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We review recent developments in the study of the multifractal properties of dynamical 

processes in disordered systems. In particular, we discuss the multifractality of the growth 

probabilities of DLA clusters and of the probability density for random walks on random 

fractals. The results for multifractality in DLA are based mainly on numerical studies, while 

the results for random walks on random fractals are based on analytical results. We find that 

although a phase transition in the multifractal spectrum occurs for d = 2 DLA, there seems to 

be no phase transition for d = 3 DLA. This might be explained by the topological differences 

between d = 2 and d = 3 DLA clusters. For the probability density of random walks on 

random fractals, it is found that multifractality occurs for a finite range of moments 

4. 4In,” < 4 < 4in,X. The approach can be applied to other dynamical processes, such as 

fractons or tracer concentration in stratified media. 

1. Introduction 

In recent years it has been demonstrated that for a wide range of dynamical 
processes in random media the usual scaling laws fail to hold. Instead, 
quantities describing these processes have anomalously broad distributions 
characterized by the concept of multifractality [l-lo]. The moments of such 
physical quantities cannot be described by a single exponent. Rather, an 
infinite hierarchy of exponents is needed to describe them. Some examples are 
the growth probabilities of diffusion limited aggregation (DLA) [3-61, the 
voltage drops in percolation clusters [7], the probability density of random 
walks on fractals [S], the tracer concentration in stratified media with random 
fields [9], and the amplitudes of vibrational excitations [lo], called fractons, in 
percolation systems. 

In this review we concentrate on recent developments in two examples. One 
is the DLA in which the multifractality finding is based on numerical simula- 

Elsevier Science Publishers B.V. 



S. Havlin et al. I Multifractal fluctuations in disordered systems 289 

tions and the other is multifractality of the probability density of random walks 
on random fractals for which an analytical approach exists. 

2. Diffusion-limited aggregation (DLA) 

The diffusion-limited aggregation model [ll] is found to describe a wealth of 

diverse physical, chemical and biological phenomena [3]. The dynamical 
growth process of DLA is characterized by the set of growth probabilities {pi}, 
where pi = p,(M) is the probability that site i in a cluster of mass M will be the 
next to grow. The set {pi} for a given cluster describes the statistical scaling 
properties of the growth of the cluster. A useful approach to describe the 
statistical properties of the DLA growth is the multifractal formalism. First, 
one calculates the “partition function” defined as the qth moment of the 
distribution of pi, 

The average (. . . ) is over different clusters with mass M. The effective scaling 

exponent T( q, M) is defined to be 

T(q,M)=-alnZ(q,M)lalnM. (2) 

If the asymptotic limit 

(3) 

exists, then ~$4) characterizes the power-law scaling of Z( q, M) as a function 
of M, i.e., 

z(q, M)- M-'(q). (4) 

The multifractal spectrum f(a) is obtained by the Legendre-transformation of 

T(4), 

f(a) = 4” - T(4) > dT( 4) 
a-dq* 

If ~(4) is linear in q then the system is uni-fractal, i.e., it is characterized by a 
single exponent. However, if ~(4) is non-linear in q, the system is called 
multifractal. In the “thermodynamic formalism” ~(4) corresponds to a “free 
energy”. If for some range of q values, e.g., for q < q,, Z( q, M) does not scale 
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as a power law of M (as in eq. (4)), but decays faster, then this implies that 
T( 4, M) diverges; we call this phenomenon a “phase transition” at ~7 = 4, 
[6, 12-141. 

The multifractal spectrum, f(cr), has been studied extensively for 2D DLA 
[12-141. The effectively scaling exponent T( q, M) was found numerically to 
diverge with M for moments q < q, ~0, indicating a phase transition. In 
particular the numerical data suggest [14] that the typical smallest growth 
probability, P,,,~,, does not scale as a power of M, rather as pmjn - 
exp(-const x 1n’M) [14]. 

