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We study a dynamical model of a system with two disparate energy scales, and focus on the
kinetics of phase separation. In this model, nearest-neighbor monomers can interact with one of
two quite distinct energies, thereby describing a system with, e.g., van der Waals and hydrogen
bond interactions. While the model has been described by an effective Ising model in equilibrium,
the nonequilibrium dynamics of phase separation have never been explored. Here we use Monte
Carlo computer simulations of spinodal decomposition to show that the model exhibits “pinning”
of the structure factor, a behavior also seen in phase-separating polymer gels and binary alloys with
impurities. The rate of strong bond formation depends on an entropic parameter 2, and we find both
the pinned domain size and the crossover time between “normal” spinodal decomposition and the
pinning scale with Q as power laws with exponents that relate simply to the usual growth exponent.
We propose a specific mechanism for pinning that permits the prediction of exact values for the
pinning exponents. Finally, we discuss applications of the model to binary alloys with quenched

disorder and polymer gels.

PACS number(s): 64.60.Ak, 82.70.Gg

I. INTRODUCTION

Investigation of the phenomenon of spinodal decom-
position has been a focus of attention for many years
[1,2]. Specifically, the kinetics and resulting morphology
of binary mixtures—such as alloys and polymer blends—
undergoing phase separation via spinodal decomposition
is of both technological and fundamental importance.
During spinodal decomposition, a binary mixture that is
suddenly quenched into the unstable region will develop
long-wavelength fluctuations in concentration that grow
with time. As the mixture evolves toward its new equi-
librium state consisting of two homogeneous phases, the
strong nonlinearity of the spinodal decomposition process
produces an interconnected morphology that coarsens
with time. In many situations, however, competing phe-
nomena may interfere with phase separation. For exam-
ple, it has been suggested that binary alloys undergo-
ing continuous ordering or spinodal decomposition in the
presence of quenched impurities do not exhibit the usual
power-law domain growth, but instead display extremely
slow nonalgebraic domain growth [3-6].

Theoretical models such as the Ising lattice gas model
[7], time-dependent Ginzburg-Landau models [8] and,
most recently, cell dynamical models [9] have success-
fully elucidated the basic spinodal decomposition process
observed in pure binary mixtures. Recently, a number
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of groups have begun to extend these models to more
complicated systems. For example, Monte Carlo simu-
lations have been used to investigate phase ordering in
alloys (i.e., Ising and Potts models with nonconserved
order parameter) with quenched and diffusing impurities
[4,10,11], spinodal decomposition in alloys with mobile
vacancies [12], and spinodal decomposition of a binary
fluid within a rigid gel [13]. Ginzburg-Landau models
have been used to study spinodal decomposition of bi-
nary fluids both with surfactants [14] and within a rigid,
porous medium [15], as well as spinodal decomposition of
spin systems and binary alloys in the presence of random
fields [16]. Cell-dynamical models have been applied to
both magnets and binary alloys with quenched impurities
[5,6].

In each of these studies, the concentration of impuri-
ties (or the distribution of fields, or the boundary that
affects the phase separation) does not change with time.
While such models may describe many actual situations,
one can draw a distinction between these situations and
ones in which a time-dependent process competes with
the phase-separation process [17]. For example, poly-
mer solutions and polymer blends simultaneously phase-
separating and cross-linking can also display unusually
slow kinetics, and in some cases pinning of the structure
by the cross-linked network is observed [18,19]. Chemical
reactions such as transesterification of polymer chains,
which induces homogeneity and miscibility in polymer
blends, can also interfere with phase separation and cause
domain growth to be arrested [20]. Pinning has even
been observed in the spinodal-like growth of colloidal ag-
gregates [21].

In an effort to understand the effect of competing pro-
cesses on the kinetics of spinodal decomposition in such
systems, we study a microscopic model containing two
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disparate energies. We show using Monte Carlo (MC)
computer simulations that this model exhibits many of
the important features observed in experiments, particu-
larly the phenomenon of pinning during phase separation
[22]. This paper is organized as follows. In Sec. II we
present the model, and in Sec. III we discuss the equilib-
rium properties of the model. In Sec. IV we present re-
sults of MC computer simulations exploring the kinetics
of phase separation of the model system following a criti-
cal quench into the unstable region of the phase diagram.
We discuss one important limit of this model in which
we recover the kinetic properties of the Ising lattice gas.
Also, we show that for various choices of parameters our
model exhibits phenomena similar to those seen in var-
ious experiments, most notably a sudden pinning of the
structure factor during its evolution following the quench.
We propose a scaling theory for this phenomenon, which
we will show is consistent with the usual scaling theory of
ordinary spinodal decomposition. In Sec. V we propose
a theory for the pinning mechanism which is motivated
by results from previous models of ordering in systems
with quenched disorder [4]. This theory allows us to ac-
curately predict the pinning exponents observed in the
simulations. In Sec. VI, we summarize the results of our
simulations, discuss the possible ramifications of our re-
sults with respect to interpretation of experiments and
previous models, and comment on possible future direc-
tions of research.

