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Angle restriction enhances synchronization of self-propelled objects
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Understanding the synchronization process of self-propelled objects is of great interest in science and
technology. We propose a synchronization model for a self-propelled objects system in which we restrict the
maximal angle change of each object to θR . At each time step, each object moves and changes its direction
according to the average direction of all of its neighbors (including itself). If the angle change is greater than a
cutoff angle θR , the change is replaced by θR . We find that (i) counterintuitively, the synchronization improves
significantly when θR decreases, (ii) there exists a critical restricted angle θRc at which the synchronization order
parameter changes from a large value to a small value, and (iii) for each noise amplitude η, the synchronization
as a function of θR shows a maximum value, indicating the existence of an optimal θR that yields the best
synchronization for every η.
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I. INTRODUCTION

Over the past 10 years, there has been widespread scientific
interest in the collective motion exhibited by such groups as a
school of fish, a flock of birds, or a swarm of robots [1–11].
Collective motion due to synchronization processes (called
also polarization or orientational ordering of velocity) plays
an important role in many different fields, including biology,
ecology, climatology, sociology, and technology, and is even
a factor in the arts [12–18]. A surprisingly simple but useful
model, proposed by Vicsek et al. [19], shows the existence
of phase transition in a self-propelled objects (SPO) system.
More recently, various specialized models have been proposed
to describe, e.g., accelerating convergence [20], avoiding
collision [21,22], and enhancing the efficiency of convergence
[23]. Also, other properties of SPO such as coherence [24]
and collective intelligence [25] were studied. These in turn
have promoted the development of such applications as
distributed sensor networks [26], unmanned aerial vehicles
[27], underwater vehicles [28], and altitude alignment of
satellite clusters [29]. However, one of the most important
issues, in particular for applications, is the question as to how
to improve synchronization of SPO based on local information.
Even more important is to identify optimal synchronization
conditions in the presence of noise, which exists in a group of
SPO machines such as robots or vehicles.

In this paper, we develop a restricted angle SPO model
(RASPO), which generalizes the Vicsek model (VM) [19]
and counterintuitively improves the synchronization of SPO
systems. Specifically, we find that (i) the synchronization is
significantly improved when the restricted angle decreases;
(ii) there exists a critical restricted angle θRc above which the
synchronization order parameter changes from a large value
to a small value; and (iii) for a given noise amplitude η, the
synchronization shows a peak as a function of θR , which yields
the best synchronization conditions.

II. THE ANGLE RESTRICTION MODEL

In the VM, a group of n objects move in a L × L square
with the same constant speed in different directions. Initially,

the objects are randomly distributed, and their directions are
also uniformly randomly distributed in the interval (0,2π ). At
each time step, the direction of each object is determined by
the average directions of all the objects within a circle centered
at the given object, the influencing radius of which is R. At
time t , the position of a specific object is updated according to

xi(t + 1) = xi(t) + v0e
iθi (t). (1)

Its direction is updated as

eθi (t+1) = ei#θi (t)

∑
j∈$i (t+1) e

iθj (t)

∥∥∑
j∈$i (t+1) e

iθj (t)
∥∥ , (2)

where ‖ · · · ‖ is the standard norm [30] defined
as ‖(z1,z2, . . . ,zn)‖ = (|z1|2 + |z2|2 + · · · + |zn|2)1/2, #θi ∈
[−η,η] denotes the white noise, eiθi (t) is a unit directional
vector, and $i(t + 1) is the set of neighbors of object i at
time step t + 1. In order to measure the synchronization of the
system, an order parameter is introduced as [19,31]

Vα = 1
n

∥∥∥∥∥

n∑

i=1

eiθi (t)

∥∥∥∥∥ , 0 ! Vα ! 1. (3)

A larger value of Vα indicates a better consensus, and when
Vα = 1, all the objects are moving in the same direction.
Numerical simulations show that when the density is high
and the noise low, all the objects will have reached consensus,
i.e., will be moving in the same direction after a finite number
of time steps (the convergence time) [32,33].

In the VM and all related models of SPO, the rotation and
rectilinear motions of each object can be treated separately.
Each object changes direction to the average direction of its
neighbors. It then moves a distance v0 rectilinearly.