In a recent numerical study [15], the distribution n(a, M) has been calcu- 
lated. Here (Y = -In plln M and n(a, M) da is the number of growth sites in 
the cluster of mass M with a-values between (Y and (Y + da. It can be easily 
seen that 

Schwarzer et al. [15] have found, using numerical simulations, that 

Y 
n(a, M)- n,, exp - + , 

( 1nM) 

(6) 

where y = 2.0 + 0.3 and 6 = 1.3 2 0.3. Eq. (7) and the form of Pmin suggest that 
we can picture the structure of 2D DLA as composed of hierarchical self- 
similar “almost voids” connected by narrow “necks”. Schwarzer et al. [16] 
calculated the distribution of voids and necks and found that many very large 
voids have very narrow necks, supporting the above picture (see fig. 1). Lee et 
al. [17] have suggested a family of deterministic hierarchical fractals, which 
possess the above properties, as models for the structure of 2D DLA clusters 
(see fig. 2). The analytical solution for the growth probability distribution of 
this family is found to have the form of eq. (7) with y = 2 and 6 = 1. Eq. (7) 
can also explain the finding [14] that the mass dependence of the smallest 
growth probability is p,,, - exp(- A ln2M). 

In a recent work [18], the multifractal spectrum of the growth probability of 
3D off-lattice DLA was studied. The results indicate that, in contrast to 
2D DLA, there appears to be 120 phase transition in the multifractal spectrum 
(see fig. 3). In particular, it is found [18] that for 3D DLA pmin - Meamax where 

%KiX = 4.3 t 0.2. This difference can be explained in terms of the topological 
differences between 2 and 3 dimensions. In both 2D and 3D, narrow necks are 
created in the DLA by side branches that grow closer and closer. In this 
process the growth probabilities in the neck become so small that it does not 
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Fig. 1. f(a) vs. (Y - &( q)/aq, calculated as the Legendre transform of T(q) for 3D DLA. T(q) is 

determined from a linear least square fit of the logarithm of the moments Z( q, M) as a function of 

the logarithm of the DLA cluster mass log M. The largest considered clusters were of mass 

M = 15 015. Different curves correspond to fits in an increasingly larger mass range: M = 10 330- 

15 015 (solid line), M = 7 502-15 015 (short dashes) and M = 2 892-15 015 (long dashes). 

become narrower. Due to the 2D topology the growth probabilities inside the 
“almost void” are extremely small. This, together with the hierarchical picture 

of the DLA, explains the relation pmin - exp(-ln2M), which leads to a phase 
transition. In 3D, even when tips from different branches are close, there is no 
significant screening of growth, since particles can enter from directions 
perpendicular to the loop, suggesting a power-law dependence of pmin on the 
mass M of the cluster. Thus the apparent absence of a phase transition in 3D 
DLA can be interpreted as due to the topological difference between 2 and 3 
dimensions. 

k (b) (4 
Fig. 2. Construction of a deterministic hierarchical model for DLA. (a) The generator and the first 
generation of the model; (b) the second generation; and (c) the third generation (after ref. [17]). 
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Fig. 3. Neck width distributions in 2D DLA. Here, n&s, W) is the normalized number of “almost 

voids” with size w associated to “voids” of area s, for 21 DLA clusters with M = 120 000 sites. On 

the abscissa, we plot the resealed neck width w/so’. The ordinate is n,(s, w) s”’ to preserve the 

normalization of the distributions. Displayed are s = 1 (0), 3 (Cl), 10(A), 25 (V), 100(e), 

250 (W). 1000 (A), 2500 (V). For the large s, a maximum in the distributions is seen, correspond- 

ing to a typical value G(s) - so ’ of the neck width. Note, however, that this value is small (~10 for 

s = 2500). 

