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When an initial failure of nodes occurs in interdependent networks, a cascade of failure between the networks
occurs. Earlier studies focused on random initial failures. Here we study the robustness of interdependent
networks under targeted attack on high or low degree nodes. We introduce a general technique which maps
the targeted-attack problem in interdependent networks to the random-attack problem in a transformed pair of
interdependent networks. We find that when the highly connected nodes are protected and have lower probability
to fail, in contrast to single scale-free (SF) networks where the percolation threshold pc = 0, coupled SF networks
are significantly more vulnerable with pc significantly larger than zero. The result implies that interdependent
networks are difficult to defend by strategies such as protecting the high degree nodes that have been found useful
to significantly improve robustness of single networks.
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Modern systems due to technological progress are becom-
ing more and more mutually coupled and depend on each
other to provide proper functionality [1–3]. For example,
blackouts are usually caused by cascading failures between
the power grid and its communication support system [3].
While cascade of failures in one network, e.g., overload
failure, can cause dramatic damage to a system [4,5], social
disruptions caused by recent disasters, ranging from hurricanes
to large-scale power outages and terrorist attacks, have shown
that the most dangerous vulnerability is hiding in the many
interdependencies across different networks [6]. The question
of robustness of interdependent networks has recently become
of interest [7–10]. In interdependent networks, nodes from
one network depend on nodes from another network and vice
versa. Consequently, when nodes from one network fail they
cause nodes in the other network to fail, too. When some
initial failure of nodes happens, this may trigger a recursive
process of cascading failures that can completely fragment
both networks.

Recently, a theoretical framework was developed [7] to
study the process of cascading failures in interdependent
network caused by random initial failure of nodes. They show
that due to the coupling between networks, interdependent
networks are extremely vulnerable to random failure. How-
ever, when we consider real scenarios, initial failure is mostly
not random. It may be due to a targeted attack on important
hubs (nodes with high degree). It can also occur to low degree
nodes because important hubs are purposely defended, e.g.,
in internet networks, heavily connected hubs are purposely
more secured. Indeed, it was shown that targeted attacks on
high degree nodes [11–16] or high betweenness nodes [17,18]
in single networks have a dramatic effect on their robustness.
The question of robustness of interdependent networks under
targeted attack or defense has not been addressed.

In this Rapid Communication, we develop a mathematical
framework for understanding the robustness of interdependent
networks under an initial targeted attack which depends
on degree of nodes. The framework is based on a general
technique we develop to solve targeted-attack problems in

networks by mapping them to random-attack problems. A
value Wα(ki) is assigned to each node, which represents the
probability that a node i with ki links is initially attacked and
become inactive. We focus on the family of functions [14]

Wα(ki) = kα
i∑N

i=1 kα
i

, − ∞ < α < +∞. (1)

When α > 0, nodes with a higher degree are more vulnerable
for the intentional attack, while for α < 0, nodes with a higher
degree are defended and so have lower probability to fail.
The case α = 0, W0 = 1

N
, represents the random removal of

nodes [7,19], and the case α → ∞ represents the targeted-
attack case where nodes are removed strictly in the order from
high degree to low degree. For the α < 0 case, nodes with
zero degree should be removed before analysis begins. An
important special case α = 1 corresponds to the acquaintance
immunization strategy [20].

Our model consists of two networks, A and B, with the
same number of nodes N . The N nodes in each network
are connected to nodes in the other network by bidirec-
tional dependency links, thereby establishing a one-to-one
correspondence. The functioning of a node in network A
depends on the functioning of the corresponding node in
network B and vice versa. Within each network, the nodes
are randomly connected with degree distributions PA(k) and
PB(k), respectively. We begin by studying the situation where
only network A is attacked. We initially remove a fraction,
1 − p of nodes from network A selecting them with probability
Wα(ki) [Eq. (1)] and remove all the links that connect to those
removed nodes. As nodes and links are sequentially removed,
network A begins to fragment into connected components.
Nodes that are not connected to the giant component are
considered inactive and are removed. Owing to the dependence
between the networks, all the nodes in network B that are
connected to the removed nodes in network A are then also
removed. Network B also begins to fragment into connected
components and only the nodes in the giant component are
kept. Then network B spreads damage back to network A.
The damage is spread between network A and B, back and
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forth until they completely fragment or arrive to a mutually
connected giant component and no further removal of nodes
and links occurs.