II. THE MODEL

The basic model was originally introduced as a model
for weak gels [23]. It consists of a lattice of binary oc-
cupation variables representing monomers and solvent
molecules, with the key feature that two nearest-neighbor
monomers can interact with two different energies.

In the usual Ising lattice gas model, sites of a lattice
are occupied with either monomers (denoted by “m”)
or solvent molecules (denoted by “s”) which have the
following nearest-neighbor interactions:

—W,s = solvent-solvent interaction energy .
—Wwms = monomer-solvent interaction energy .
—€mm = monomer-monomer interaction energy .

We further allow nearest-neighbor monomers to inter-
act in two different ways. We assume that there are Q
“weak” bonding configurations between nearest-neighbor
monomers with interaction energy —J, and one “strong”
bonding configuration with interaction energy —FE. The
weak bonding configuration can be thought of as origi-
nating from a van der Waals attraction, while the strong
bonding configuration can be thought of as occurring
only when the two monomers are in a particular orienta-
tion and are hydrogen-bonded together. Thus there are
Q + 1 total possible bonding configurations, with energy

—J if monomers interact weakly
~€mm = —E

if monomers interact strongly .

where |E| > |J|. At any given time, each nearest-
neighbor monomer-monomer pair must independently be
in one of the €2 4+ 1 possible bonding configurations.

During the course of the simulation, each bond is up-
dated according to the standard Metropolis MC scheme
[24] by randomly choosing one of the Q + 1 possi-
ble configurations and calculating the Boltzmann factor
exp (—AHyond/kBT), where A Hypopnd is the difference be-
tween the final bonding energy and the initial bonding
energy of the pair.

Monomers and solvent molecules are exchanged using
the Kawasaki Monte Carlo algorithm, whereby each time
step the pair is exchanged with a probability given by

Pexchange = min [17 exp(_AHexch/kBT)] . (21)
Here AH.yq, is the difference between the final nearest-
neighbor interaction energy and the initial nearest-
neighbor interaction energy. We require that a monomer
has no strong bonds with any of its neighbors at the time
it attempts an exchange. In this way the breaking of a
strong bond between two monomers is independent of
an attempted exchange of one of those monomers. This
dynamics obeys the necessary detailed balance condition
required to ensure that the system achieve equilibrium.

One MC step (MCS) includes an update of all
monomer-monomer pair interactions, as well as an at-
tempted exchange of (on average) every nearest-neighbor
monomer-solvent pair. Note that, for the bond update
dynamics as well as for the Kawasaki exchange dynam-
ics, there is a time constant 7 implicitly associated with
each process that sets the physical time scale. We take
both time constants equal to one for our simulations. In
real systems, these time constants may be concentration
and temperature dependent and must be explicitly con-
sidered for direct comparison of the simulation results to
experiment. For example, in a binary alloy, the diffusion
coefficient for the atoms is temperature dependent; in
collagen, the rate at which cross-links are formed is also
temperature dependent.

III. EQUILIBRIUM PROPERTIES

In equilibrium, our dynamic model reduces to the equi-
librium model of Ref. [23]. In particular, Ref. [23] showed
that if one takes an annealed average over all possible
monomer-monomer interactions, the partition function
for this system can be written as

Z = Z, Z exp | B | pes Z 7(_;-“ + Weg Z 771’,“7(;11
e J i

(3.1)

Here 7 is equal to 1 (0) if a site is occupied by a
monomer (solvent molecule), p.g is an effective chem-
ical potential, Z, is the partition function of the pure
solvent, and
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(3.2)
gives an effective, temperature-dependent interaction en-
ergy Weg. Reference [23] showed that although this sys-
tem is different from the usual Ising lattice gas in that
two monomers can interact with one of two possible ener-
gies, the equilibrium properties of the system are equiv-
alent to those of an Ising lattice gas with an effective
chemical potential p.g and an effective interaction en-
ergy Weg replacing the usual interaction energy of the
Ising model. Note, however, that in the usual Ising lat-
tice gas model, the interaction energy is independent of
temperature. In this model, the effective interaction en-
ergy depends on temperature because it depends on the
fraction of strong bonds present in the system, which in
turn depends strongly on temperature.

Because the bonds between nearest neighbors are com-
pletely independent, the fraction of strong bonds present
in thermal equilibrium at a temperature T is given by
the Boltzmann probability,

eq eﬁE
b (T) = eﬁE +Qer3"’ (33)
where 8 = 1/kgT. If the temperature of the system

is instantaneously lowered from a high temperature T;
to a temperature Tp, the number of strong bonds will
increase in time as the system equilibrates at the new
temperature. For example, consider a simulation of a
system with J = 1, E = 10J, and various values of Q
quenched from kpT; = 10J to kpTg = 0.5J. For these
values of J, E, Tg, and Q, n;*(Tg) ~ 1. Figure 1 shows
the fraction of strong bonds present as a function of time
following the quench for each value of 2. At t = O the
fraction of bonds in the system is given by Eq. (3.3),
evaluated at T;.

