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Dynamics of Surface Roughening with Quenched Disorder
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We study the dynamical exponentz for the directed percolation depinning (DPD) class of models
for surface roughening in the presence of quenched disorder. We argue thatz for d 1 1 dimensions is
equal to the exponentdmin characterizing the shortest path between two sites in an isotropic percolation
cluster ind dimensions. To test the argument, we perform simulations and calculatez for DPD, and
dmin for percolation, fromd ­ 1 to d ­ 6.

PACS numbers: 47.55.Mh, 68.35.Fx
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Recently the growth of rough interfaces has been t
object of many theoretical, numerical, and experiment
studies, fueled by the broad interdisciplinary aspects
the subject [1]. Applications are as diverse as imbibitio
in porous media, fluid-fluid displacement, bacterial colon
growth, fire front motion, and the motion of flux lines in
superconductors [1].

In general, ad-dimensional self-affine interface, de-
scribed by a single-valued functionhsx, td, evolves in a
sd 1 1d-dimensional medium. Some form of disorder,h,
affects the motion of the interface leading to its roughe
ing. Two main classes of disorder have been discussed
the literature. The first, called “annealed,” depends on
on time. The second, “quenched” disorder, is frozen
the medium.

Continuum equations, such as the Kardar-Parisi-Zha
(KPZ) equation [2], have been remarkably successful
describing roughening for the case of annealed disord
[1]. For the quenched disorder case, several models w
proposed with a view toward explaining experimenta
results for which the roughness exponenta is significantly
larger than the predictions for annealed disorder (f
reviews, see, e.g., [1]). HereW , La, whereW is the
interface width andL is the system size.

For one class of models, the static properties of th
interface in 1 1 1 dimensions are obtained exactly by
a mapping, at the depinning transition, ontodirected
percolation(DP) [3,4]. In higher dimensions the mapping
is to directed surfaces(DS) [5]—for 1 1 1 dimensions,
DP and DS are equivalent. This class of models
referred to asdirected percolation depinning(DPD) [6].

A recent numerical study [7], confirmed by scaling
arguments [8], showed that the DPD class of models can
described by a stochastic differential equation of the KP
type with quenched disorder [9]

≠

≠t
hsx, td ­ F 1 n=2h 1 ls=hd2 1 hsx, hd . (1)

HereF is the driving force andhsx, hd is the quenched dis-
order acting to roughen the interface; above the depinni
transition,F $ Fc leads to an interface that moves indefi
nitely with a constant velocity. Reference [7] finds for th
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DPD class of models that the coefficient of the nonline
term,l, diverges at the depinning transition [10].

Because of the presence of a diverging nonlinear co
ficient in (1), the application of the functional renormal
ization group to the calculation of the exponents has n
been possible [1]. For this reason, the only existing es
mates of the exponents are from simulations, or from t
mapping of the scaling properties of thepinned interface
to DP sd ­ 1d or DS sd . 1d [3–5]. Since no mapping
of thedynamicsof Eq. (1) or of the DPD models has been
found, no theoretical estimates for the exponents char
terizing the dynamics of the roughening process has be
made. One such exponent is the dynamical exponentz,
which characterizes the lateral propagation of the interfa
perturbations, as is defined by

t , rz
k , (2)

where t is the time needed for a perturbation to sprea
over a longitudinal distancerk.

In this Letter we argue thatz for the DPD universality
class can be identified ind 1 1 dimensions with the per-
colation exponentdmin for the shortest path forisotropic
percolation ind dimensions [11]. We support this rela-
tion by numerical calculations of bothz and dmin, up to
dimension6 1 1. Our work implies an upper critical di-
mension for thedynamics, dc 1 1 ­ 7, above which the
mean field result,z ­ 2, becomes exact.

