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Communities are common in complex networks and play a sig-
nificant role in the functioning of social, biological, economic,
and technological systems. Despite widespread interest in detect-
ing community structures in complex networks and exploring the
effect of communities on collective dynamics, a deep understand-
ing of the emergence and prevalence of communities in social
networks is still lacking. Addressing this fundamental problem
is of paramount importance in understanding, predicting, and
controlling a variety of collective behaviors in society. An elu-
sive question is how communities with common internal proper-
ties arise in social networks with great individual diversity. Here,
we answer this question using the ultimatum game, which has
been a paradigm for characterizing altruism and fairness. We
experimentally show that stable local communities with different
internal agreements emerge spontaneously and induce social
diversity into networks, which is in sharp contrast to popula-
tions with random interactions. Diverse communities and social
norms come from the interaction between responders with inher-
ent heterogeneous demands and rational proposers via local con-
nections, where the former eventually become the community
leaders. This result indicates that networks are significant in the
emergence and stabilization of communities and social diversity.
Our experimental results also provide valuable information about
strategies for developing network models and theories of evolu-
tionary games and social dynamics.
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Communities are ubiquitous in nature and society (1, 2).
Nodes that share common properties often self-organize to

form a community. Internet users with common interests, for
example, establish online communities and frequently commu-
nicate (3). In human society, social communities with distinctive
social norms form spontaneously (4). In protein–protein interac-
tion networks, related proteins group together to execute specific
functions within a cell (5).

How social communities emerge is one of the fundamen-
tal problems in social science. Game theory and models have
offered powerful tools for exploring collective behaviors in ani-
mal and human society and our evolutionary origins (6–10).
Recent theoretical studies found that network structure is sig-
nificant in the emergence of mutually reinforcing communities
among altruistic subjects in social games, such as the prisoner’s
dilemma (PD) game, the public goods game (PGG), and the ulti-
matum game (UG) (11–20). Although some experiments found
that cooperation is stabilized in dynamical networks (21–24), sta-
ble communities have been rarely observed in laboratory exper-
iments on a variety of static networks (25–32). As a result, how
communities emerge in social network systems associated with
evolutionary games continues to be an unanswered question.

Social game experiments demonstrate that there is inher-
ent diversity among individuals in cultural and social attitudes
toward cooperation, fairness, and punishment (33–37). However,
communities with diverse individuals but common internal prop-

erties are ubiquitous in society, prompting us to wonder how
diverse individuals are able to form communities. Our goal is
to answer this question by experimentally exploring the emer-
gence of communities in social networks associated with the UG.
This game has been a paradigm for exploring fairness, altru-
ism, and punishment behaviors that challenge the classical game
theory assumption that people act in a fully rational and selfish
manner (34–38). Thus, exploring social game dynamics allows us
to offer a more natural and general interpretation of the self-
organization of communities in social networks. In the UG, two
players—a proposer and a responder—together decide how to
divide a sum of money. The proposer makes an offer that the
responder can either accept or reject. Rejection causes both play-
ers to get nothing. In a one-shot anonymous interaction if both
players are rational and self-interested, the proposer will offer
the minimum amount and the responder will accept it to close
the deal. However, much experimental evidence has pointed to
a different outcome: Responders tend to disregard maximizing
their own gains and reject unfair offers (34–36, 38, 39). Although
much effort has been devoted to explaining how fairness emerges
and the conditions under which fairness becomes a factor (38,
40–46), a comprehensive understanding of the evolution of fair-
ness in social networks via experiments is still lacking.

We conduct laboratory experiments on both homogeneous
and heterogeneous networks and find that stable communities
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Fig. 1. Evolution of proposals in the treatment and control groups. (A–D)
The proposers’ offers p from round 1 to round 60 in the two treatment
groups, T1 (A) and T2 (B), and the two control groups, C1 (C) and C2 (D),
respectively. The mean value and the SD of p in each of the 60 rounds are
denoted by circles and column bars, respectively. The average value of p in
T1 is slightly higher than in the other groups, and the SD of p in T1 and T2 is
much larger than that in C1 and C2. The results demonstrate that whether
a structured network is regular or random has little effect on the average
fairness of proposers, whereas the diversity in proposers, reflected by the
SD, is remarkably promoted by network structure, in contrast to the two
control groups with random interactions.

with different internal agreements emerge, which leads to social
diversity in both types of networks. In contrast, in populations
where interactions among players are randomly shuffled after
each round, communities and social diversity do not emerge.
To explain this phenomenon, we examine individual behaviors
and find that proposers tend to be rational and use the (myopic)
best-response strategy (43, 47), and responders tend to be irra-
tional and punish unfair acts (34–36, 38, 39). Social norms are
established in networks through the local interaction between
irrational responders with inherent heterogeneous demands and
rational proposers, where responders are the leaders followed
by their neighboring proposers. Our work explains how diverse
communities and social norms self-organize and provides evi-
dence that network structure is essential to the emergence of
communities. Our experiments also make possible the develop-
ment of network models of altruism, fairness, and cooperation in
networked populations.