Throughout this paper, we restrict ourselves to the

Pite —— 1000
e - 5000
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t (MCS)

FIG. 1. Fraction of bonds n; vs time for J =1, E = 10J,
and various values of 2 following a quench from kgT; = 10J
to kT = 0.5J. For these parameters, n;*(Tq) ~ 1.

limit £ > J and E > kgT, where on the time scale of
our simulations, strong bonds, once formed, rarely break.
In fact, if Q is large, which means an attempt is made
to break the bond nearly every MC step, then the ratio
(E—J)/kBT controls the time it takes for a given strong
bond to break. For example, with J = 1, E = 10J, and
kgT = 0.5J, the probability of breaking a strong bond
is approximately exp(—AH/kgT) = exp(—18). In this
limit and on the time scale of our simulations we are es-
sentially placing bonds of infinite strength on the lattice
at a rate 1/Q. Thus n,(t) satisfies the following equation

dnp(t) _ _ma(t) — m (T Q)
dt Q
For all quenches considered here the initial temperature

of the system is sufficiently high that n,(0) = n;*(T3) ~
1/(1+ Q) ~ 0 for large Q. Hence from Eq. (3.4),

np(t) ~ ny*(Tg)(1

(3.4)

— et/ (3.5)

This equation shows that tuning £} controls the rate of
strong bond formation in the system following a quench.

IV. PHASE SEPARATION

We now consider the kinetics of phase separation in
systems where the concentration of monomers is con-
served and equal to the critical concentration, ¢ = 0.50,
and the monomer-monomer interaction energies are J =
1and E = 10J. The solvent-solvent (W) and monomer-
solvent (Wy,s) interaction energies are taken to be zero, so
that in the absence of strong bonds our system is equiv-
alent to a one-component lattice gas. Since the simu-
lations that we consider here were performed on a two-
dimensional square lattice, we can use Onsager’s solution
of the Ising model [25] to find the critical temperature 7.
The critical temperature of the 2D Ising model is given
by

kTl = ———J! =~ 2.269J! 4.1
B 1 (\/5_ 1) ss ss? ( )
where J!, is the magnitude of the spin-spin interac-

tion energy. The interaction energy in the Ising lat-
tice gas is mapped onto the interaction energy in the
Ising model [25] as 4J, = J, so for the lattice gas,
kBTCLG = 0.567Jss. Since our model is a lattice gas with

a temperature-dependent interaction energy, T, is given
by

kT, = 0.567W.g(T.). (4.2)

This gives, e.g., kgT. = 1.22J for E =
1000.

In each of the quenches that we will consider, the
system is initially equilibrated at a high temperature
T; = 10J/kp, so that the fraction of strong bonds present
before the quench is negligible; consequently, Eq. (3.5)
describes the increase in the fraction of strong bonds fol-
lowing an instantaneous quench to temperature T in the
unstable region.

10J and Q =
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In equilibrium, every pair of monomers will experience
both interaction energies as bonds form and break ac-
cording to the Boltzmann distribution. Therefore, in
equilibrium, the model is equivalent to a model with one
effective interaction energy Weg such that J < Weg < E.
as given by Eq. (3.2). A quench of the system from
T; > T. to Tg < T, must eventually result in two phases
characterized by the equilibrium concentrations given by
the points on the coexistence curve at Tg. However,
as the temperature changes, the equilibrium fraction of
strong bonds changes. Thus it is reasonable to expect
that the formation of strong bonds during equilibration,
if the bonds are long lived, must necessarily affect the
phase-separation kinetics of the system. In particular. if
T; is sufficiently high that ny(7T;) ~ 0, then Weg(1;) ~ J,
and consequently before the quench the system is essen-
tially an Ising lattice gas with interaction energy J and
critical temperature TXS. Therefore, immediately fol-
lowing a quench to T' < TL¢ the system should phase
separate as though it were a “normal” lattice gas. How-
ever, as the fraction of strong interactions increases, we
expect the phase separation to deviate from this behav-
ior.

Phase-separation experiments typically measure the
structure factor, S(k,t), which contains information on
the time evolution of the various length scales present
in the system. It is defined as the Fourier transform of
the density-density correlation function. For the discrete
systems we will be studying, we consider equivalently

2
S(k,t) = NI; <izei‘”iE > (4.3)

where k = 27n/L, L is the linear lattice size. |n| =
1,2,...,L/2, and N, is the number of scatterers
(monomers) on the lattice [2,7]. The () denotes both
an average over all possible origins (i.e. all sites in the
system occupied by monomers—hence the normalization
by Nu) and an ensemble average over five independent
lattices. S(k,t) is further smoothed by averaging over
all wave vectors with magnitude between k and k + Ak:
this is known as “spherical averaging” since one aver-
ages over an entire spherical shell in k space to obtain
S(k,t), where k = [k|. For all of the calculations, peri-
odic boundary conditions and a lattice size L = 256 was
used.

