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We review recent developments in the study of diffusion-reaction systems of the type 
A + B + C in which the reactants are initially separated. We consider two initial boundary 
conditions: (i) the A and B particles are initially placed uniformly in Euclidean space at x > 0 
and x < 0 respectively, and (ii) the A particles are diffusing and inserted at a given site and 
the B particles are static and distributed uniformly in space. We present analytical and 
numerical results for both systems. We consider d = 1, 2, 3 dimensional systems as well as 
fractal lattices. 

1. Introduction 

The dynamics of diffusion-controlled reactions of the type A + B + C has 
been studied extensively since the pioneering work of Smoluchowski [1,2]. 
Most studies have focused on homogeneous systems, i.e., when both reactants 
are initially uniformly mixed in a d-dimensional space, and interesting theoreti- 
cal results have been obtained. When the concentrations of the A and B 
reactants are initially equal, i.e., c*(O) = ~~(0) = c(O), the concentration of 
both species is found to decay with time as c(t) - t-d’4 for Euclidean systems 
with d c 4 [3-lo] and as c(t) - t-ds’4 for fractals [5,6] with fracton dimension 
d, s 2. Also, self-segregated regions of A and B in low dimensions (d c 3) [4] 
and in fractals [9] have been found. Quantities such as the distributions of 
domain sizes of segregated regions and interparticle distances between species 
of the same type and different types have been calculated [ll-131. These 
systems were also studied theoretically and numerically under steady state 
conditions and interesting predictions have been obtained [14-171. However, 
the above numerical and theoretical predictions have not been observed in 
experiments, in part because of difficulties encountered when implementing the 
initially uniformly mixed distributions of reactants. 

In recent years it was realized that diffusion reaction systems in which the 
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reactants are initially separated [18], can be studied experimentally [19,20] and 
that the dynamics of such a system have many surprising features [20-263. 
These systems are characterized by the presence of a dynamical interface or a 
front where the reaction takes place. Such a reaction front appears in many 
biological, chemical and physical processes [27-331. 

Galfi and Racz [18] were the first to study diffusion-controlled reactions with 
initially separated reactants. They studied the kinetics of the reaction diffusion 
process by a set of mean-field (MF) type equations, 

a2c* ac* 
at - DA ---T - kc,c, , 

dX 

a25 3% 
at - 4 2 - kc,c, > 

8X (lb) 

where cA E cA(x, 1) and cu = ce(x, t) are the concentrations of A and B 

particles at position x at time t, respectively, Di are the diffusion constants and 
k is the reaction constant. The rate of production of the C particles at site x 

and time t, which we call the reaction-front profile, is given by R(x, t) = kc,c,. 
The initial conditions are that the A species are uniformly distributed on the 
right-hand side of x = 0 and the B species are uniformly distributed on the 
left-hand side. 

Using scaling arguments Ghlfi and Racz [18] find that the width w of the 
reaction front R(x, t) scales with time as w - tU with (Y = l/6, and the reaction 
rate at the center of the front, called the reaction height, scales as h - t-’ with 
/3 = 213. 

Experiments [19] and simulations [19,21-241 for d 3 2 systems in which both 
reactants diffuse, support the above predicted values for (Y and p. Indeed, 
Cornell et al. [23] argue that the upper critical dimension is d = 2 and the MF 
approach should therefore be valid for d 2 2. Indeed, numerical simulations of 
1D systems show that the width exponent appears to be (Y = 0.3 and the height 
exponent /3 2: 0.8 [23,24]. The origin of the difference between the exponents 
of 1D systems and those of higher-dimensional systems is due to fluctuations in 
the location of the front which are important in low dimensions and are 
neglected in the MF approach. 

Taitelbaum et al. [20,22] studied analytically eqs. (1) and presented experi- 
ments for the limit of small reaction constant or short time. Their main results 
are that several measurable quantities undergo interesting crossovers. For 
example, the global reaction rate changes from t”’ in the short time limit to 
t -1’2 at the asymptotic time regime. The center of the front can change its 
direction of motion as observed in experiments [20]. Ben-Naim and Redner 
[2.5] studied the solution of (1) under steady-state conditions. 
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2. The form of the reaction-front profile, R(x, t), in the mean-field approach 

In a recent work [26] we consider the symmetric case in which both diffusion 
constants and initial concentrations are equal, i.e., D, = D, = D and 
cA(x, 0) = ce(x, 0) = cO. If we define F(x, t) = cA(x, t) - cs(x, t), then from eq. 
(1) follows 

L3F -+, 
at (2) 

subject to the conditions that initially the A particles are uniformly distributed 
to the right of the origin while the B particles are uniformly distributed to the 
left of the origin. Eq. (2) has the solution F(x, t) = c, erf(x/m). 