The main idea of our approach is to find an equivalent
network A′, such that the targeted-attack problem on interde-
pendent networks A and B can be solved as a random-attack
problem on interdependent networks A′ and B. We start by
finding the degree distribution Pp(k) of the remaining nodes
in network A after removing, according to Eq. (1), (1 − p)
fraction of nodes but keeping the edges of the remaining nodes
which lead to the removed nodes. Let Ap(k) be the number of
nodes with degree k,

Pp(k) = Ap(k)

pN
. (2)

When another node is removed, Ap(k) changes as

A(p−1/N)(k) = Ap(k) − Pp(k)kα

〈kα(p)〉 , (3)

where 〈kα(p)〉 ≡ ∑
Pp(k)kα . In the limit of N → ∞, Eq. (3)

can be presented in terms of derivative of Ap(k) with respect
to p,

dAp(k)

dp
= N

Pp(k)kα

〈kα(p)〉 . (4)

Differentiating Eq. (2) with respect to p and using Eq. (4), we
obtain

−p
dPp(k)

dp
= Pp(k) − Pp(k)kα

〈kα(p)〉 , (5)

which is exact for N → ∞. In order to solve Eq. (5), we define
a function Gα(x) ≡ ∑

k P (k)xkα

, and following Ref. [21]
introduce a new variable t ≡ G−1

α (p). We find by direct
differentiation that

Pp(k) = P (k)
t k

α

Gα(t)
= 1

p
P (k)t k

α

, (6)

〈kα(p)〉 = tG′
α(t)

Gα(t)
, (7)

satisfy Eq. (5). Thus the generating function of Pp(k) is

GAb(x) ≡
∑

k

Pp(k)xk = 1

p

∑
k

P (k)t k
α

xk. (8)

Because network A is randomly connected, the probability for
an edge to end at a remaining node is equal to the ratio of
the number of edges emanating from the remaining nodes to
the total number of edges emanating from all the nodes of the
original network:

p̃ ≡ pN〈k(p)〉
N〈k〉 =

∑
k P (k)ktk

α

∑
k P (k)k

, (9)

where 〈k〉 is the average degree of the original network A, and
〈k(p)〉 is the average degree of remaining nodes. Removing the
edges which end at the deleted nodes of a randomly connected
network is equivalent to randomly removing a (1 − p̃) fraction
of edges of the remaining nodes. Using the same approach as
in Ref. [22], one can show that the generating function of the

remaining nodes after random removal of (1 − p̃) fraction of
edges is equal to

GAc(x) ≡ GAb(1 − p̃ + p̃x). (10)

Notice that Eq. (10) is the generating function of the remaining
nodes in network A after a targeted attack. The only difference
in the cascading process under a targeted attack from the case
under a random attack is the first stage where the initial
attack is exerted on network A. If we find a network A′
with generating function G̃A0(x), such that after a random
attack which removes (1 − p) fraction of nodes, the generating
function of the remaining nodes in A′ is the same as GAc(x),
then the targeted-attack problem on interdependent networks
A and B can be solved as a random-attack problem on
interdependent networks A′ and B. We find G̃A0(x) by solving
the equation G̃A0(1 − p + px) = GAc(x) and from Eq. (10),

G̃A0(x) = GAb

(
1 + p̃

p
(x − 1)

)
. (11)

Up to now, we have mapped the problem of cascade of
failures of nodes in interdependent networks caused by an
initial targeted attack to the problem of a random attack. Since
the derivation of equations only depends on the generating
function of network A, this approach can be generally applied
to study both single networks with dependency links [23] and
other more general interdependent network models, as long as
the nodes in those networks are randomly connected.