Results
We conduct four groups of experiments with two treatment
groups (T1 and T2) and two control groups (C1 and C2)
(Materials and Methods). In T1 and T2 there is a static network
structure among the players, a regular bipartite network for T1,
and a random bipartite network for T2. In C1 and C2 the inter-
actions among the players constantly change. Each subject plays
a single unchanging role, either proposer or responder. We focus
on the evolution of a proposer’s offer p and a responder’s mini-
mum acceptance level q , which measures the degree of fair and
unfair behaviors. Our main findings include (i) the diversity of
p characterized by a much larger SD in T1 and T2 than in C1
and C2; (ii) the formation of local proposer communities in T1
and T2, seen in the spatiotemporal patterns of proposers; and
(iii) the best-response strategy followed by proposers and the
leader effect of irrational responders, i.e., they jointly establish
social norms. Observation iii explains observations i and ii.

Diversity of Proposers. We first explore the evolution of p and q .
Fig. 1 and SI Appendix, Fig. S1 show the mean values p̄ and q̄ of
p and q and their SDs in each round for T1, T2, C1, and C2. We
find that p̄ in T1 is slightly higher than in the other groups. In T1,
p̄ slowly increases from approximately 40 to 45. In all of the other

groups p̄ is approximately 40 within 60 rounds. Similar phenom-
ena are observed in q̄ ; i.e., q̄ of T1 is slightly higher than in the
other groups and q̄ of all groups is maintained at approximately
30. Table 1 shows the mean values p̄ and q̄ over 60 rounds. These
findings in the experimental UG with limited neighbors are con-
sistent with many one-pair experimental UGs in which on aver-
age p = 40 and q = 30 (34–36, 38, 39). These results indicate that
network structure has little effect on the average behaviors of
proposers and responders in a population.

On the other hand, the SD of p differs sharply between the
treatment groups and the control groups. The SD of p in T1 and
T2 is much larger than that in C1 and C2 (Fig. 1 and Table 1),
indicating that network structures, whether regular or random,
enable a strong proposer diversity that is lacking in populations
with random interactions. In contrast, there are big SDs in q in
both the treatment and control groups and there is little differ-
ence between them (details in Table 1 and SI Appendix, Fig. S1).
In addition, both the mean value and the SD of q are constant
in the experiments, which implies that the average behavior of
responders changes little during the experiments. Although pop-
ulation structure plays a prominent role in the UG—reflected in
the difference in the SD of p in the two classes—it does not affect
the behavior of responders. Thus, we expect that network struc-
ture has a subtle effect on the UG and that this subtle effect will
account for why proposer diversity emerges.

Emergence of Proposer Communities. To discover how network
structure affects proposer diversity, we study the spatiotemporal
patterns of the proposers. Surprisingly, Fig. 2 shows that in T1
and T2 proposers form local communities, which are shown in
different colors (values of p). A community is a group of subjects
with similar behavior and internal agreement. Proposer commu-
nities have similar values of p. After communities emerge, and
especially in the final 10 rounds, their boundaries are clear and
relatively invariant, indicating that they are approximately stable
and rarely change. Each community is composed of adjacent pro-
posers who make similar high or low offers and in Fig. 2 exhibit
the same community color. Adjacent communities exhibit differ-
ent colors, indicating that offers differ among communities. In
C1 and C2, however, there are no clear communities and eventu-
ally a single homogeneous community of proposers with similar
values of p (similar color) emerges. A snapshot in round 60 in
T1 is shown in Fig. 3A. Four local communities are composed of
adjacent proposers in the regular network (Fig. 3A). Analogous
to T1, there are four local communities in the random network
(Fig. 3B). Although in the random network there is no naturally
occurring spatial order of nodes, we find a spatial order of nodes
by using a simulated annealing algorithm to maximize the sum of
shared neighbors between any two adjacent nodes (details in SI
Appendix, Supplementary Note 1). The existence of local commu-
nities with different internal features accounts for the proposer
diversity in structured populations.

Table 1. The mean value and SD of strategies in experiments

Group Mean(p) SD(p) Mean(q) SD(q)