We rewrite the concentrations of A and B particles as (see fig. 1) 

CA@, t) = G,(x, t) + Sc,(x, t) , ce@, t> = G,(x, t) + SC,@, t) , (3) 

where 

G,(x, t> = 
F(x, t> (x>O) 2 

o (x<(J) > 

and G,(x, t) = G,(-x, t). Under the above conditions, 6c,(x, t) = 6c,(x, t) = 

6c(x, t). Substituting eqs. (3) into eqs. (1) yields 

- T-k[c,erf(-&=)+Sc]&. @jc) = D a’@c> 
at (5) 

The asymptotic solution for this equation that vanishes as XJ ~0, is (neglecting 
the (SC)’ term) 

Sc(x, t) - t-“3 (+J’4exP[- g ($J3”], P/h 4 x < P21a ) 

(f-9 

Fig. 1. Schematic picture of the reactant concentration profiles near the origin. The solid lines 

represent the G,,,(x, t) part of the profile, the dashed lines represent the complete form 

G,,,(x, t) 2 6c(x, t). Note that the profile of species A is given solely by 6c(x, t) on the left of the 

ongm. (From ref. [26].) 
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Fig. 2. Numerical solution of eq. (1) for the case D, = 0, D, f 0: (a) plot of c(x, t) as a function of 
x for t = 500, 1000 and 5000 (from left to right); (b) the good scaling plot of c(x, t) as a function of 

(x- (x))=x-yt “’ indicates that (Y = 0 and p = 112. 

where A = (k~lD)i’~, a = (c,l~D)“~. As may be confirmed by direct substitu- 
tion, this expression is a solution of eq. (5) up to terms of order (Fk)lt, which 
can be neglected for large t. 

Using eq. (6) we can write an expression for the reaction-front profile R(x, t) 

defined in (1) as 

R(x, t) = f$ (SC) - t-2’3 ( -$J3” exp[ - 5 ($)“‘I . (7) 

It is seen that the width of the reaction front grows as t”‘, whereas the height 
can be identified with the prefactor tC2’3 in eq. (7), consistent with the 
exponents found by Ghlfi and Racz [18]. Eq. (7) provides a more quantitative 
solution of eqs. (1) than the previous scaling arguments [18], as well as 
information on the dependence of the form of the reaction front on the 
parameters c,,, k and D, for the symmetric case. 

For the case in which one reactant is static no analytical solution (of eqs. (1)) 
exists for the form of the reaction front profile. However, numerical solutions 
of eqs. (1) with D, = 0, shown in fig. 2, suggest that R(x’, t) - tePg(x’l 

t*) exp(-(x’] lt”), where X’ = x - yt”2. The excellent scaling in fig. 2b suggests 
that the width does not increase with time, i.e., w - t” with (Y = 0 and h - tCP 

with p = l/2, consistent with the scaling arguments in ref. [21]. 

3. The front, R(x, t), in d = 1 

The reaction front profile in d = 1 systems, R(x, t), when both reactants are 
diffusing with the same diffusion constant, D, = D, # 0, has been calculated 
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Fig. 3. Plot of C&c, 

(+) and loo0 (X). 
t) defined in eq. (8) for a d = 1 system with system size L=lOOOandt= 100 

numerically [24]. The data shown in fig. 3 suggest that 

c&x, t) = R(x, r’) dt’ - t’-B exp(- a\x\ /P) , (8) 

0 

with cy = 0.30 t 0.02 and j3 = 0.80 2 0.02. These values are in agreement with 
numerical simulations obtained using a cellular automata algorithm [23]. 

For the case D, # 0, D, = 0, analytical and numerical studies [34] yield for 

the reaction front profile 

where y and p are constants. From eq. (9) follows that (Y = l/4 and p = 3/4. It 
is interesting to note that the time integral of R(x, t), which is the total 
production of the C particles at x up to time t, is given by 

f 

G-(X, t) = 
I 

R(x, T) dr = $ erfc 
0 

(10) 

To summarize the case of A + B + C with initially separated reactants, we 
list in table I the four sets of exponents discussed above. Since there exists no 
theory for the d = 1 case when both species are moving, it is interesting to 
examine two main directions which yield a comprehensive explanation for the 
four sets of exponents. Both directions are based on assumptions about the 
form of the reaction term in eqs. (1). 

One interesting proposition is based on assuming that the reaction term in 
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Table I 

The values of the exponents (Y and p (w - t”, 
h-t-q. 

d=l MF 

Both moving cy z 0.3 a=116 

/3 10.8 p =2/3 

One static a=1/4 (Y=o 

R=3/4 8=1/2 

eqs. (1) can be written as kczc:. Using scaling arguments similar to Galfi and 
Racz [18], one obtains the set of two relations (Y - p = -l/2 and 
(m + ~)(cY - l/2) = -p. Next assume that for mean field, m = II = 1 (both 
moving) and m = 0, n = 1 (A static), and for d = 1, m = n = 2 (both moving) 
and m = 1, n = 2 (A static). Substituting these values for m and II into the 
above relations, one obtains the four sets of exponents given in table I. Note 
that for the mean field case the values of m and IZ can be justified by simple 
decoupling of the reaction term in eqs. (l), i.e. neglecting correlations; 
however, we have no justification for the values of m and n chosen for the 
d = 1 case. 