During spinodal decomposition, the position of the
peak, kg, moves to smaller values of k. Thus experi-
ments typically will measure k., as a function of time
following a quench. We calculate an equivalent quantity.
the first moment of S(k,1),

(4.4)

— k -
k

Because this quantity is calculated using data acquired
over the entire range of wave vectors, k1 (t) can be calcu-
lated more accurately than the peak position, ky(t). The
two quantities k; and kp, should scale in the same way

with time, so that either quantity is an acceptable mea-
sure of the characteristic length in the system [7]. In cal-
culating ki (¢), a cutoff kc,t must be chosen such that only
values of k less than this cutoff are included in the sum.
This cutoff must be large enough that S(k,t) is negligible
for all k > kcyu¢, but small enough that & is smaller than
a few inverse lattice spacings. In practice, one typically
calculates k; for some value of k.y, and then changes
keu until &1 no longer changes appreciably. In the data
presented here, a cutoff value of key = 27(120)/L was
used (for L = 256). Smaller values of k. affect only the
results at very early times, t < 32 MCS, where the peak
in S(k,t) is extremely broad. Since we are interested iu
the behavior of the system in the later stages of phase
separation, t > 32 MCS, the cutoff value chosen does
not affect the results.

In the following sections, simulation results on the ki-
netics of phase separation in this model are presented for
various choices of the parameters J, F, €2, and Tg. For
each set of parameters, five independent 256 x 256 two-
dimensional lattices with periodic boundary conditions
were simulated for a maximum time of 262144 MCS.
Fach lattice contains 50% monomers and 50% solvent
molecules.

A. Spinodal decomposition in the limit £ — oo

In the limit 2 — oo, no strong bonds form in the sys-
tem. since there are an infinite number of weak-bonding
states available to each monomer-monomer pair. Hence
the system is, in this limit, exactly equivalent to an Ising
lattice gas with one monomer-monomer interaction en-
ergy J. In Fig. 2, we show the spherically averaged struc-
ture factor S(k,t) vs wave vector k, measured at various
times following a quench to Tg = 0.5J/kp (= 0.88TLC)
for 2 = oo.

Figure 3 shows the first moment k1 (t) of S(k,t) plotted
against time on a log-log plot. Consistent with previous
[sing model simulations. we do not see a linear regime

60.0

40.0

Sk.b)

20.0

FIG. 2. S(k,t) vs k for various times following a quench to
To = 0.88TFC for J =1, E = 10J, and © = oo. In this limit,
the system is identical to an Ising lattice gas. The times are
in units of MCS.
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FIG. 3. The first moment ki (¢) of S(k,t), vs t following a
quench to Tg = 0.88TLC for J =1, E = 10J, and Q = oo,
as calculated from the data in Fig. 2. The line segment has
slope 1/4.

at early times where S(k,t) grows exponentially at con-
stant k.. Instead, a power-law decay of k; is observed
asymptotically. Analyzing the data using the method of
successive slopes, we find that

ki ~t79, (4.5)
where a = 0.25. This value is consistent with previous
MC results on binary alloys at this concentration and
temperature [1,7]. Note that we do not find the value
a = 1/3 as expected for late stage growth in a system
with a conserved order parameter [26]. In the growth
regime where the average domain size is not much larger
than the width of the interdomain spacing, and both the
average curvature and the interfacial width are large, sur-
face diffusion of monomers is the primary mechanism for
domain coarsening. With this growth mechanism, an ex-
ponent a = 1/4 is predicted [27] and often seen. Ounly
at the very latest stages of phase separation, when bulk

diffusion is the dominant coarsening mechanism, is an ex-
ponent o = 1/3 observed [1,7,27,28]. In the simulations
of Roland et al. [7], extremely long simulation times were
necessary to reach this growth regime.

B. Spinodal decomposition for 2 finite

If 2 is finite, then following a quench to a temperature
Tg in the unstable region, the fraction of strong bonds
in the system will increase as the system evolves toward
its equilibrium state. If the strength E of these bonds
is large, then the lifetime of these bonds may be large
relative to the time scale for phase separation; this is
expected to affect the kinetics of the system.

We performed quenches from T; = 10J/kg to Tg =
0.5J/kp (= 0.88TLCG) for J = 1, E = 10J, and various
values of . Figure 1 showed the fraction of strong bonds
present in the system as a function of time for a few of
these values. The structure factor S(k,t) vs wave vector
k is plotted for various times following the quench for
each value of Q in Figs. 4 and 5. Each figure shows that
after some time the structure factor ceases to evolve, even
though the final equilibrium structure has not yet been
reached. On the time scale of our simulations, we say
that the structure factor has become “pinned,” and that
the system is “microphase separated.”