T1 44.89 5.90 36.43 12.72
C1 40.27 1.64 31.66 7.61
T2 38.93 8.27 32.81 9.93
C2 40.74 2.25 31.53 7.87

Mean(p) and SD(p) represent the mean value and the SD of offers of
all proposers, in which a proposer’s offer is taken as the average of his/her
offers p over 60 rounds, respectively. Similarly, mean(q) and SD(q) represent
the mean value and the SD of minimum acceptance levels of all responders,
respectively, in which a responder’s minimum acceptance level is taken as
the average of his/her minimum acceptance levels q over 60 rounds. T1, C1,
T2, and C2 have the same meanings as those in Fig. 1.
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Fig. 2. Spatiotemporal patterns of proposers. (A and B) Spatiotemporal
patterns of the proposers’ offers p in the two treatment groups T1 and T2.
(C and D) Spatiotemporal patterns of the proposers’ offers p in the two
control groups C1 and C2. The ordinate represents the spatial orders of
proposers. Two proposers with most common neighbors will be adjacent
to each other. The color bar represents the value of p. In A and B, neigh-
boring proposers gradually form some local communities that can be dis-
tinguished by different colors (different values of p). The communities are
stable as reflected by the presence of relatively clear and invariant bound-
aries among the communities after a number of rounds (e.g., 30 rounds in
A). Each community is composed of some neighboring proposers who offer
similar p as represented by a similar color. By contrast, in C and D, there are
no local communities and a single homogeneous community of proposers
with similar values of p as represented by a similar color arises. The local
communities with different internal agreements in T1 and T2 account for
the diversity in proposers. By contrast, in C1 and C2, the absence of local
communities and the homogeneity of proposers account for the relatively
small SD of proposals.

Note that although the formation of stable local communities
has been predicted by a number of evolutionary game models,
it has seldom been observed in experiments using both the UG
and other social dilemma games, such as the PD and the PGG.
Our work provides experimental evidence that local agreements
in the form of communities are spontaneously achieved, which
indicates that network structure plays a significant role in evo-
lutionary games. It is worth noting that because the behav-
ior of neighbors (i.e., values of p or q) in previous rounds
returns in a descending order, the feedback information can-
not be related to specific neighbors, precluding participants
from using the reputations of their neighbors to make decisions
(SI Appendix, Fig. S2). Thus, the network effect plays a determin-
istic role in the formation of proposer communities. Our findings
provide evidence for network-induced communities and insight
into the evolution of fairness and altruism in structured popula-
tions with limited social ties.

Behaviors of Proposers and Responders. To discover how diverse
communities emerge, we explore the spatiotemporal diagram of
responder behavior. Unlike the behavior of proposers, there is
no obvious difference in the behavior of responders between the
treatment and the control groups (SI Appendix, Fig. S3). There
are no local responder communities, and adjacent responders
exhibit inhomogeneity that increases the SD of q in all groups.
The irrational behavior of responders reflected in the spatiotem-
poral diagram is consistent with the high SD of q (SI Appendix,
Fig. S3). All of these results indicate that network structure has
little influence on the decision-making process of responders.
Unlike responders, most proposers are rational and make offers
based on the (myopic) best-response strategy, as predicted by
theoretical models (43, 47). Proposers tend to maximize their
profits by using information about their neighbors’ behaviors in
the previous round. As the game progresses, over half of the pro-
posers give a best response to their neighbors according to the

definition of best response in the literature (43, 47) (details in
SI Appendix, Fig. S4 and Supplementary Note 2).

Knowing how subjects make decisions is the key to under-
standing how proposer communities emerge. Proposer com-
munities emerge from local interactions between the inher-
ent diverse behaviors of responders (SI Appendix, Table S1)
and the best-response behaviors of proposers. Within commu-
nities, proposers share a large fraction of neighbor responders.
Because proposer behavior obeys the best-response strategy,
they use their knowledge of the previous behavior of their com-
mon responders and offer similar amounts of money. These
best-response behaviors induce the emergence of a local com-
munity. On the other hand, the inherent diverse behaviors of
responders result in different communities with different inter-
nal agreements. In particular, when responders insist on high
acceptance levels, they force their proposer neighbors to increase
their offers, which leads to stable communities (Fig. 3C). Thus,
local interactions are essential in the formation of local commu-
nities. This interpretation is supported by the absence of local
communities in control groups with random interactions.

To examine whether some differences between the responders
in the treatment group and those in the control groups may be
responsible for the communities, we apply a shuffle technique in
all of the experiments to test the effect of responder differences
(28, 30). Specifically, we exchange the behavior sequences of the
responders in the treatment groups with the behavior sequences
of their counterparts in the control groups. This reshuffling does

A

C

B

Fig. 3. Local communities of proposers. (A and B) A snapshot of the pro-
posers’ offers p and the responders’ q in round 60 for (A) T1 with a regular
network and for (B) T2 with a random network. The subjects are arranged
in two rings, where the outside ring represents proposers and the inside
ring represents responders. The color bar represents the value of p and q.
Communities are highlighted by colored boxes. The arrangement of pro-
posers is the same as in Fig. 2 (two subjects with most common neighbors
are adjacent to each other) but with periodic boundary conditions. The reg-
ular network offers a natural sequential order but there is no such order for
the random network. We assign the spatial order of the nodes in random
networks by using a simulated annealing algorithm. The order is exclusively
based on the topology rather than the acts of subjects. (C) The evolution
of a fairly stable community in T1. The snapshots of the community in four
rounds are shown. The responder can be regarded as a “leader” of this com-
munity and is followed by the four neighboring proposers. In round 16, the
responder’s minimum acceptance level q was relatively low and all neighbor-
ing proposal ps were accepted. In round 29, the responder’s q was increased
and all neighboring ps were rejected. Because the proposers are relatively
rational, they gradually increased their ps to make deals with the responder.
In round 32, three proposers made deals by enhancing their ps, and a pro-
poser’s p is higher than the responder’s q. In round 33, all of the proposers
made deals with the responder and their ps were equal to or slightly higher
than the responder’s q.
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not change a player’s dependence on his or her own previous
actions because the order of the actions over 60 rounds is not
altered. We then calculate the best-response offers in each group
and find that the SD of p in the shuffle games with network struc-
tures is still higher than that in the shuffle games with random
interactions, suggesting that the differences between the respon-
ders in the treatment and control groups do not account for the
emergence of the communities (SI Appendix, Table S2). Thus,
local interactions play an essential role in the emergence and
maintenance of local communities.

