adjacent planes of constant z (n=0 on even planes, +1 on odd planes). The
Hamiltonian is invariant under ® — - &, H—H’, and s; — (—1)"s;, so that the Gibbs potential

is also invariant, G(T, H, H', ®)=G(T, H', H, —®). Using this symmetry, we make a scaling
hypothesis about the special point 7[= T~ T, (R=0)]=H=H'=R=0, namely, that the Gibbs po-
tential obeys the functional equation G(\%r, A¥H, A¥'H' \®R)=AG(r, H, H’, ®); the four
scaling powers are found to be a,=3%, a,,=a,,=%%, ag=%.

I. CONCEPT OF ORDER AND MODEL HAMILTONIAN

In 1970 Griffiths proposed the concept of a tri-
critical point (TCP)—the intersection of three crit-
ical lines. ! It has come to be increasingly appre-
ciated that this point has special physical proper-
ties and occurs in several realizable systems.
Tricritical points—and tetracritical points®3 (de-
fined as the intersection of four critical lines)—
have similar physical properties; both are exam-
ples of “critical points of order 3” (where an or-
dinary critical point is a critical point of order 2).
In this work we present the first example of a sys-
tem whose phase diagram exhibits intersecting
lines of tricvitical points. We call this point of in-
tersection a critical point of order 4.

Our example is an Ising model on a simple cubic
lattice with a fixed ferromagnetic interaction J in
the xy planes, and a variable (ferro- or antiferro-
magnetic) interaction ®J between the planes. The
Hamiltonian is
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Here J >0, s;=+1, and p is the magnetic moment
per spin. The first sum is over nearest-neighbor
(nn) spins in an x-y plane, the second sum is over
nn spins coupled along the z direction, H is a uni-
form magnetic field, and H’ is a staggered mag-

loo

netic field which acts oppositely on adjacent planes
of constant z (n=0 on even planes, 1 on odd planes).
For ® >0, one has a three-dimensional (d= 3) Ising
ferromagnet, for <0 a model “metamagnet”* (fer-
romagnetic planes coupled antiferromagnetically),
while for ®=0 the lattice reduces to a stack of un-
coupled two-dimensional (d = 2) square lattices.

The notation proposed by Griffiths and Wheeler 5
has been generalized to facilitate treatment of
more complex phase diagrams. Their notation is
CXS for a coexistence hypersurface, and CRS for
a critical hypersurface. For subspaces of the
field space where different phases coexist, we use
the notation ?X,, where p is the number of phases
and d is the dimensionality of the space.® For ex-
ample, a line of points (such as the vapor pressure
curve of a simple fluid) where two phases coexist
is denoted by 2X,. For spaces of critical points
we introduce the concept of order of a critical
point. Ocrdinary critical points are defined to be
of order 2, and points where lines of points of
order © intersect are defined to be of order
(0 +1)8, The notation used for critical spaces is
®R,, where 0 refers to the order and d to the di-
mension of CRS.

In a metamagnet the lines of ordinary critical
points 2R, intersect at a tricritical point which is
of order 3, a 3R,. For the Hamiltonian (1), such
®R, occur in the field space spanned by T, H, and
H' for any fixed ® #0 (cf. Fig. 1). In the full four-
dimensional field space obtained when ® is allowed
to vary, each TCP becomes a sRl, a line of tri-
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FIG. 1. (a) Section of the four-dimensional field space
(T, H, H', ®) for H'=0 and ®=®;<0. L is a first-order
phase transition line where three phase coexist (3X;).

(b) Same as (a), except that ®=®,<0, with | R,|<| R4l .
Note that H,, T, and Ty have all decreased in magnitude.
(c) Phase diagram for R=®3< 0, |®sl<|®Ryl. Here | Ryl
is nearly zero. (d) Phase diagram for ®R=®;=0, the
two-dimensional limit.

critical points; these intersect and terminate at a
"Ro where four phases become critical simulta-
neously.

II. DISCUSSION OF PHASE DIAGRAM

To justify these remarks, we begin by noting
that the Hamiltonian (1) has an important symme-
try under the operation $ defined as follows:
®~-®, H~- H, H~ H, and s,~ (-=1)" s; . This oper-
ation reverses the sign of the interplanar interac-
tion, exchanges direct and staggered external
fields, and exchanges direct and staggered mag-
netizations. Since 3C[of Eq. (1)] is invariant under
8, the Gibbs potential is also invariant,

G(T,H,H',®)=G(T,H',H, - R). (2)

The phase diagram for (1) will necessarily re-
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flect this symmetry. In particular, the pair of
TCPs in the H-T (H’=0) plane [Fig. 1(a)] for ®

= ®, < Omaps into a pair of TCP’s in the H' - T(H=0)
plane for ®=- ®,>0. What happens as |®R/| is de-
creased from |®,| is depicted in Fig. 1(b). The
TCP in Fig. 1(a) will approach the Néel point
Ty. Also, Ty, the tricritical temperature 7,, and
the 7=0 critical field H,(T=0) will all decrease
in magnitude. Figure 1(c) depicts a still smaller
value of |®|. Finally, ®=0 is depicted in Fig.
1(d). Here we reduce to the two-dimensional Ising
ferromagnet. There is no longer a phase transi-
tion in finite field, and the entire phase diagram
collapses into a first-order line along the T axis
terminating at the Curie point 7,(0), which is seen
to be the limit of the sequence of tricritical points
for decreasing IR |.