Figure 6(a) shows the time dependence of the first mo-
ment, k;, of the structure factor, S(k,t), for J = 1,
E = 10J, and different values of . Note from Eq. (3.3)
that the equilibrium fraction of strong bonds at Tg is
nearly one for all finite values of {2 considered. The
2 = oo curve describes the Ising lattice gas, since no
strong bonds ever form. However, when (2 is finite, and
in the limit E > J, where strong bonds rarely break, the
phase-separation process separates into two distinct time
regimes. We find

{ t— t <ty
ky ~
const

t>t,, (4.6)

10.0 v 10.0 ,

FIG. 4. S(k,t) vs k for times t = 64,
128, 256, 512, 1024, 2048, 4096, 8192, 16384,
32768, 65536, and 131072 MCS following a

quench to Tg = 0.88TXC for J =1, E = 10J,
and (a) Q = 103, (b) Q = 3 x 103, (¢)
© =5x10% and (d) 2 = 10*. Notice that as

Q increases, the pinning time increases, and
consequently the peak of S(k,t) evolves to
higher amplitudes and lower k values before
pinning.
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FIG. 5. S(k,t) vs k for times t = 64,
128, 256, 512, 1024, 2048, 4096, 8192, 16384,
32768, 65536, and 131072 MCS following a
quench to Tg = 0.88T2€ for J =1, E = 10J,
and (a) Q@ = 3 x 10%, (b) Q = 5 x 10%, (¢)
Q =7 x 10* and (d) Q = 10°. Notice that as
Q) increases, the pinning time increases, and
consequently the peak of S(k,t) evolves to
higher amplitudes and lower k values before
pinning.
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FIG. 6. (a) Log-log plot of ki (t) vs t following a quench to To = 0.88TX€ for J = 1, E = 10J, and various values of Q. The
values of  are indicated in the figure. (b) Log-log plot of kr vs Q [obtained from the data in (a)]. The line has slope 1/6. (c)
Log-log plot of tx vs 2 [obtained from the data in (a)]. The line has slope 2/3. (d) Scaling plot of the data in (a), where k; is
scaled by Q7 %, with ¢ = 0.17, and time ¢ is scaled by Q¥, with ¥ = 0.70 for several different values of Q.
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where t, is the crossover time that separates these two
regimes. For t < ty, phase separation is indistinguish-
able from phase separation in the Ising lattice gas, since
very few strong bonds are present in the system.

Figure 6(b) shows that, for ¢ > tx and Q large, the
“frozen” wave vector behaves as

kp ~ Q% (4.7)

with

¢ = 0.17 £ 0.01. (4.8)

Note that scaling of kr with Q should be expected only
when (2 is large enough that phase separation is in the
scaling regime (i.e., k; ~ t~%) before pinning occurs.
Figure 6(c) shows that the crossover time, ¢, scales with
Q as

ty ~ Q¥ (4.9)

with

¥ = 0.70 + 0.03, (4.10)

for large Q. Precise measurement of the crossover time is
difficult, since the data clearly exhibit a crossover regime
that starts at the time at which the system first begins to
deviate from the Ising lattice gas behavior and ends at the
time at which the system is finally pinned. The crossover
times referred to above are measured by extrapolating kr
to t = 0, and extrapolating k1 (t) before the pinning to its
asymptotic behavior as if the pinning did not occur. t is
then defined as the time corresponding to the intersection
of these lines.

Equations (4.6), (4.7), and (4.9) are consistent with
the scaling form

by ~ £ (1/9), (411)
with
_ | const t <Lty
@ ={@t Sk (412)

Note that, from Egs. (4.6), (4.7), (4.9), and the scaling
form Eq. (4.11),

¢=’l/)0(,

leaving two independent exponents.

Equation (4.11) equivalently predicts that k; ~
Q~%g(t/¥), so that the data of Fig. 6(a) should col-
lapse if k; is scaled by Q~¢, and time ¢ is scaled by Q¥.
Figure 6(d) shows that all of the curves with Q > 10*
indeed collapse onto one universal curve at large times.

Thus the simulations show that at early times in the
spinodal decomposition process, the two-energy system
behaves kinetically exactly like an Ising lattice gas with
one energy, namely the weak energy J. After a signifi-
cant fraction of strong bonds form, the system deviates
from the Ising lattice gas behavior, and phase separation
becomes arrested. Recall that in the limit of large FE,
the rate at which strong bonds form depends on Q; con-

(4.13)

sequently both the crossover time and the final inverse
domain size depend on 2. Remarkably, these quantities
scale with  as a power law, with exponents ¢ and 1 that
obey a simple relationship with the spinodal decomposi-
tion exponent .
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FIG. 7. (a) Double logarithmic plot of the first moment k;
of S(k,t) against time for critical quenches to various tem-
peratures for J = 1, E = 10J, and © = 1000. The value
of To/TEC® (kgTE® = 0.567J) for each curve is indicated in
the figure. (b) kr vs T, in units of J/kp [obtained from the
data in (a)]. (c) tx vs Tq, in units of J/kp [obtained from
the data in (a)].
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FIG. 8. Log-log plot of ki(t) vs t following a quench to
Tg =0.82for J =1, E =10J, and Q = 1000.