Simulations on Complex Networks. Recent interest in evolutionary
games in scale-free networks prompts us to explore the UG on
scale-free networks (11–13, 15, 18, 20, 30). In general, a scale-
free network must be of a certain size to exhibit its typical struc-
tural feature, that is, the presence of hubs with a large number
of neighbors (48). However, an experimental UG on a large net-
work is limited by our ability to conduct large-scale experiments.
To overcome this, we simulate the UG on scale-free networks.
Specifically, because proposers use the best-response strategy in
treatment and control groups, we assume that proposers in scale-
free networks exhibit a similar behavior (31). In contrast, it is dif-
ficult to use simple mechanisms to capture the irrational behavior
of responders. This problem can be solved by focusing on respon-
der behavior in the experiments and discovering that behaviors
are quite similar in the different experiments. We build a database
of all responder behavior sequences obtained in the four exper-
iments, randomly pick sequences from the database, and assign
them to responders in the scale-free network. Table 2 shows that
for different network sizes and average degrees, the SD of p in
scale-free networks is always much higher than that in popula-
tions with random interactions, but that there is no obvious differ-
ence in the mean value of p. The spatiotemporal pattern of pro-
posers in scale-free networks also exhibits the formation of local
communities (SI Appendix, Fig. S5). These results agree with our
experimental findings in regular and random networks.

To test whether our findings depend on the specific ratio
between proposers and responders, we carry out additional sim-
ulations for networks with different proposer–responder ratios.
Two types of bipartite networks are considered. In the first type
all proposers and responders have the same degrees, respec-
tively, and in the second type the degrees of proposers and
responders can differ. Similar to the simulations in scale-free
networks, we randomly choose responder behaviors from the
database that includes all responder behavior sequences and
assume that proposers follow the best-response strategy. As

Table 2. The mean value and SD of proposers’ offers in scale-free
networks

Structured/unstructured

N 〈k〉 Mean(p) SD(p)

100 4 41.30/41.30 5.36/2.14
6 42.81/42.89 4.26/1.54
8 43.60/43.52 3.46/1.17

500 4 41.10/41.11 5.71/2.16
6 42.73/42.71 4.58/1.55
8 43.60/43.58 3.81/1.18

1,000 4 40.95/40.92 5.78/2.17
6 42.69/42.70 4.66/1.54
8 43.61/43.60 3.89/1.19

N represents the network size and 〈k〉 represents the average nodal
degree. Structured and unstructured correspond to virtual experiments with
static scale-free networks and constantly changing networks with the same
node degrees as their counterparts with fixed structures. Other notations
have the same meaning as that in Table 1. The results are calculated by using
from round 2 to round 60 and implementing 1,000 independent realizations.

shown in SI Appendix, Table S3, for four different proposer–
responder ratios, the SD of p in structured populations is much
higher than in populations with random interactions. Thus, our
results are robust against changes in the ratio between proposers
and responders.

Discussion
Our experimental results, shuffle tests, and simulations demon-
strate that stable communities with different internal agreements
emerge in both regular and complex networks governed by the
UG. Thus, the social diversity among proposers emerges and
persists. In contrast, in populations with random interactions the
proposers remain homogeneous and no communities are estab-
lished. The diverse communities emerge from the local interac-
tions between irrational responders with inherent heterogeneous
demands and rational proposers. In general, proposers with com-
mon neighbor responders who act as leaders constitute a commu-
nity with internal agreement. The different findings between the
treatment and control groups indicate that networks are signifi-
cant in the emergence of social norms, communities, and social
diversity. Thus, our work explains how communities with com-
mon internal properties and social norms can emerge in a social
network in which individuals are diverse. Note that our findings
also suggest that even when all proposers have the same intel-
ligent strategy (i.e., best response) and all subjects in the social
network have equal status, diverse communities can arise. This
result may explain why different social norms can be established
even in homogeneous environments (4, 49, 50).

Our results also indicate that local interactions in network
structures are only a necessary and not a sufficient condition
for the formation of local communities. The self-organization
of communities also requires an inherent diversity among indi-
viduals. In our UG experiments, local agreements are achieved
because a majority of proposers are rational. Some of the irra-
tional responders who insist on high acceptance levels become
“leaders” who are followed by their neighboring proposers. This
leader effect has been observed in other evolutionary games. For
example, previous studies report that cooperating leaders play
an important role in increasing a group’s average contribution in
PGGs (51, 52). However, how the cooperative communities are
established in social dilemma games in social networks remains
an open question.