Next we apply the framework developed in Ref. [7]. We
introduce a function gA(p) = 1 − G̃A0[1 − p(1 − fA)], where
fA is a function of p that satisfies the transcendental equation
fA = G̃A1[1 − p(1 − fA)]. Analogous equations exist for
network B. As the interdependent networks achieve a mutually
connected giant component, the fraction of nodes left in the
giant component is p∞, which can be found by solving a
system of equations

x = pgA(y), y = pgB(x), (12)

where the two unknown variables x and y yield p∞ =
xgB(x) = ygA(y). Eliminating y from these equations, we
obtain a single equation

x = pgA[pgB(x)]. (13)

The critical case (p = pc) emerges when both sides of this
equation have equal derivatives,

1 = p2 dgA

dx
[pgB(x)]

dgB

dx
(x)|x=xc,p=pc

. (14)

which, together with Eq. (13), yields the solution for pc and
the critical size of the giant mutually connected component,
p∞(pc) = xcgB(xc). In general, pc and xc can be found
numerically without an explicit expression.

We now analyze the specific classes of Erdös-Rényi
(ER) [24,25] and scale-free (SF) [26–29] networks. Critical
thresholds pc of networks obtained by solving Eqs. (13) and
(14) are presented in Fig. 1. Remarkably, while pc for a single
SF network approaches to 0 quickly when α becomes zero
or negative (see also Ref. [14]), pc for interdependent SF
networks is nonzero for the entire range of α [Fig. 1(a)]. This
follows from the fact that failure of the least connected nodes
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FIG. 1. (Color online) (a) Dependence of pc on α for single and
interdependent SF networks with a lower cutoff of degree m = 2. The
horizontal lines represent the upper and lower limits of pc as α =
±∞. The curved dashed line represents pc for single SF networks.
(b) Threshold pc vs λ for interdependent SF networks with different
m and α.

in one network may lead to failure of well connected nodes
in the other network, which makes interdependent networks
significantly more difficult to protect compared to a single net-
work. Increasing degree correlation between interdependent
nodes will increase the robustness of interdependent networks.
However, as shown in Ref. [30], even when the interdependent
networks have the highest possible degree-degree correlation,
the system of interdependent networks is still significantly
more vulnerable than a single network and the transition is
of the first-order type, if the degree distribution has a finite
second moment. Figure 1(b) shows that pc of interdependent
SF networks is sensitive to a minimum possible degree but not
that sensitive to λ. As m = 1, the interdependent SF networks
become extremely vulnerable.

Simplified forms for GAb(x), GAc(x), and G̃A0(x) from
Eqs. (8), (10), and (11) exist when α = 1,

GAb(x) = 1

p

∑
k

P (k)t kxk = 1

p
GA0(tx), (15)

GAc(x) = 1

p
GA0(t(1 − p̃ + p̃x)), (16)

G̃A0(x) = 1

p
GA0

(
p̃

p
t(x − 1) + t

)
. (17)

where GA0(x) is the original generating function of network
A, t = G−1

A0(p) and p̃ = G′
A0(t)

G′
A0(1) t .

Explicit solutions of percolation quantities exist for the
case of interdependent Erdös-Rényi networks, when α = 1 and
both of the two networks are initially attacked simultaneously.
The two networks originally have generating functions GA0(x)
and GB0(x). Initially, (1 − p1) and (1 − p2) fraction of nodes
are targeted [according to Eq. (1) and ] and removed from
networks A and B, respectively. Similarly, we start by finding
the equivalent networks A′ and B ′ such that random removal
of (1 − p1p2) fraction of nodes on both networks A′ and B ′
has the same effect as when (1 − p1) and (1 − p2) fractions of
nodes are intentionally removed from network A and network
B, respectively. After the same consideration as discussed
before, we find the generating function of network A′,