Next, we consider quenching the system to various
temperatures below the critical point using the same val-
ues of J and F as above, and a fixed value 2 = 1000. At
early times, each system behaves like an Ising lattice gas
quenched to its respective temperature, but a crossover
of k; to a constant value kg occurs for all quench depths
[Fig. 7(a)]. Figures 7(b) and 7(c) show the dependence
of kr and t« on the quench temperature. Note that the
deeper quenches pin faster (i.e., tx is smaller for lower
quench temperatures) and at smaller domain sizes (i.e.,
larger kr).

On the time scale of our simulations, E is sufficiently
large relative to J and T that strong bonds, once formed,
rarely break. For smaller values of E (or longer simula-
tion times) such that bonds can break and form accord-
ing to the equilibrium distribution given in Eq. (3.3), k;
is not constant for ¢ > t.. For example, Fig. 8 shows
the time dependence of the first moment of S(k) for a
quench from T = 10J/kp to Tg = 0.82T, for a system
withJ = 1, E = 10J, and © = 1000. At this quench tem-
perature, the system crosses over to pinned behavior on a
time scale set by €2, but crosses over to unpinned behavior
on a time scale set by exp[(E — J)/T], which in this case
is of the order of 8000 MCS (Monte Carlo steps). Thus
it is important to point out that, although on the time
scale of our simulations the microphase-separated system
appears “frozen,” it is not in equilibrium, and will con-
tinue to phase separate on an extremely long time scale
associated with the time it takes for the bonds to achieve
their equilibrium distribution at the quench temperature
and break and form many times. While the time scale for
the formation of the strong bonds, and hence the onset of
the pinning, is set predominantly by €2, this longer time
scale is controlled more by the magnitude of E relative
toJ and T'.

V. THEORY

To understand the mechanism governing the pinning
as well as to predict the pinning exponents ¢ and ¥, we
propose that the pinning of a typical growing domain of

weakly bonded monomers will occur when the radius £(t)
of the domain becomes of the order of the average spacing
between the strong bonds. If the bonds are randomly
distributed, the average spacing between the bonds is of
order (:I:I/d(t), where ¢, is the concentration of strong
bonds, defined as the number of bonds divided by the
volume of the lattice, and is proportional to the bond
fraction ng. Thus at the crossover time,

cb(tx)gd(ty) ~ const, (5.1)

where cp(t«) is the concentration of bonds in the sys-
tem at ¢y, {(tx) is the characteristic domain size at the
crossover time, and d is the system dimension. Using this
relation we can express ¢ as a function of 2 and thereby
relate the two exponents ¥ and a.

Recall from Sec. IV B that

(te) ~t5.

o
SV

Then, from Eq. (5.1),
ep(te) ~t o4 (5.3)

Next, recall from Eq. (3.5) that the fraction of strong
bonds in the system increases following a quench to T
as

m(t) = np!(To)(1 — e~/ (5.4)
Thus, for t/Q <« 1,

e t -

np(t) ~ np 2 (To) = (5.5)
Q

For all of the values of Q considered, n;*(Tg) ~ 1, inde-

pendent of €2, so that the concentration of bonds behaves

as

cp(t) ~ np(t) ~ é (5.6)

Recall from Sec. IV B that ¢, was defined as the inter-
section between an extrapolation of kr and an extrapola-
tion of the lattice gas behavior before pinning. Since we
found that the pinning quantities obey the scaling form
in Eq. (4.11), an equivalent definition of ¢, is that time
at which a line at k = kg, extrapolated to t = 0, inter-
sects with a line of slope 1/4 drawn through the k;(t)
data for the Q@ = oo case. This method of measuring
t. simply uses the scaling relations to eliminate the er-
ror introduced in extrapolating the lattice gas behavior
from the finite 2 curves, and allows us to more accu-
rately measure various quantities at the crossover time.
such as cp(tx). We will use this equivalent definition of
t, throughout the remainder of this section. Values of
tx, kr, and cp(tx) for each value of €, for a quench to
To = 0.88TL¢ with J = 1 and E = 10J, are listed in
Table 1.

Figure 9 shows that, for large values of €2, the approx-
imation (5.6) is reasonable in the crossover regime. This
allows us to find a simple expression for the dependence
of t, on § for large © by equating Egs. (5.3) and (5.6)
at the crossover time. Thus
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TABLE I. Data from quenches to Tg = 0.88TLG  with
J =1, E = 10J, and various values of €2, used to calculate
pinning exponents. The values of ¢« listed are those calcu-
lated via the method described in this section. The error in
kr (£0.0004) and cp(tx ) is the standard deviation of the mean
calculated from an average of five different lattices.

