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We study diffusion with a topological bias on random structures having dangling ends whose
length L is chosen from a power-law distribution P(L)~L ~‘®*". We find that the mean-square
displacement (x2) of a random walker on the backbone varies asymptotically as (x2) ~(logt)**,
slower than any power of ¢, in contrast with {x ) ~¢, the conventional result for a nonrandom lat-
tice. Our predictions are confirmed by numerical simulations for percolation and for the random

comb.

How are the laws of physics for random materials dif-
ferent from those for ordered ones? This question has
been the object of great current study. In general, laws of
diffusion in random media have been characterized by
power-law relations of the form'—*

(x2)~t% (1)
Here d,, represents the fractal dimension of the walk. For
diffusion on a nonrandom lattice structure, d,,=2 and (1)
reduces to Fick’s law of diffusion. For random structures,
d,+2; rather d,, depends sensitively on the nature of the
random structure. Accordingly, it is of considerable in-
terest to find which features of the random structure
determine d,, and which features are irrelevant.

In this Brief Report we study how the laws of diffusion
are changed under the influence of a “topological” bias
field E. We find that the distribution of dangling ends in
the random structure is a relevant feature which charac-
terized the diffusion. Specifically, we consider here a to-
pological random comb with a power-law distribution

P(L)~L~U+9 450, )
of the length L of the teeth (“dangling ends”). We find
that the (asymptotic) laws of diffusion are changed from
the power law (1) to the logarithmic form
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2y _ | _logt 3)
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where (x?) is the mean-square displacement of the ran-
dom walker along the backbone of the comb. We argue
that the rigorous result may also be relevant for the inci-
pient infinite cluster at the percolation threshold. Indeed
a logarithmic form for (x?) was suggested by Stauffer
from numerical simulations results in this case.®

The topological bias is introduced as follows: every
bond experiences the topological bias field E which drives
the walker away from the source. Consequently the walk-
er has an enhanced probability p, «(1+E) that the next
step increases the topological pathlength to the source,
and a decreased probability p_ o« (1—E) that the next step
decreases the topological path length to the source (Fig.
1). Note that for a topological bias (in contrast to a
Pythagorean bias*~!!), the random comb is similar to a
percolation cluster above p., since for both structures the
topological bias drives a random walker toward the tips of
the dangling ends. Such a situation might arise for dif-
fusion inside a porous medium when a pressure source ex-
ists at one point.

To obtain (3), we note that the average time 7 a random
walker spends on a dangling end of length L scales as’'?
L

1+E oz @)

1-E

T~

Correspondingly the transition probability W to pass by
a dangling end on the backbone in the direction of the
bias field scales as W ~7"'~e~*t. Combining (2) and
(4), we find that the probability distribution P(W) of
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FIG. 1. Illustration of the differences between topological
bias and Pythagorean bias. The arrows represent the direction
of the bias field along the shortest path (a) for topological bias,
(b) for Pythagorean bias. Figures (c) and (d) represent the same,
respectively, for a part of the incipient infinite cluster. Note
that every dead end and longer path along the shortest path be-
tween the two points 4 and B delays the topological bias dif-
fusion, (a) and (c), similar to the random comb problem.

transition rates along the backbone is given by

1

P(W) W(logh)+e (5)
Now consider the time ¢ the walker needs to pass by /
dangling ends on the backbone, under the influence of the
topological bias. Since the dominant contribution is from
the “random delays” arising from the dangling ends, we
can neglect the time the walker spends on the backbone.
Along the backbone in the direction of the field, the num-
ber of sites visited is proportional to the number of dis-
tinct visited sites (see also Ref. 13). Hence

/ 1
t~i§1-ri~lfwmin-p—y—2(—lf)’gym. ©
It can be shown'* that for the distribution (5),
W min ~exp[ — A (E)I'/2] , (7a)
where
A(E)~log[(1+E)/(1—E)] . (7b)

Solving (6) with (7a), we obtain that asymptotically
t ~exp[A(E)I'/*]. Hence

1Y% _logt/A(E) , (8)

from which (3) follows. For testing (8) we have carried
out computer simulations of random walks on random
combs with various @ and E values using the exact
enumeration method.!* Our results are in striking agree-
ment with (8). Figure 2 shows representative results for
a=2 for several values of E.