In the DPD model the growth occurs on a discrete lattic
and the disorder is modeled by considering that each c
has a probabilityp of being “blocked” [3–5]. Since the
model was developed to study imbibition, we will refe
to the growing, invading, region as “wet,” and to the
remaining region as “dry.” At timet ­ 0, we wet all cells
at the bottom of the lattice. Then, at each time step, w
wet all dryunblocked cellsthat are nearest neighbors to a
wet cell. To retain a single-valued interface, we impos
the auxiliary rule that all dryblocked cellsbelow a wet
cell become wet as well. These cells we call “erode
blocked cells,” and this procedure is referred to aserosion
of overhangs[3–5]. If the concentration of blocked
cells is small, the interface propagates forever. As th
concentration of blocked cells increases, large portions
© 1995 The American Physical Society 4205
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the interface become pinned by fragments of DP clusters
d ­ 1 or by fragments of DS ford . 1. The characteristic
longitudinal dimension of these fragments,jk, diverges as
p approaches the critical thresholdpc. Whenjk becomes
comparable with the system sizeL, the interface eventually
becomes completely pinned by a spanning DP path
DS. Just belowpc, almost all of the interface is pinned
except for a few unblocked points which move along th
interface creating new sites for growth. We address t
behavior of the system only in its critical state, i.e., o
length scales smaller thanjk, wherejk , spc 2 pd2nk .

In order to findz, we study how perturbations cause
by a single unblocked cell propagate over the interfac
At each time step a certain set of cells become wet
incoming fluid, caused by a single unblocked cell at tim
t ­ 0. In analogy with invasion percolation, we call this
set of cells thepercolation shell. For each time stept, we
compute the average radius of gyration of the percolati
shellrstd. Sincet is the time needed for a perturbation to
spread over a distancerk, t obeys Eq. (2).

For the cased ­ 1, all shells are confined between the
old directed path that spans the system att ­ 0 and a
new pinning path that will block the growth after some
time. The region between these two paths is topologica
one dimensional, since the vertical distance between th
scales as the perpendicular correlation length of DP,j' ,
spc 2 pd2n' . Hencen' , nk impliesj'yjk ! 0 asp !

pc [11]. For any cell on the interface that becomes w
at timet, one can find the cell from which it was invaded
at the previous time step, and recreate the sequence
invasion events that leads from the initial cell to an
given cell on the interface (Fig. 1). The trajectory of thi
sequence follows the upper pinning path and is effective
one dimensional. Its length, scales as its average end
to-end distancerk. On the other hand,, is equal to the
time t needed to reach the end of the path. Hencet , rk

and we conclude from (2) thatz ­ 1. This conclusion is
supported by our simulations (Table I).
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FIG. 1. Illustration of the dynamics of the DPD model fo
1 1 1 dimensions. (a)Schematic representationof a region
defined by two pinning paths. The heavy circle indicates th
origin for the invasion, the thin arcs represent the positions
the invading front at successive times, and the dashed line r
resents schematically the path for the invasion. (b)Simulation
results for invasion after210 time steps starting from a single
cell near the center. We show the invaded region at a s
quence of times which are multiples of128. Regions invaded
at later times are displayed in darker shades of gray. The p
from the origin to the latest invaded point is shown in black
Although this path displays some fluctuations in the vertical d
rection, they can be disregarded sincenk . n', so asp ! pc,
j'yjk ! 0. Thus the distance propagated by the invading fro
is proportional to time. Sincet3 , ,, we can conclude that
z ­ dmin ­ 1.

For the cased . 1, we must consider the region
bounded by two self-affine, single-valued, DS (Fig. 2
[5]. This region is topologicallyd dimensional, since
j'yjk ! 0 [12]. Hence, the shortest path leading from
the initial point to any point of this region is effectively
confined to ad-dimensional horizontal hyperplane. This
shortest path has to avoid blocked cells in this hyperplan
our
the

ange
TABLE I. Dynamical exponentz for the DPD model ind 1 1 dimensions and the shortest
path exponentdmin for isotropic percolation for ad-dimensional cubic lattice ofLd sites. The
results indicated by an asterisk are exact, while the remaining values were calculated in
simulations by the study of the consecutive slopes of the linear regime in Fig. 3. At
critical dimensiondc ­ 6, one should not expect to find the exact resultdmin ­ 2 because
logarithmic corrections are generally present. The system sizes used in the simulations r
from L ­ 4096, for d ­ 2, to L ­ 16, for d ­ 6. Each result is averaged over106 –107

realizations of the disorder.