Similar statements hold for ® > 0 with the roles
of H and H' reversed. We shall focus on the <0
case in the following discussion.

The T=0 critical field is trivially givenby pH,(0)
=2|®|J. That the Néel temperature decreases
as ® decreases is well known. For example, sim-
ple molecular-field theory gives

kyTy (|®])=47+2|R]|J. 3)

More accurate series-expansions work’ on cross-
over between three- and two-dimensional Ising fer-
romagnetic lattices shows that a scaling-law pre-
diction of the form

T.(®)- T, (0)~®*" )

is obeyed for ® >0. The symmetry of the Hamil-
tonian then implies that T,(®)= Ty(-R).

Mean-field theory for two-sublattice Ising anti-
ferromagnets® gives a tricritical point for the
model of Eq. (1) for all |®| <%, with the following
relation for the ratio of T, /Ty:

Tt/TN=1"é|(R| (5)

Thus T,/Ty—~1 as |I®| -0, the two-dimensional
ferromagnetic limit.

When Eq. (5) is coupled with Eq. (3) above, we
see that

kpT,=2J (2+%|R] -1 |R|?) . (6)

Thus mean-field theory gives T, as a monotonically
increasing function of |®| in the region of validity
of Fq. (3). We shall be concerned only with be-
havior near ®=0, i.e., for |I®| <1. In this re-
gion, therefore, mean-field theory supports the
behavior we have sketched in Fig. 1.

That T, behaves in this way may also be obtained
from the following physical consideration: The tri-
critical temperature occurs when the phase transi-
tion on a sublattice, produced by increasing the
magnetic field H at constant temperature T\,
changes from first order (for Ty< T,) to second
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order (for T¢>T,). The effect of increasing the
coupling between the plane of spins for which the
magnetization changes sign at the transition, and
the adjacent planes, on which the magnetization
remains of the same sign, will be to increase the
effective coupling between adjacent spins in the
planes which change sign. Thus one would expect
it to increase the temperature T, at which the sub-
lattice transition changed from first order to sec-
ond order,

In accordance with all the above considerations,

FIG. 2. (a) Section of the (T, H, H’, ®) field space
with H =0. The reader should note how each °R; and
X, of Fig. 1 becomes a ®Ry,; or *X,,;: thus the point °R,
becomes a line °R;, separating a “snow-covered” surface
[2R; —?R,] and a “tree-covered” surface [Ly—3X,]. (b)
Section of the (T, H, H', ®) field space with H=0. Now
the “mountain” occurs for positive ®.

we have represented the H” =0 section of the com-
plete T— H - H'- ® space phase diagram in Fig.
2(a), and the H=0 section in Fig. 2(b). Figure 2(a)
was obtained by combining Figs. 1(a)-1(d) for dif-
ferent values of ®. Figure 2(b) was obtained from
Fig. 2(a) by using the symmetry embodied in Eq.
(2), and is a mirror image of Fig. 2(a) with H and
H' reversed. The essential features of Fig. 2(a)
may perhaps be most easily visualized as a coex-
istence volume (“mountain”) capped on top by a
surface of critical points (“snow”). The snowcap
stops at “snow lines” which are lines of tricritical
points. The mountain is a 2Xg in which A*and A",
the two antiferromagnetic phases corresponding
to opposite values of the staggered field, coexist.
At T=0 the %X, is bound by the 7'=0 plane and the
lines L, and L,. On L, the three coexisting phases
are A*, A", and a ferromagnetic phase pointing
parallel to a positive H, F*, while on L,, A*, A",
and F- coexist. For increasing T, the 2X; (the
mountain) is bounded on either side by 3Xa—the con-
tinuations to finite 7 of L, and L,. The %X, is
bounded from above by a 3Rz (the snow cap). The
two 3X, meet the 2R, at lines of TCP’s—indicated
as °R,. At ®=0, all four phases (4*, A", F*, F")
are in equilibrium from T=0to T = T,(® =0) on
the T axis; this line is a *X;. Note that the line
of Néel points Ty (®) lies at the crest of the snow
cap in the H =0 plane, but is of no particular sig-
nificance with respect to the rest of the critical
%R, surface. 5%

For ® >0 in Fig. 2(a), the phase diagram is very
simple. There is a critical line 7,(®) bounding a
coexistence plane at H=0. However, if one con-
siders the H = 0 section of the full T-H-H’-® phase
diagram as in Fig. 2(b), the mountain occurs for
® >0, and the simple line of critical points for
®R<O0.