Our work also raises other questions about the emergence of
communities and their effects on evolutionary dynamics. First,
how does inherent diversity among individuals arise? One possi-
ble answer is provided in a recently proposed model by Bear and
Rand (53) in which intuitive rejection and deliberative accep-
tance have evolutionary advantages (53). Thus, heterogeneity at
an individual level in our experiments might stem from different
deliberation costs in which responders with a higher deliberation
cost tend to make decisions based on intuition. Thus, they may
have higher acceptance level q for closing a deal with their neigh-
boring proposers. Second, how does cultural difference affect
the experimental findings of communities and social diversity?
Although additional experiments are needed to fully address this
question, previous experiments provide hints that anticipate the
effect of cultural difference. Specifically, there is no significant
difference between responder behavior in our experiments and
that in previous experiments of UG conducted in different coun-
tries (34). Thus, qualitatively similar results may be obtained if
the experiments are conducted in other countries. Third, most
theoretical models for networked UG assume that a subject can
act as both a proposer and a responder (18–20). Thus we may
ask how the two identities of subjects influence each other and
affect the formation of local communities predicted by theoret-
ical models. Taken together, further effort is needed to offer a
better understanding of the emergence of communities in social
networks.
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Materials and Methods
This research was approved by School of Systems Science, Beijing Nor-
mal University on the use of human subjects, and informed consent was
obtained from subjects before participation. We recruit 50 participants in
each of four groups. Half of them are randomly assigned proposers and
half are randomly assigned responders, and assigned player roles do not
change during the experiment. Each participant in the treatment groups is
assigned a location within a static network and designated either a pro-
poser or a responder. In the treatment groups the UG is structured and par-
ticipants must play the UG with their immediate neighbors (two subjects are
neighbors if they are directly connected). All of the proposers’ neighbors are
responders and vice versa. To be consistent with theoretical models, in each
round all subjects must use one decision behavior as they interact with their
neighbors; that is, a proposer must make the same offer p (0 ≤ p ≤ 100) to
all of his or her neighboring responders, and a responder must indicate the
same minimum acceptance level q (0 ≤ q ≤ 100) to all of his or her neigh-
boring proposers (18–20). For T1 we construct a regular bipartite network
in which each node has four neighbors. For T2 we build a random bipartite
network in which the number of neighbors ranges from two to six (with an
average degree of four).

We compare the results from the treatment groups with the results from
the two control groups (populations with random interactions), C1 and C2,
to explore the network effect on fairness and altruism. Specifically, to make
an unbiased comparison between the treatment and control groups, in C1
and C2 we use a randomly rewired bipartite network with the same node

degrees as in the treatment groups. In the rewired network the neighbors
of each node are chosen randomly from the other type of nodes in each
round, but the number of each node’s neighbors is unchanged.

Each group of experiments includes 60–70 rounds. To prevent any final-
round effect, we do not tell the participants the number of rounds they will
play. In each round, information gathered in the previous round is given
to each player, including the player’s own behavior and payoff and the
behavior of the player’s neighbors. The payoff of a player in each round
is the sum of the benefits gained from interacting with all of the neigh-
bors of the player normalized by the number of neighbors. To simplify their
decision-making processes, we rank neighbor behaviors in a descending
order such that players can easily evaluate their behaviors (SI Appendix,
Fig. S2). For a further explanation of the experimental design, see SI
Appendix, Supplementary Notes 3–5.
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1 Supplementary Figures

Supplementary Figure S1: Evolution of the minimum acceptance level q in the treatment and
control groups. (a-d) The evolution of q in the two treatment groups, T1 (a) and T2 (b), and the

two control groups, C1 (c) and C2 (d), respectively. The mean value and the standard deviation (i.e.,

the square root of the variance) of q in each of the 60 rounds are denoted by circles and column bars,

respectively. The average value of q in T1 is slightly higher than the other groups, and q in both the

treatment and control groups displays big standard deviations and little difference is observed between

them.
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Supplementary Figure S2: Screen shots of experimental interfaces. (a,b) Interface of proposers (a)

and responders (b) in English. (c,d) Interface of proposers (c) and responders (d) in Chinese. We used

the two interfaces in Chinese in the experiments and the English versions are direct translations of the

Chinese versions.
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Supplementary Figure S3: Spatio-temporal patterns of responders. (a,b) Spatio-temporal patterns

of the responders’ minimum acceptance level q in the two treatment groups T1 (a) and T2 (b). (c,d)

Spatio-temporal patterns of the responders’ minimum acceptance level q in the two control groups C1

(c) and C2 (d). The color bar represents the value of q.
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Supplementary Figure S4: The fraction of rational proposers with best-response strategy. The

frequencies of best-response strategy from round 2 to round 60 in T1 (red), C1 (yellow), T2 (blue) and

C2 (green). In round 2, there are only 18 rational proposers in the 100 proposers (3 in T1, 7 in C1, 5 in