A second possible direction [35] based on the Smoluchowski approach [l] 
was suggested for d = 1 systems. In this approach, the reaction constant k in 
eqs. (1) should be time dependent as k = k(t) - t-l’* [36J. Using this result, 
the scaling relations for d = 1 become (Y - p = -l/2, 2a - 312 = -/3 when 
both reactants are moving, and (Y - p = - l/2, CY - 1 = - p when one reactant 
is static. These equations yield (Y = l/3, /3 = 5 16 for both reactants moving and 
(Y = l/4 and /3 = 3 /4 for one reactant static. These results are closer to the 
numerical values of the exponents in d = 1 than the mean field results. In 
particular, it gives the exact exponents when one reactant is static. Note that 
for the short time regime (Y and p have different values from those given in 
table I [22] and, as was shown by Taitelbaum et al. [20], this short time regime 
can be observed in experiments. 

The case of A + B+ C initially separated on fractal systems was studied on 
d = 2 percolation clusters at criticality [22]. Numerical data support the scaling 
argument for the reaction rate, 

c(t) = R(x, t) dx - t-(‘-“dw) . (11) 

Here, d, is the anomalous diffusion exponent, defined by the scaling of the 
mean square displacement of a random walk on the fractal, (r”) - t2’dw [40]. 
For the width, w - ta, and the height, h - tpP, the numerical results in ref. [22] 
suggest cy z 1 ld, and p z 1, but more extensive simulations are needed. 
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4. The reaction A + Bstatie + Cinert: localized source of A 

Another system in which the reactants are initially separated and which is 
amenable to experiment, is the reaction A + Bstatic-, Cinert with a localized 
source of A species. There exist many systems in nature in which a reactant A 
is “injected” into a d-dimensional substrate B whereupon it reacts to form an 
inert product C. Recently such an experiment has been performed [37] by 
injecting iodine at a point of a large silver plate and measuring quantities of the 
reaction I, gas + 2A&ohd + 2Ag1solid. 

First we consider N particles of type A that are initially at the origin of a 
lattice. The B particles are static and distributed uniformly on the lattice sites. 
Using an approximate quasistatic [38] analytical approach for trapping in a 
moving boundary we derived expressions for C(t), the time-dependent growth 
size of the C-region, and for S(t) the number of surviving A particles at time t. 

For extremely short time t < t, -In N we find C(t) - td. For t > t, we find [39] 

C(f) - Nf (&) and S(t) = N - C(t) . 

The scaling function f(u) is the solution to the differential equation 

df 
5 - kdf-2'd(1 - f) , (12b) 

and k, is a constant, depending only on dimension. Fig. 4 shows simulation 
data supporting (12a). 

Next consider the case in which A particles of type A are injected per unit 
time at the origin of the lattice. For this case we find [37] 

d=l, 

d=2, 

d=3, 
(13) 

and 

At 2 d=l, 

S(t) - (A - Trff)t ) d=2, 

C,(A) t2’3 , 
(14) 

d=3. 

In (13) and (14), 
(A /4D)(3A/4~)*‘~. 

(Y is the solution of (YT = h exp(-a/40) and C,(A) = 
Moreover, we find that for one- and three-dimensional 

systems C(t) satisfies the scaling relation 
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Fig. 4. Numerical simulations of A + B-+ C where N diffusing particles of type A are initially at 
the center of a lattice and particles of type B are static and located at each site of the d = 3 lattice: 
(a) plot of C(t) for N = 100 (x), 500 (0), 1000 (0) and 2000 (A) particles; (b) plot of C(t) in the 
scaling form eq. (12a). Note that the results are of a single Monte Carlo run and not averaged - 
showing that fluctuations are negligible in this process. 

(15) 

Eqs. (13)-(15) h ave been supported by numerical simulations [37]. (See also 

fig. 5.) 

Eqs. (12) can be generalized for fractals, 

where f(u) is the solution of the differential equation 

df 
du - k,&f-=ds(l -f) . (16b) 

Here d, is the fracton dimension [40] defined by d, = 2d,ld,, in which d, is the 

fractal dimension and d, the diffusion exponent [41]. For the case of constant 

injection rate on a fractal we do not have an analytical derivation. However, 

we recently calculated [42] the number of distinct sites visited on a fractal by N 

random walkers starting from the origin, S,(t) - (ln N)df’stdS’2 with 

is = d,l(d, - 1). This result can be shown to be valid also for the number of 

distinct sites visited by random walkers injected at the origin with a constant 

rate of A when replacing N = At. Thus we obtain that [ln( At)]df’“tds’2 is an upper 

bound for C(t). 
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Fig. 5. Numerical simulations of A + BSfaliC + C,,,,, where A particles are injected at rate A = 5 
the center of the lattice and particles of type B are static and are located at each site of a d = 
lattice. Plot of the reactant area after t = 20, 160, 540, 1280, 2500, 4320 and 6860. 
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