However, because the directions and positions of all the
objects are initially randomly distributed, most of the objects
make sharp changes in direction that bear little similarity
to behavior found in nature, and are thus impractical when
developing applications in engineering. The movie supplied
in Ref. [34] clearly demonstrates that a flying bird can not
execute sharp changes in direction within a single step. From
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FIG. 1. Description of two cases of direction updated in the
RASPO model: (a) the change from θi(t) to θ̄i(t) is smaller than
θR , so θi(t + 1) = θ̄i(t); (b) the change from θi(t) to θ̄i(t) is greater
than θR and θ̄i(t) is closer to θi(t) + θR , so θi(t + 1) = θi(t) + θR .
Note that θR is defined as half of the restricted angle and, therefore,
θR = π represents no angle restriction as in Vicsek’s model.

the point of view of an engineer, any robot or vehicle powered
by an engine can not make an acute-angle turn in a very
short time period. In order to more closely resemble behavior
found in nature and to be useful in developing real-world
applications, we introduce a restricted angle model for an SPO
system and find that this restriction dramatically improves the
synchronization properties.

Figure 1 describes the RASPO model in which each object
with direction θi(t) updates its direction and position within a
radius R. The model (i) calculates an average for the directions
of all its neighbors θ̄i(t), (ii) calculates the changes from θi(t)
to θ̄i(t), and determines whether it is smaller [Fig. 1(a)] or
greater [Fig. 1(b)] than θR [if the change is smaller, the result
is θi(t + 1) = θ̄i(t) and if it is greater, the result is θi(t +
1) = θi(t) + θR], and (iii) each object then updates its position
according to Eq. (1). (For a rigorous mathematical description
of the RASPO model, see Appendix.) The RASPO model,
which generalizes the VM, has six main parameters n, L, R, v0,
η, and θR , each of which affects the synchronization differently.
In order to study the different effects, we perform computer
simulations of RASPO in which the density is fixed [3] at
ρ = n/L2 = 1 with periodic boundary conditions [19].

III. SIMULATION AND DISCUSSION

To investigate the main effect of introducing a restricted
angle, we perform computer simulations of synchronization as
a function of restricted angle θR for different n, and for several
values of R and v0 (see Fig. 2). Our simulation results show that
synchronization increases significantly as θR decreases. This is
counterintuitive since one would assume that giving more free-
dom to the objects would facilitate greater synchronization. It
is clear that when θR is small, synchronization is high, while for
θR = π , where the model corresponds to the original VM, the
synchronization is relatively low [35]. A plausible explanation
for this finding is as follows. It seems that, even without
any input of external noise, there exists some internal noise
in the system, which is larger when θR is larger. Therefore,
reducing θR is effectively like reducing the internal noise,
which improves synchronization. Support for this conjecture
can be found from Fig. 3. From Fig. 3(a), we can see that
inherent noise is increasing with noise η, and from Fig. 3(b),
we can also see that inherent noise is increasing with noise
θR . So, decreasing the restricted angle θR may be regarded as
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FIG. 2. The synchronization Vα as a function of restricted angle
θR for different system size n. In the simulation, the density ρ = 1,
(a) R = 0.3 and v0 = 0.1, (b) R = 0.3 and v0 = 0.4, (c) R = 0.6
and v0 = 0.4. All the data points above are obtained by averaging
over 300 different realizations. The synchronization is much larger
when θR is small. Note that while the synchronization is significantly
improved in the RASPO model, the convergence time increases when
θR is smaller.

decreasing the inherent noise. We also find that when θR is
large, a system of large n exhibits low synchronization, but
when θR is small, a system of large n exhibits high synchro-
nization. These results suggest that when n approaches infinity,
the synchronization shows a phase transition as a function of
θR . Thus, there seems to exist a critical restricted angle θRc,
below which the synchronization is high, and above which the
synchronization is low. The simulation results also indicate that
θRc increases with v0 and decreases with R. Thus, it seems
that our realistic angle restriction assumption significantly
improves the synchronization of the SPO and thus also makes
our model more practical for technological applications.

To study the synchronizationVα as a function of the absolute
velocity v0, we perform numerical simulations of the RASPO
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FIG. 3. (a) The relative standard deviation S/Vα as a function of η

for different θR , where S is defined as S = [ 1
N−1

∑N
i=1 (Vα − V̄α)2]

1
2 .

In the simulation, the density ρ = 1, n = 200, R = 0.6, and v0 = 0.1.
(b) The relative standard deviation of S/Vα as a function of θR for
different n. All data points above are obtained by averaging over 400
different realizations.
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FIG. 4. (a) The synchronization Vα as a function of the absolute
velocity v0 for different restricted angle θR . In the simulation, R =
0.3, ρ = 1, and n = 800. (b) The synchronization Vα as a function of
radius R for different restricted angle θR . In the simulation, v0 = 0.1,
ρ = 1, and n = 800. (c) The synchronization Vα as a function of
system size n for different angle restricted angle θR . In the simulation,
R = 0.3, ρ = 1, and v0 = 0.1. All quantities are averaged over 300
realizations.

model for n = 400, L = 20, and R = 0.3 for various restricted
angles θR [Fig. 4(a)]. The simulation results demonstrate that
the synchronization Vα increases monotonically as the absolute
velocity v0 increases when the restricted angle θR is small, but
Vα decreases and increases (has a minimum) as the absolute
velocity v0 increases when the restricted angle θR is large.
Thus, it is implicit that the synchronization is significantly
improved by a small restricted angle, in contrast to the original
VM for a wide range of absolute velocity v0.