Q tx kr cy(tx)
10 816 0.8480 0.422
3 x 10° 1418 0.7386 0.289
5 x 103 1882 0.6881 0.249
10* 2831 0.6214 0.196
3 x 10* 5681 0.5221 0.140
5 x 10* 7997 0.4793 0.122
7 x 10* 10046 0.4527 0.110
10° 12862 0.4256 0.100
t
—ad X
txa ~ ﬁ, (5 7)
and therefore
ty ~ QY (5.8)
where
1
= —. 5.9
¥ 1+ ad (5.9)
For a = 1/4 and d = 2, Eq. (5.9) predicts
¥ =2/3, (5.10)
which agrees with the value
¥ = 0.70 + 0.03 (5.11)

found in our simulations.
Recall that in Sec. IV B, the second pinning exponent
¢ was found to be related to ¥ and a by

¢ = Ya. (5.12)
0.4
03 | .
a
<02 o
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FIG. 9. Concentration of strong bonds cy(tx) at the

crossover time vs tx /Q for each value of €2, for a quench to
To = 0.88TLC, with J =1 and E = 10J.

With @ = 1/4 and ¢ = 2/3, this gives

¢ =1/6, (5.13)
which agrees with the simulation results
¢ =0.17 +0.01. (5.14)

Note that, in the long-time regime when a = 1/3, we
have ¢ = 3/5 and ¢ = 1/5.

Before ending this section we note that the argument
for pinning given above predicts for large Q the following
behavior:

cy(tx) ~ Q7. (5.15)

In view of the relation kr ~ £ (tx) ~ Q7% and
Eq. (5.1), this gives

n = ¢d.

Together with the scaling relation ¢ = ¥, Egs. (5.9) and
(5.16) give an additional relation between 7 and v,

(5.16)

Y+n=1, (5.17)

independent of the growth exponent a.

VI. DISCUSSION

We have studied a microscopic model with two very dif-
ferent interaction energies [23], and studied the kinetics
of phase separation via MC simulation for various combi-
nations of the different parameters in the model. Specif-
ically, we showed that, in the limit where strong bonds
form but rarely break, the kinetics of spinodal decompo-
sition are identical to that of a simple Ising lattice gas for
some time, and then the system crosses over to a pinned,
nonequilibrium, microphase-separated state. Further, we
showed that various quantities associated with the pin-
ning, such as the crossover time and the pinned domain
size, exhibit predictable power law behavior that, for
fixed quench depth, can be explained by a simple the-
ory.

Because the equilibrium properties of our system are
known to be identical to the equilibrium properties of an
Ising lattice gas, we know that the system must eventu-
ally phase separate into two coexisting phases with equi-
librium concentrations given by the points on the coexis-
tence curve at Ty. However, for this to occur, the strong
bonds must form and break many times and achieve
“bond equilibrium,” thereby allowing the monomers to
move. Hence the microphase separation caused by the
pinning can be controlled entirely by varying the bond
equilibration time, given by a combination of J, E, T,
and (2, relative to the phase-separation time. Indeed, for
smaller values of E, such that the bonds equilibrate dur-
ing the simulation time, the pinning is seen to be only
temporary, as the system continues to phase separate at
long times.

The proposed pinning mechanism is reminiscent of
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behavior observed in systems with quenched disorder,
where the presence of quenched impurities affects the
phase separation of the system. The strongly bonded
monomers in our case act as quenched impurities since
groups of monomers are not moved by Kawasaki dy-
namics [24]. We suggest that this idea of pinning by
quenched impurities can be used to explain pinning phe-
nomena recently observed in polymer gels. In one exper-
iment [18], phase separation and gelation occur simulta-
neously due to the different interaction energies present
in the system—one associated with the interaction driv-
ing the phase separation of the polymer chains from the
solvent (e.g., van der Waals interactions) and a second,
stronger energy associated with the interactions control-
ling the cross-linking (e.g., hydrogen bonding) between
chains. This competition produces a “pinning” of the
phase-separating mixture because the formation of cross-
links between polymer chains arrests the phase separa-
tion of the chains from the solvent. In this experiment,
the gelation time at which a cross-linked network appears
precedes the crossover time at which the pinning occurs.
We suggest, therefore, that since the cross-linked polymer
chains belong to an infinite network, the cross-links are
immobile and act as quenched impurities with respect to
the chains. Additional phase separation beyond the gel
time should be limited by the mesh size of the gel which in
our model is the average spacing between “quenched” or
strongly bonded monomers (Fig. 10). These monomers
play the role of cross-links which in a gel are part of the
infinite network.