3. Multifractal fluctuations of random walks on random fractals 

A random fractal is characterized by two metrics: (i) the geometrical 
distance, r, between two sites and (ii) the chemical distance (or shortest path), 
4?, between two sites. In general, both distances scale differently. In recent 
years it has been found that the fluctuations of several dynamical properties on 
fractals (e.g., the probability density of random walks and the amplitudes of 
vibrational excitations) are very narrow in the chemical distance metric and 
very broad - exhibiting multifractal features - in the geometrical distance. 
Since dynamical processes propagate along the shortest path, the chemical 
space is a more natural metric for dynamics. 

To demonstrate the above differences, notice that the probability density 
P(e, t) of a random walker on a linear fractal at chemical distance C and at time 
f is identical for any configuration of the linear fractal, i.e., there are zero 
fluctuations. However, when calculating P(r, t), the probability of finding a 
random walker at distance r on a linear fractal will have very different values 
for different configurations. The multifractal features of P(r, t) can be demon- 
strated rigorously for random walks on linear fractals [19,20]. Here we review 
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results for random walks on more general random fractals including the 
physically interesting case, percolation clusters. 

As has been recently demonstrated [8,19], the fluctuations of P(r, t) on 
fractals display multifractal features characterized by a non-standard behavior 
of the moments (P(r, t)) (q > 0), and by an anomalously broad distribution, 
N(log P), of the values P = P(r, t) between log P and log P + d log P. We also 
find [20] that the multifractality exists only for moments q between 

ll(d$-I) l/(d$-1) 

= 
9 In,” < 4 < 4max = (8) 

Here, d, and dz are the anomalous diffusion exponents describing the 
behavior of the mean-square displacement of the random walk in geometrical 
distance, R = m- tlldw, and in chemical distance (8) - tlldi. 

To show this, we follow refs. [8,20] and start with the definition of the 
configurational average 

(P4(r, t)) = + 2 PF(r, t) ) 

* r-l 

where the sum is over all N, sites i of the fractal located a distance r from the 
origin, and Pi(r, t) denotes the probability to be at site i. Note that N, includes 
a very large number of sites. 

After time t, the random walk can be at many different sites i at distance r 
from the origin, and their corresponding probabilities P,(r, t) may obtain very 
different values. The crucial point is that the probability to be at the chemical 
distance 4’ has a nafow distribution [8,19] for different configurations. Asymp- 
totically, for Clt”dw S 1, P(l, t) can be approximated to be 

P(l, t) - ted”” exp[-(lltl’dt)sP] , 6, = dg(d; - 1) ) (10) 

when 8 < t, and P(f, t) = 0 when & > t #l. Thus, the sum in (9) can be written 
as a sum over sites having the same +? values, 

(PV, t)) = 7 (ggpyc, t) ) 
I 

(11) 

where Np denotes the number of those sites which are at chemical distance e 
from the origin. Since P(&, t) has a narrow distribution, its average moments 
are assumed to be P’(l, t). 

By definition, N,IN, = ~$(&]r) is the probability that two sites separated a 
distance r are at chemical distance 8. Transforming the sum (11) into an 

#I Here d, is the fracton dimension [23]. 
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integral over & yields 

( PY(r, t)) = /de ~#@jr) P(e, t) . (12) 

The lower integration limit i? = Y is due to the fact that 4(e]r) = 0 when k’ < I, 
while the upper limit comes from the condition that P(k’, t) = 0 when e > t. 

For general random fractals, the structural function C#J is expected to have the 
form [21] 

4(elr) - e-+ie”)g exp[-a(rlP)]” , 6=(1-Y”)-‘, C>r, (13) 

which satisfies the normalization condition C,N,IN, = 1, which follows from 
(11) when q = 0. We begin by considering the large time case, t > rdw, where 
the upper integration limit C = t in (12) corresponds to values of 8 above the 
maximum 0f +(elr) at e- r”’ (i? = d,ld,). According to (13), 4(e]r) increases 
as exp[-a(rl@)“] for r < i! < r”‘, and decreases as l/e’+“g for k’ > rl’“. 