T2 and 3 in C2). In contrast, in round 60, there are 55 rational proposers (21 in T1, 12 in C1, 14 in T2

and 8 in C2).
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Supplementary Figure S5: Spatio-temporal patterns of proposers and responders in scale-free net-
works. (a) Spatio-temporal patterns of the proposers’ offers p in structured scale-free bipartite network

and clear local clusters are observed. (b) Spatio-temporal patterns of the proposers’ offers p in un-

structured scale-free bipartite network and a single homogeneous community of proposers arises. (c,d)

Spatio-temporal patterns of the responders’ minimum acceptance level q in structured (c) and unstruc-

tured (d) scale-free bipartite networks, respectively. Structured and unstructured populations correspond

to virtual experiments with static scale-free networks and constantly changing networks with the same

node degrees as their counterparts with fixed structures. Network parameters are ⟨k⟩ = 4 and N = 100

(i.e., 50 proposers and 50 responders). The color bar represents the value of p and q.
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Supplementary Figure S6: Photo of the computer lab. This photo shows a part of the laboratory.

White cardboard dividers are used to avoid participants glancing others’ screens. Participants can play

the game in a quiet environment.
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Supplementary Figure S7: Optimizing configuration energy using simulated annealing algorithm.
(a,b) Optimizing spatial sequence of proposers (a) and responders (b) in the random bipartite network in

T2, respectively. (c,d) Optimizing spatial sequence of proposers (c) and responders (d) in the scale-free

bipartite network (used in Supplementary Fig. S5 with ⟨k⟩ = 4 and N = 100), respectively. Energy ns

is defined as the sum of the number of common neighbors of all pairs of adjacent nodes.
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Supplementary Figure S8: Sequence of node degrees versus spatial sequence in a scale-free net-
work. (a,b) Node degrees k of proposers (a) and responders (b) in the optimized spatial sequence. We

see that high-degree nodes tend to gather together for both proposers and responders, because the number

of common neighbors of high-degree nodes is larger than that of shared with other nodes. The scale-free

bipartite network is the same as used in Supplementary Fig. S5.
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2 Supplementary Tables

Supplementary Table S1: Statistic results for inherent diversity of responders’ behaviors. Stan-

dard deviation between responders’ minimum acceptance levels, SM(q), and mean value of the standard

deviation within responders’ minimum acceptance levels over 60 rounds, MS(q), in the two control ex-

periments and two treatments. The results show that the standard deviation between the behaviors of

responders is larger than the standard deviation within their behaviors. This implies that the behaviors of

responders have inherent diversity.

SM(q) MS(q)

T1 12.72 7.02

C1 7.61 6.39

T2 9.93 6.49

C2 7.87 7.20

Supplementary Table S2: Mean values and standard deviation of p in “shuffle” games. Similarly as

Table I, mean(p) and std(p) represent the mean value and the standard deviation of offers of all proposers,

respectively. std(p) in shuffle games with network structures are significantly higher than that in shuffle

games without with random interactions.

mean(p) std(p)

C1 on T1
46.36 4.75

network

T1 without
39.26 0.58

network

C2 on T2
40.11 7.64

network

T2 without
40.08 1.17

network
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Supplementary Table S3: The mean value and standard deviation of proposers’ offers in regular
bipartite networks and random bipartite networks with different ratios between proposers and
responders. NP and NR represent the number of proposers and responders, respectively. ⟨k⟩P and

⟨k⟩R represent the average nodal degree of proposers and responders, respectively. In regular bipartite

networks, all proposers (resp. responders) have the same degree, while in random bipartite networks,

their degrees can be different. Mean(p) and std(p) represent the mean value and the standard deviation of

offers of all proposers, in which a proposers offer is taken as the average of his/her offers p from round

2 to round 60, respectively. Structured and unstructured correspond to virtual experiments with static

networks and constantly changing networks with the same node degrees as their counterpart with fixed

structures. The results are calculated by implementing 1000 independent realizations.

NP NR ⟨k⟩P ⟨k⟩R

mean(p) std(p)

Regular Random Regular Random

(Structured / unstructured) (Structured / unstructured)

50 25 4 8 42.57/42.67 42.16/42.02 4.23/0.83 4.80/1.79

75 25 3 9 41.50/41.53 40.96/40.94 5.00/0.97 5.43/1.80

25 50 8 4 44.12/44/11 44.06/44.02 2.98/0.64 3.19/1.06

25 75 9 3 44.40/44.37 44.31/44.27 2.86/0.62 3.14/0.95
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3 Supplementary Note 1: Optimization method for ordering participants
in complex networks

Figure 3 shows the allocated spatial locations of the participants, which were based exclusively on the

network topology. Our goal is to put the participants with the largest number of common neighbors

together in a double ring. In the regular bipartite network we accomplish this goal by following the

natural periodic structural properties, as shown in Fig. 3(A). Note that spatially adjacent participants

have the largest number of common neighbors. In the random bipartite network, however, it is difficult

to determine adjacent subjects by their common neighbors because of the complex topology. To address

this problem, we use a simulated annealing algorithm to yield a best configuration. We define an energy

function ns in terms of the number of common neighbors of all pairs of immediately adjacent nodes,

ns ≡
∑N/2−1

i=1 ni,i+1 + nN/2,1 (where N is the number of nodes, N/2 the total number of each type of

node, and ni,j the number of common neighbors between i and j) and consider the periodic boundary

condition.