An interesting application of the above idea is to per-
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FIG. 2. (a) Plot of /!/® vs Int on the random comb with a=2
for different values of bias fields: @ (E=0.9),
A (E=0.7),(E=0.4), O (E=0.2). The lines represent the
best asymptotic straight lines. (b) The points represent the in-
verse of the slopes presented in (a) and the line represent the
theory [Eq. (7b)]. For our calculations we generated combs of
size [ =300 and averaged over 100 configurations each.

colation, especially since it is widely believed that the dan-
gling ends obey the distribution (2). As noted in Ref. 12,
under the influence of a topological bias, a random comb
and a percolation cluster should be similar. The effect of
branching and loops in the dangling ends as well as longer
paths on the backbone can be taken into account by intro-
ducing an effective dead-end length with replaces L in
Egs. (2) and (4). The analogy between the structure of a
random comb and a percolation cluster is more plausible
in higher dimensions, since the role of loops is less pro-
nounced. Above d =6, loops are irrelevant, so we studied
numerically the incipient infinite in percolation, both for
d =2 and for the Cayley tree (d > 6).

For both cases we obtain best agreement with (8) for the
choice a=1 (Figs. 3 and 4). This finding can be under-
stood for the Cayley tree: A random walker along the
backbone of the incipient infinite cluster is trapped along
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FIG. 3. (a) Plot of / vs Int on percolation clusters generated
on a Cayley tree at criticality, for different values of bias fields:
® (E=0.9), A(E=0.8), O (E=0.7),(E=0.5). The solid
lines are best straight lines. (b) The points represent the inverse
of the slopes presented in (a) and the line represents the theory
[Eq. (7b)]. For our calculations we generated clusters up to 200
shells and averages were made over 100 configurations.

its way be dangling ends whose mass distribution is given
by'® Py(S)~S~"+! with 7=3. Now the pathlength L is
related to the mass S by S ~L2. Hence

P(L)=Py(S\dS /dL)~L*' =7+l =2, 9)

Comparing (2) and (9), we see that a=1 for the Cayley
tree. For d =2, loops are relevant, so the argument lead-
ing to (9) fails; indeed, if we were to use (9), we would
predict a~O0. 1, while we find a~1.0.

We conclude with several remarks.

(i) It is interesting to compare our result with recent
findings for other types of probability distribution for the
dangling ends. In the case of an exponential distribution,
P(L)~exp(—bL), it was found'? that the diffusion was
characterized by power-law relations and a dynamic phase
transition. Below a critical field E,, diffusion is classical
and d,=1. Above E,, diffusion is anomalous and d,, in-
creases continuously with E.

(ii) Our result (8) seems to be independent of the dimen-
sion of the backbone of the comb, since the argument
leading to (8) also hold for higher dimensions of the back-
bone. However, in the case of a bias field only in the
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FIG. 4. (a) Plot of / vs Int on percolation clusters generated
in d=2 at criticality, for different values of bias fields:
® (E=0.9), A(E=0.8), 0 (E=0.7),(E=0.5). The solid
lines are best straight lines. (b) The points represent the inverse
of the slopes presented in (a) and the line represents the theory
[Eq. (7Tb)]. For our calculations we generated clusters up to 200
shells and averages were made over 100 configurations.

direction of the teeth, (8) will depend on the backbone di-
mension. Similar arguments as above lead to

,1/a~_12gt_ d=1

and
2a IOgt
! AE) d>2. (10b)

(iii) The integral (6) leads to logarithmic corrections to
the leading behavior of (8): to the left-hand side of (8)
should be added a term proportion to logt.

(iv) Sinai!” has recently considered a random bias-field
model in d =1: the bias field on each bond is a random
variable chosen from a distribution with zero mean. Sinai
obtains (x2) ~(logt)?*, just as we do for our model in the
case a=2. The physical parallels between the two models
are striking, since our random walkers spend a long time
in the dangling ends, while Sinai’s random walkers spend
a long time in “compensated regions” where bonds of op-
posite bias point to the same lattice site. It would be in-
teresting to attempt to relate the two models, and this is
an object for present investigation.
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