A mental superposition of the two mountains in
the four-dimensional T-H-H’-®R space reveals
four different °R, meeting at the point T,(®=0),
H=H’=0. This then, is a ‘R,

We have not depicted the additional coexistence
surfaces, called “wings, ” in Fig. 2(a) [Fig. 2(b)]
because they occur at nonzero H' [H]. A naive
analysis might suppose that there were eight wings,
two corresponding to each (°X,, 3R,) pair. To
understand correctly the relationships between the
R, and all the 2R, which intersect at them, we
have to analyze the system in the 7=0 hyper-
plane.

IIl. T=0 PHASE DIAGRAM AND ITS IMPLICATIONS
FORT >0

The T=0 phase diagram is depicted in Fig. 3. In
the ground state, the surfaces where two phases are
in equilibrium occur at places where the energies
of the two phases are equal. The energies of the
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ferromagnetic phases are given by Ef =-® ¥ H and
the energies of the antiferromagnetic (“metamag-
netic”) phases are given by E4 =+®* H where we
have put J=p=1, Setting these energies pairwise
equal, we obtain the six different surfaces given in
Table I. The equations of the four lines where three
surfaces intersect and where three phases are in
equilibrium can be similarly obtained and are also
given in Table 1. Because of the linear forms of

+ and E%, the surfaces are flat and the lines are
straight.

The H’ =0 plane of Fig. 3 coincides with the T'=0
plane of Fig. 2(a). As one moves from Fig. 3 to
Fig. 2(a), it can be seen that a space of dimension
d where p phases coexist (a ?X,) gives rise to a
space of dimension (d + 1) where p phases coexist.
For instance the lines L, and L, in Fig. 3 become
the 3X, in Fig. 2(a); similar considerations of [4*,
A~] or the *X, convinces one of the validity of the
equation

FIG. 3. Section of the (T, H, H’, ®) field space with
T=0. (a) Shown here are two of the six %X, planes (where
two phases coexist) and the four ®X; lines (where three
phases coexist) which bound these planes. The plane
bounded by Ly, L, lies in the H ~® plane and separates
phases A*, where A* is the phase that is stable as H' —
+, and A" is stable as H' — =, It generates, as T
increases, the mountain (2X3) and, eventually, the snow
cap (°R,) of Fig. 2(a). TheplaneboundedbyLs, L, lies
in the H'-®R plane and separates the two ferromagnetic
phases F*. At finite T it generates the picture in Fig.
2(b). (b) Shown are two more of the six 2X2 planes where
two planes coexist [cf. Table I and Fig. 3(a)]l. These
two ZXZ become, for T>0, two of the four wings discussed
in the text.
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TABLE 1. Equations for the six coexistence surfaces
2X,, where two phases coexist, and for the four coexis-
tence lines 3X,, where three phases coexist.

Coexistence surfaces (Planes %x,)

[F*, F7] [Fig. 3(a)] H=0

[4*, A7] [Fig. 3(a)] H=0

[F*, A”] [Fig. 3(b)] 2Q@+H+H =0

[F~, A*] [Fig. 3(b)] 2@—-H-H'=0

[F*, A*] 2R+H-H'=0

[F-, A7 2R—H+H =0
Coexistence lines ¢xy)

[F*, F~, A*] H=0

2R-H'=0

[F*, F~, A7) H=0

2R+H' =0

[A*, A7, F'] H =0

2R+H=0

[A*, A7, F7] H=0

2@ -H=0

X, (T =0 hypersurface)-*X,,, (T >0). (7a)

The fate of a ?X,,, in Fig. 2(a) is particularly
simple as T increases. The 2X; ends in a surface
of ordinary critical points—a 2R,; the 3X, ends in
a line of critical points of order three—a °Ry; the
X, ends in a *R,. Thus we find

de_'d" de . (7b)

Equations (7a) and (7b)? combine to show that for
this model there is a homeomorphic mapping (i.e.,
a continuous, nonsingular transformation) between
the ?X, in the T = 0 hyperplane and the ‘R, (where
O0=p) in the full phase diagram. Thus one can de-
duce topological relationships between the various
°R, in the full field space by inspecting the relation-
ships between the X, in the T = 0 phase diagram.
Since the full space is four dimensional and the
T = 0 phase diagram is only three dimensional,
this is of considerable value. )