In order to achieve the maximum energy that corresponds to the optimal spatial configuration in

which the sum of shared neighbors between adjacent nodes are maximized, we initially assign a random

spatial order for each type of node. Specifically, at step t + 1 we randomly pick two nodes in the

sequence and exchange their locations. If the energy is increased in a new configuration, we accept it.

If it is not, we accept a worse configuration with a small probability exp{[ns(t + 1) − ns(t)]/T (t)} if

ns(t+ 1) < ns(t), where T is the temperature, and we set T = 300× 0.9t. As t increases, temperature

T eventually approaches zero. The simulated annealing algorithm allows the energy to escape from local

maxima and approach global maxima. We implement the optimization algorithm for both proposers

and responders and find that their maximum energies are 40 and 38, respectively. We similarly obtain

an optimal spatial sequence of proposers and responders in a scale-free network (see Supplementary

Fig. S7). Note that high-degree nodes gather together, as shown in Supplementary Fig. S8. Note also

that the given sequence of nodes with periodic boundary conditions do not rely on participant behavior

but are determined by topology. The presence of local agreement among topological-based adjacent

participants indicates the significant role of network structure in the evolution of the UG.

4 Supplementary Note 2: Evaluating the rationality of participants

We used a rigorous test to identify whether participants were rational. Participants who used the best

strategy in response to the behaviors of their neighbors in the previous round were considered rational.

The best strategy for rational responders would have been to accept all proposals from their neighbors.

We found that only ≈ 2% of the responders in either the structured or unstructured UG were rational

in every round. The rest rejected “unfair” proposals. The best strategy for rational proposers in each

round was to offer the amount that maximizes payoff, keeping in mind the minimum acceptance levels

demonstrated by neighbors in the previous round [1, 2]. For a proposer with k neighbors whose minimum
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acceptance levels in the previous round were respectively q1, ..., qk (with q1 < · · · < qk), the best strategy

was p = argmaxqi{i × (100 − qi)/k}, where i × (100 − qi)/k was the payoff if the proposers offered

qi. We found that the faction of rational proposers gradually increased and eventually exceeded half of

population in all groups (see Supplementary Fig. S4). Our definition of rational behaviors was rigorous,

and we found that the proportion of rational proposers was high.

5 Supplementary Note 3: Experimental Setup

The experiment was carried out in the computer labs of Beijing Normal University over a two-day period.

On the first day T1 and C1 were conducted, and on the second day T2 and C2. All 200 participants

were freshmen and sophomores recruited from Beijing Normal University who were not enrolled in

classes studying game theory and economics. We built the experimental platform by using z-Tree [3].

The interactions were executed via computer and were anonymous. Cardboard dividers ensured that the

students could not see each other (see Supplementary Fig. S6). Players were not allowed to communicate.

They were allowed to ask questions before the experiment began but not during the experiment.

Before starting the experiment, we provided a 30-minute explanation of the game to all participants.

This included the rules of the game, the purpose of the game, and the feedback information in the

computer. All players in each session were given the same instructions (in Chinese). (For a translation

of the instructions, see Supplementary Note 3.) To ensure that all participants fully understood the game,

we set aside a 15-minute period for five practice rounds before beginning the formal experiment. The

formal experiment lasted approximately 45 minutes and each round was time-limited. Players knew

that if they did not make a decision within 30 seconds, they would be assigned the decision from their

previous round. Since the players had familiarized themselves with the game during the practice rounds,

this happened only 546 times in 12000 decisions (in T1, 85 times in 3000 decisions; in C1, 282 times

in 3000 decisions; in T2, 151 times in 3000 decisions; and in C2, 28 times in 3000 decisions). After

the experiment the score of each participant obtained in the formal experiment was converted to Chinese

Yuan at a ratio of 50 : 1. The payoff plus 20 Yuan was their total income. The average income was

71.85 Yuan (with a minimum of 45 and a maximum of 102). The T1 average income was 71.56 Yuan

(minimum 52, maximum 81), the C1 was 74.30 Yuan (minimum 57, maximum 89), the T2 was 69.70

Yuan (minimum 45, maximum 102), and the C2 was 71.84 (minimum 52, maximum 86). To keep the

comparison unbiased, all results were calculated using data in 1–60 rounds.

6 Supplementary Note 4: Experimental Instructions

Instructions:
Welcome and thank you for participating in this experiment. Please read these instructions carefully.

If you have any questions please raise your hand. One of the experimenters will come to you and answer

your questions. From now on communication with other participants is not allowed. Please switch off

13



your mobile phones.

Instruction for T1
1. The basic game:

There are two types of players, Player 1 and Player 2. Player 1 makes an offer on how to split 100 tokens.

Player 2 can decide whether to accept or reject the offer made by Player 1. If Player 2 accepts, then the

tokens are divided as proposed by Player 1. If Player 2 rejects the offer both Players receive 0.