Before comparing experimental and simulation data,
we recall that the cross-linking rate of gelatin quenched to
temperatures below the helix-coil transition temperature
has been found [29] to display Avrami kinetics [30].

nhelix(t) =1- exp[—b(T)tm}, (61)

where ny.ix 1s the fraction of helices (cross-links), b(T') is

FIG. 10. Schematic representing the pinning mechanism;
the crosses represent strongly bonded monomers. The onset of
pinning occurs at the crossover time t = tx when the average
spacing between these monomers, cb_l/d (which is decreasing
with time), becomes comparable to the average domain size,
£(t) (which is increasing with time).

the temperature-dependent rate constant, and m is the
Avrami exponent. Before the network is fully formed,
m = 1; thus the cross-link fraction in gelatin exhibits
essentially the same time dependence as the fraction of
strong bonds in the model following a quench,

np(t) ~1-—e ¥/ (6.2)
Therefore it is natural to associate the rate constant,
b(T), with 1/, and thereby explicitly map, e.g., the
domain size dependence on 2 to the domain size depen-
dence on quench depth. Indeed, when the temperature
in the experiments is related to our €, the similarity
between our results and those of Bansil et al. [18] be-
comes striking. In those experiments, it was found that
gelation always precedes pinning of the phase-separating
structure; with our interpretation of the strongly bonded
monomers as representing cross-links which are part of
the spanning network, we necessarily find that gelation
precedes pinning in our model as well.

The agreement between these experimental data and
our simulations supports other evidence that many gels
are not in true thermodynamic equilibrium, but are in
long-lived, nonequilibrium states [31]. We emphasize
that typical experimental times during which gelation ex-
periments such as that mentioned above are performed
may be comparable to the time regime in which our sim-
ulations are performed.

One other aspect of our model that deserves a care-
ful discussion is the relation which may exist between
our strong bonds in the limit of £ >> J and quenched
impurities as investigated in other lattice models. We in-
deed find that there is a strong connection between our
model and models used to study ordering of binary al-
loys in the presence of quenched impurities [4]. In these
models. impurities are placed on a lattice with a concen-
tration ¢ equal to the total number of impurities divided
by the total number of lattice sites. Grest and Srolovitz
i4] considered the Ising model with nonconserved order
parameter, and, for the case of no impurities (¢ = 0).
recovered the t'/2 growth law for typical domain sizes
characteristic of ordering in a two-state system with a
nonconserved order parameter. For ¢ > () and quenches
to zero temperature. they found that the growth of do-
mains initially obeyed the usual t'/2 law. but became
“pinned” beyond a crossover time that depends on the
concentration of impurities. The system pinned at early
times when ¢ was large and at progressively later times
as ¢ became smaller: this behavior is analogous to the be-
havior seen in our model as a function of 27!, Further.
they found that the final pinned domain size Ry scaled

“172 and that

with the concentration of impurities as ¢
a scaling function of the form R ~ t1/2 f(et) was obeyed
by the data.

Our data show the same qualitative behavior, since
the concentration of strong bonds at the crossover time
cp(ts ) is analogous to the concentration of impurities ¢
in their model. Indeed, the pinning criterion we pro-
pose [Eq. (5.1)] can be used to predict their results and
find relationships between the various exponents. Their
scaling form for the domain size can be easily general-
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ized to R ~ t*f(t/tx) with tx ~ ¢, & = 1/2, and
~ = 1. Similarly, their scaling for the final domain size
can be written as Ry ~ ¢ with v = 1/2. Assum-
ing ¢p(tx) ~ c, our pinning criterion would suggest that
—1/d This would then predict that, in general,
v = 1/d. Since the scaling form demands that v = va,
consequently v = 1/ad. Substituting o« = 1/2 and d = 2,
we get Ry ~ c¢1/2 and tx ~ c~!. Thus both results
of [4] would appear to be obtainable using our assump-
tion (5.1) for the pinning criterion, and the existence of
a scaling form for the domain size.

We further point out that the rate of strong bond for-
mation in our model is time dependent. Thus within the
context of quenched impurities, it is as though the impu-
rities are generated in the course of the phase-separation
process, and are not present from the beginning. Con-
sequently by tuning 2 we can control the rate at which
impurities are generated. In fact, chemical reactions be-
tween phase-separating components in a binary alloy may
generate an inert species which could act as an impurity
and thereby hinder phase separation.

It would be interesting to focus further on the region
that exists in the temperature range above T£¢ and be-
low T.. A system quenched to a temperature in this
region will not undergo spinodal decomposition at first,
since the quench temperature is above the critical tem-
perature known to the system at ¢ = 0 and therefore ini-
tially stable. However, as the system equilibrates, strong
bond formation will raise the effective energy and hence
lower the effective temperature below T, causing phase
separation to occur. Further study of this phenomenon
may prove useful in understanding phase separation in-
duced by gelation in polymer systems [29].
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