G̃A0(x) = 1

p1
GA0

(
p̃1

p1
t1(x − 1) + t1

)
. (18)
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FIG. 2. (Color online) Values of p∞ vs p for theory and simula-
tion. All results are for α = 1. The symbols represent simulation data
(N = 106 nodes). The solid lines are theoretical predictions based on
Eq. (21) for ER networks and numerical solution of Eqs. (13) and
(17) for SF networks. For the interdependent ER network case, both
networks are under an initial targeted attack. For the interdependent
SF network case, only one network is under an initial targeted attack.
Inset: Values of pc vs average degree of ER networks with α = 1. The
symbols represent simulation data, while the solid line is the theory,
Eq. (22). The dashed line is pc under random attack with α = 0.

where t1 ≡ G−1
A0(p1), p̃1 ≡ t1

G′
A0(t1)

G′
A0(1) . The same holds for

network B ′.
For ER networks, the generating function is G0(x) =

e〈k〉(x−1) [22], so t1 = ln(p1)
〈k〉1

+ 1, t2 = ln(p2)
〈k〉2

+ 1, G̃A0(x) =
G̃A1(x) = e〈k〉1t

2
1 (x−1), and G̃B0(x) = G̃B1(x) = e〈k〉2t

2
2 (x−1).

From Eq. (12),

x = p1p2gA(y) = p1p2(1 − fA),
(19)

y = p1p2gB(x) = p1p2(1 − fB),

where

fA = e〈k〉1t
2
1 y(fA−1), fB = e〈k〉2t

2
2 x(fB−1). (20)

In the case 〈k〉1 = 〈k〉2 = 〈k〉 and p1 = p2 = p, we find
that

p∞ = p2(1 − e−〈k〉t2p∞ )2, (21)

where t1 = t2 ≡ t = ln(p)
〈k〉 + 1, and pc satisfies the relation

〈k〉p2
c t

2
c = 2.4554, (22)

with tc = ln(pc)
〈k〉 + 1. Figure 2 shows that simulations confirm

well the theory for interdependent ER networks. If only one
network of the interdependent networks is randomly attacked,
Ref. [7] shows that pc = 2.4554/〈k〉. In Eq. (22), the term p2

c

is since we are initially attacking both interdependent networks
simultaneously. Indeed, for the case of a random initial attack
on both networks, we obtain 〈k〉p2

c = 2.4554. The factor tc in
Eq. (22) reflects the effect of a targeted attack. Here for α = 1,
tc = ln(pc)

〈k〉 + 1 is always smaller than 1, which increases pc

compared to the random-attack case, shown in inset of Fig. 2.
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For interdependent ER networks, the effect of a targeted attack
is not significant, but for interdependent SF networks, the effect
is substantial [Fig. 1(a)].

The mapping method we develop in this Rapid Commu-
nication is applicable for randomly connected networks. In
an infinitely large network with a finite second moment of
degree distribution, the probability of the formation of parallel
edges, connecting the same pair of nodes and looped edges
ending at the same node, is negligible and no degree-degree
correlations are present. For SF networks with λ � 3, it is
impossible to construct a randomly connected network with
a negligible fraction of self-loops and parallel edges [31]. SF
networks without self-loops and parallel links have negative
(disassortative) degree-degree correlations from the start [21],
and for such networks our theory is an approximation.
In Fig. 2, we show that the theoretical p∞ obtained by
numerical calculation confirms well the simulation results
for interdependent SF networks with λ = 2.8, which allows
self-loops and parallel links.

In summary, we developed a theoretical framework for
understanding the robustness of interdependent networks
under targeted attacks on specific degree nodes. We show
that targeted-attack problems can be mapped to random-attack
problems by transforming the networks which are under
initial attack. It provides a routine method to study the
degree-based targeted-attack problems in both single networks

with dependency links [23,32] and other general randomly
connected and uncorrelated interdependent networks, i.e., (i)
the case of three or more interdependent networks, (ii) the
case of partially coupled interdependent networks [10], and
(iii) the case in which a node from network A can depend
on more than one node from network B [33]. By applying
the method, we find that in contrast to single networks,
when the highly connected nodes are defended (α < 0), the
percolation threshold pc has a finite nonzero value which
is significantly larger than zero. The study implies that
interdependent networks are difficult to defend by strategies
such as protecting the high degree nodes that have been
found useful to significantly improve the robustness of single
networks.
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