2. Rules of the game

(1) At the beginning of the experiment, your role will be determined randomly. You will be randomly

matched with 4 other participants (your partners) who play the other role. Your role and your partners

will not change during the experiment.

(2) In each round, Player 1 will play the basic game with their partners by inputting a value p, which

means giving p tokens to each partner.

(3) In each round, Player 2 can decide whether to accept each of his/her partner’s offer by inputting a

value q, which means offer no less than q will be accepted.

(4) After all the participants have submitted their values, the system will calculate your score. Your score

= (your tokens)/(number of partners).

3. A Player 1 example

(1) Player 1 has four Player 2 partners.

(2) Suppose Player 1 gives p tokens to each partner, and the acceptance levels of the four partners are

q1 > q2 > q3 > q4.

(3) If q1 > q2 > p ≥ q3 > q4, then two partners (q3 and q4) accept the offer. Player 1 gets (200 − 2p)

tokens and the score is (200− 2p)/4 (4 is the number of partners).

4. A Player 2 example

(1) Player 2 has four Player 1 partners.

(2) Suppose the acceptance level of Player 2 is q, and the offers made by the four partners are p1 > p2 >

p3 > p4.

(3) If p1 > p2 > q ≥ p3 > p4, then two offers (p1 and p2) are accepted. Player 2 gets (p1 + p2) tokens

and the score is (p1 + p2)/4 (4 is the number of partners).

5. Payment

Your total income = show up fee 20 Yuan+ your total score ×0.02 Yuan.

Instruction for C1
2. Rules of the game

(1) At the beginning of the experiment, your role will be determined randomly and will not change during

the experiment.

(2) At the beginning of each round, you will be randomly matched with four other participants (your

partners) who will play the other role.
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(3) In each round, Player 1 will play the basic game with each of their partners by inputting a value p,

which means giving p tokens to each partner.

(4) In each round, Player 2 can decide whether to accept each of his/her partner’s offer by inputting a

value q, which means no offer less than q will be accepted.

(5) After all the participants have submitted their value, the system will calculate your score. Your score

= (your tokens)/(number of partners).

[The rest of the parts are the same as T1.]

Instruction for T2
2. Rules of the game

(1) At the beginning of the experiment, your role will be determined randomly. You will be randomly

matched with other participants (your partners) who will play the other role. Your role and your partners

will not change during the experiment.

(2) In each round, Player 1 will play the basic game with each of their partners by inputting a value p,

which means giving p tokens to each partner.

(3) In each round, Player 2 can decide whether to accept each of his/her partner’s offer by inputting a

value q, which means no offer less than q will be accepted.

(4) After all the participants have submitted their value, the system will calculate your score. Your score

= (your tokens)/(number of partners).

[The rest of the parts are the same as T1.]

Instruction for C2
2. Rules of the game

(1) At the beginning of the experiment, your role will be determined randomly and will not change dur-

ing the experiment.

(2) At the beginning of each round, you will be randomly matched with some other participants (your

partners) who will play the other role. The number of your partners will not change during the experi-

ment.

(3) In each round, Player 1 will play the basic game with each of their partners by inputting a value p,

which means giving p tokens to each partner.

(4) In each round, Player 2 can decide whether to accept each of his/her partner’s offer by inputting a

value q, which means no offer less than q will be accepted.

(5) After all the participants have submitted their value, the system will calculate your score. Your score

= (your tokens)/(number of partners).

[The rest of the parts are the same as T1.]
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7 Supplementary Note 5: Some comments

Although we realize that the network size in our experiments is relatively small, the experimental find-

ings, shuffle tests, and virtual games on scale-free networks indicate that network size has little influence

on communities and social diversity. Because we have discovered that the communities are formed by

locally constrained interactions, increasing network size will not affect local interactions, which will re-

semble those in small networks. That is why we have not conducted larger-scale experiments than the

current 50-participant groups.

Regarding the unchanging single role of each participant in our experiments, we do not know whether

the experimental findings can be extended to the dual-role scenario that has been the focus of many

theoretical studies [4, 5, 6, 7, 8, 9], but we used a single role for each subject for two reasons.

First, dual identities could confuse a participant without any previous knowledge of the UG, especial-

ly after several rounds. Second, in dual-role experiments there is a time-out problem. Because subjects

would need sufficient time to make two different kinds of decision based on massive feedback informa-

tion from the previous round—which would include all of their neighbors’ payoffs, offers, and minimum

acceptance levels and their own payoffs, offers, and minimum acceptance levels—it would not generate

useful results. The careful design of the experiment needs to simplify subject decision-making, avoids

subject confusion, and reduces latency time in each round. That is why we have used the simplified

single-role version. The single-role UG is able to provide insight into the behaviors of both proposers

and responders when they engage in multiple games simultaneously. The knowledge gained is important

not only for making predictions but also for providing expectations associated with subsequent dual-role

UG experiments. Our work is thus an initial experimental attempt to eventually understand fairness and

altruism in populations with multiple local interactions.
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