To evaluate the integral (12), we use the method of steepest descent. The 
saddle point occurs at 

l/(1-;) f+id$ 

t 

l/(Gt+V/(l-~)] 

9 (14) 
4 

which yields 

( Pq(r, t)) - (P(r, t)) “- tpdsq” exp -const x qy a ’ [ ( >I , W4 
with 

dC; - 1 d 

y- d,-1 and U- d, . (15b) 

The non-linear q-dependence of the exponent in (15a) shows multifractal 
behavior for the moments in r-space as discussed in ref. [8]. 

The fluctuations of P(r, t) can be described by the histogram N(ln P) giving 
the number of sites with values P = P(r, t) between In P and In P + d In P. The 
histogram N(ln P) is found [8] to be anomalously broad and is given by 

N(ln P> - Mp~P,)I-” exp( ccplbp,,,l~) , PO = V, t) , (16) 

where (Y = [gv”(dz - 1) + 11/d: and /3 = (di - l)l(d, - d:); see also fig. 4. 
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Fig. 4. Representative plot of the histogram N(ln P) versus Iln PI for fixed r and t (solid line) and 
for fixed C and t (dotted line), with t = 1000, r = 30, and t! = 80. The dashed line represents the 
theoretical result (16). The narrow histogram in C-space supports the assumption (P’(e, t)) = 
(P(f?, t))’ made in eq. (12) (after ref. [S]). 

The results (15) and (16) are valid only for r < f0 < Y”‘, which yields the 

range of moments for which multifractality is expected to be valid, eq. (1). For 
values of q outside the range given by (l), the form of (P’(r, t)) will depend 
on the form of (I’(&, t)). A reasonable assumption, indirectly supported by 
numerical simulations on the Sierpinski gasket [22], suggests that ( P(&, t)) for 

t+ edf has the form (P(e, t)) - tmds’* exp(-&dZ/t). This yields that for 

4 dP”-‘rdwlt %= 1 (or q G qmi,), ( pq(r, t)) has the form 

(P(r, t)) - t- dsqi2$(?“lr) exp( -const X q $) . (17) 

Thus one obtains for q = 1 

(P(r, t)) - ted”‘* exp -const X $) , ( 
r 4 tlldw , (184 

compared with 

(P(r, t)) - tmds’* exp[-constx (+-)‘I, rBt”dw, (18b) 

obtained from (15a). Recent numerical studies on the Sierpinski gasket [22] are 
consistent with the crossover of eqs. (18). 

For the analogous vibrational excitations on the infinite percolation cluster, 
called fractons [23], Bunde et al. [lo] find that the vibrational amplitude of 
frequency w, q$(r, w), of sites i at distance r from the center of a typical fracton 
are characterized by a multifractal spectrum. The q moments of the amplitude 
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of a fracton are 

dfq(r9 WI= (qq(r, 9) -exp(-p-/h,) , 

where iq = q’-d”dfA,. Using similar arguments leading to (8) yields the lower 
cutoff qmin for the multifractal to be 

Analogous arguments leading to (17) yield 

t+Qq(r, w)-exp(- q), qrdmi”lh, Ql. 

(19) 

(20) 

Finally, a similar approach leading to eqs. (15) and (16) has been applied [9] 
to study the fluctuations in tracer concentration when diffusion occurs in a 
stratified medium. In this model the drift velocities have been assumed to be 
constant along the x-direction, but varying randomly from layer to layer in the 
y-direction. This system has been used to model transport of underground 
water in stratified media [24]. It is found [9] that the fluctuation of the tracer 
concentration, P = P(x, t), are described by an anomalously broad histogram 
of the form of eq. (16) with cy = 3 and p = 2 (see fig. 5). Moreover, the relative 
fluctuations SPl P increase exponentially with x. 

0 2.5 5 7.5 10 12.5 15 

P%oP I 

Fig. 5. Histogram n(log,,,P) for u - xltSi4 = 1.47. The continuous line corresponds to the predic- 

tion of eq. (16) with a = 3 and /3 = 2, and the + symbols to the numerical calculations (after ref. 

[91). 
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