The first deduction we may make is that because
there are six coexistence surfaces (2X2) inthe T=0
phase diagram, there are also six distinct surfaces
of critical points (?R,) in the complete phase dia-
gram. Two of these six are shown in Figs. 2(a)
and 2(b); these are the “snowcaps” labeled 2R,.
The snowcap of Fig. 2(a) corresponds to the sur-
face in the T =0 phase diagram of Fig. 3(a) on
which the phases [A*, A7] coexist, while the snow-
cap of Fig. 2(b) corresponds to the coexistence
surface labeled [F*, F~] of Fig. 3(a).
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The remaining four surfaces, [F*, A*], [F~, A7],
[F*, A7], and [F", A*], of which the last two are
shown in Fig. 3(b), connect L,, L, (for ®<0) to L,
L, (for 8 >0). The four lines L,, L,, L3, and L,
meeting at the origin in Figs. 3(a) and 3(b) corre-
spond [in the sense of Egs. (7a) and (7b)] to the four
lines of tricritical points meeting at the *R, in the
full phase diagram. Thus we deduce that as the
temperature is increased, the four surfaces [F*, A*]
evolve into the critical surfaces bounding the wings,
and that these boundaries connect those tricritical
lines (3R,) for & <0 shown in Fig. 2(a) to those tri-
critical lines for ® >0 shown in Fig. 2(b). Each of
the four tricritical lines of Figs. 2(a) and 2(b) is
thereby connected to each of the other tricritical

lines by a 2R, surface. Indeed, as we initially pointed

out, there are (3)=6 critical surfaces.

IV. SCALING HYPOTHESIS FOR THE “R,

We can make a scaling hypothesis at the *R,. It
is believed!? that in the variables of Fig. 2(a), a
hypothesis of the form G (A% 7, NHH, \&R)= AG(T,
H, ®) is valid where 7=T -T, (R=0). However,

Eq. (2) indicates that if a scaling hypothesis is valid
in H, it is also valid in H’. Hence we make the full
scaling hypothesis at the *R,>

G(\*r1, NHH, MN'H'H' A\°&R)= G (1,H, H', ®]) .
(8)

This scaling hypothesis has four principal direc-
tions of scaling and correspondingly four scaling
powers (a,, ay, ay, and ag). This situation will
always occur at spaces of points where a special
scaling hypothesis is valid, and there are four in-
dependent directions out of the critical space (here
the critical space, a *R,, is a point). In the pres-
ent model the R, occurs because four lines of tri-
critical points intersect, but in general more com-
plex possibilities may exist.

In the particular case considered here, there is
a very large degree of symmetry, and this reduces
the number of independent scaling powers. Since
the symmetry given by Eq. (2) interchanges H and
H’, we expect

ay=am . (9a)

There is a second relationship between the scal-
ing powers that may be obtained from the result!!
@ =17, where ¢ is the crossover exponent describ-
ing change of lattice dimensionality and ¥ is the
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susceptibility exponent for the ®=0 system. In
terms of scaling powers, ¥ ¢=aq/a, and - y= (1
-2ay)/a,. We therefore obtain

ag=2ay-1 . (9b)

From (9a) and (9b), we see that there are only two
(not four) independent exponents at the special
point (e.g., a, and ay).

In the two-dimensional H, T plane, where ® =0and
H' =0, the model is a set of decoupled Ising planes
and the exponents at the critical point on the tem -~
perature axis are therefore equal to the exponents
for the d =2 Ising model. For this model, we can
use the rigorous values!® o= 0 and 8= § together
with the scaling relations??

-a=(1-2a,)/a,, B=(1-ay)/a, (10)
to obtain actual numerical values for all four scal-
ing powers. These are

ag=3, ay=ay=% | (11)

a,= éy

Note that from (11), all possible thermodynamic
exponents can be exactly calculated.

From (11) we observe that the scaling powers

satisfy
a,<ag<ag=ay’ . (12)

Since a, is the smallest scaling powers, it is to be
expected that all lines and surfaces on which sin-
gularities of the Gibbs function occur and which ex-
tend to the critical point of order four, will ap-
proach the point of order four tangentially to the

T axis. This is entirely analogous to the predic-
tion of how lines of critical points approach tri-
critical points. * In Fig. 2, we have, therefore,
depicted the lines of tricritical points as approach-
ing the ‘R, tangentially to the T axis.
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FIG. 2. (a) Section of the (T, H, H', ®) field space
with ' =0, The reader should note how each °R, and
X, of Fig. 1 becomes a %Ry,; or ?X,,;: thus the point *R,
becomes a line °Ry, separating a “snow-covered” surface
[*R;—°R,] and a “tree-covered” surface [Lp—3X,]. (b)
Section of the (T, H, H', ®) field space with H=0. Now
the “mountain” occurs for positive ®.