We also study the synchronization Vα as a function of
radius R. We perform the numerical simulations of RASPO
for n = 400, v0 = 0.1, and various restricted angles θR [see
Fig. 4(b)]. Our simulation results indicate that, for a fixed
θR , Vα is an increasing function of R, which implies that the
synchronization is significantly improved when the restricted
angle is small. In particular, the synchronization is surprisingly
improved more for worse conditions, i.e., when R is small.

The synchronization Vα as a function of system size n
for different restricted angles θR is shown in Fig. 4(c). It is
particularly surprising that the synchronization Vα increases
with n when the restricted angle θR is small, which is in
sharp contrast with being a decreasing function of n when
the restricted angle θR is large. Our simulation results also
suggest that the synchronization converges to constant finite
values when n is large.

We next study the effect of noise on restricted angle
synchronization. In Fig. 5(a), we show the synchronization
Vα as a function of noise amplitude η for different restricted
angles θR . We see that Vα is a decreasing function of η and, as
θR increases, Vα decreases slowly and then quickly, indicating
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FIG. 5. (a) Synchronization Vα as a function of noise am-
plitude η for different restricted angle θR , R = 0.6, v0 = 0.1.
(b) Synchronization Vα as a function of restricted angle θR for
©: η = 0.6,R = 0.3,v0 = 0.1; ": η = 1,R = 0.3,v0 = 0.1; ♦: η =
0.6,R = 0.6,v0 = 0.1; #: η = 1,R = 0.6,v0 = 0.1; #: η = 0.6,R =
0.3,v0 = 0.3, + η = 1,R = 0.3,v0 = 0.3. (c) Optimal restricted
angle θRo as a function of noise amplitude η, for different R values.
v0 = 0.1 (d) Optimal synchronization Vαo as a function of η for
different R. In the simulation, n = 200 and all quantities are averaged
over 300 realizations.
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the existence of a peak when we plot the synchronization Vα

as a function of the restricted angle θR [see Fig. 5(b)]. This
means that, for each noise amplitude η, we can obtain an
optimal value θRo for θR [see Fig. 5(c)] and a corresponding
optimal synchronization Vαo [see Fig. 5(d)].

IV. CONCLUSION

In summary, we have proposed a restricted angle model
that significantly (i) improves the synchronization of SPO
systems when the restricted angle decreases because reducing
θR is effectively like reducing the internal noise which leads to
improving synchronization, (ii) demonstrates the existence of
a critical restricted angle θRc above which the synchronization
order parameter changes sharply form a large value to a small
value, and (iii) reveals that for each noise amplitude η the
synchronization shows a peak as a function of θR , so there
exists an optimal θRo for which one will obtain the best
synchronization Vαo. Note that a model of SPO with restricted
vision was studied, where an optimal view angle was found
to obtain the fastest convergence speed [36]. However, this
model is very different from the RASPO model since the

average direction of the objects within view angle can be
in any direction and the angle change will be of all sizes.
In contrast, in the RASPO model, the change of the angle is
restricted.
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APPENDIX

In order to describe the RASPP model mathematically, we
define the angle change function C(α,β),
Definition 1. The angle change C(α,β) denotes the change
from angle α to angle β, where α,β ∈ [0,2π ). So it is easy to
obtain C(α,β) = C(β,α).

The direction of the RASPP is updated as:

θi(t + 1) =






|θ̄i(t) + θR|2π if C(θi(t),θ̄i(t)) > θR, and Cl < Cr

θ̄i(t) if C(θi(t),θ̄i(t)) ! θR

|θ̄i(t) − θR|2π if C(θi(t),θ̄i(t)) > θR, and Cl > Cr

where θ̄i(t) is obtained from Eq. (2), Cl = C([θ̄i(t) + θR]2π ,θ̄i(t)), Cr = C([θ̄i(t) − θR]2π ,θ̄i(t)), and |•|2π = • + 2kπ ∈ [0,2π ),
k ∈ Z.
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[9] F. Ginelli and H. Chaté, Phys. Rev. Lett. 105, 168103

(2010).
[10] M. Aldana, V. Dossetti, C. Huepe, V. M. Kenkre, and H. Larralde,

Phys. Rev. Lett. 98, 095702 (2007).
[11] M. Nagy, I. Daruka, and T. Vicsek, Phys. A (Amsterdam) 373,

445 (2007).
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