DPD Percolation
d pc z pc dmin

1 0.4698 6 0.0002 1.01 6 0.02 1p 1p

2 0.7425 6 0.0002 1.15 6 0.05 0.5927 6 0.0002 1.13 6 0.03
3 0.8425 6 0.0002 1.36 6 0.05 0.3116 6 0.0002 1.38 6 0.02
4 0.890 6 0.002 1.58 6 0.05 0.197 6 0.002 1.53 6 0.05
5 0.917 6 0.003 1.7 6 0.1 0.141 6 0.002 1.7 6 0.1
6 0.931 6 0.002 1.8 6 0.2 0.107 6 0.002 1.8 6 0.2
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FIG. 2. Illustration of the dynamics of the DPD model for2 1 1 dimensions. (a)Schematic representationof the xy projection
of the region defined by two pinning self-affine DS. The heavy circle indicates the origin for the invasion, the thin arcs rep
the xy projections of the invading front at successive times, and the dashed line represents schematically the path for the i
(b) Simulationresults for invasion after210 time steps starting from a single cell located to the left of the center. We show thexy
projection of the invaded region at a sequence of times which are multiples of128. Regions invaded at later times are displayed
darker shades of gray. It is visually apparent that it takes a long time to invade some regions close to the origin because th
that position (shown in black) appears to be a fractal curve of dimension greater than one. The fluctuations in the vertical d
can be disregarded since we know thatj'yjk ! 0. We find that the path can be identified with the shortest path (the “chem
distance”) of isotropic percolation, and that its length scales with the linear distancer to the point asrdmin .
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as does the shortest path of isotropic percolation. F
isotropic percolation it is known that the length o
the shortest path, scales with the Euclidean end-to-
end distancer as , , rdmin . The similarity between the
geometrical properties of the paths in DPD and isotrop
percolation leads us to propose

z ­ dmin . (3)

We are arguing that the invading front moves on
d-dimensional isotropic percolation cluster; see Figs.
and 2. The critical threshold is smaller for DPD than i
the case of the usual isotropic percolation since (i) som
of the blocked cells are eroded, and (ii) our syste
is a d-dimensional slab. The critical threshold can b
determined by the spanning of the invading front in thed-
dimensional slab. We confirm that we were at the critic
threshold by numerically studying the survival probabilit
of these clusters, as described in [5], and verify that w
reach the threshold where the invading cluster spans
system.

To test the argument leading to (3), we performe
simulations for both DPD and percolation ford ­ 1 to
d ­ 6. We present our results for the exponentsz and
dmin in Table I [13].
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It is well known that for isotropic percolation the upper
critical dimension isdc ­ 6, i.e., for d . dc the mean
field result,dmin ­ 2, becomes exact [11]. This suggests
an upper critical dimension,dc 1 1 ­ 7, for thedynamics
of the DPD models which are in the universality class o
Eq. (1), and thatz ­ 2 for d 1 1 $ 7.

Since the dynamics of Eq. (1) and the models in th
DPD universality class are connected to isotropic perc
lation, while the static properties are mapped to DP or DS
it is possible that the upper critical dimension determine
in this studymay be valid only for the dynamics. In fact,
it is possible thatdc for the static properties may not exist.
Suppose, e.g., that a one-dimensional object, such as a s
avoiding walk, is embedded in ad-dimensional space. We
expect that asd is increased the interactions between th
different parts of the object decrease. At a certaind ­ dc,
these interactions can be neglected, and the exponents
come those of the ideal noninteracting case. In contra
when the dimension of the object is not fixed but increase
with d, as in the case of DS in which the object is one d
mension smaller than the space, we expect to move aw
from the noninteracting limit. In fact, the analytical solu-
tion of the DPD model in the Cayley tree suggests that th
upper critical dimension for thestaticsmight be` [5].
4207
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FIG. 3. (a) Scaling with time of the horizontal length of a
DPD cluster ind 1 1 dimensions grown from a single cell.
Shown is a double logarithmic plot of timet as a function of
rk, which is the average of the parallel components of the radi
of gyration of the shell. The asymptotic slope isz. (b) Double
logarithmic plot of the shortest path, in isotropic percolation as
a function of the Euclidean distancer. The asymptotic slope
is dmin. Note that, after some transient behavior, a transitio
to a power law scaling occurs. For higher dimensions, th
power law scaling is affected by finite-size effects for large
times [12].

In summary, we present an argument that identifies t
dynamical exponentz for the DPD universality class with
the fractal dimension of the shortest path in isotrop
percolation,dmin. This result leads us to identify the
dimension6 1 1 as the upper critical dimension for the
dynamics of the DPD universality class.
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