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Abstract

Financial market data offer the exciting possibility of quantifying and understanding the

physics of a complex dynamical system, and the hope that this line of thinking may give some

insights into understanding collective human behavior. Various measures of stock market

activity have been found to exhibit puzzling features that have recently attracted much

research attention. These features include the power law distributions of return, volume,

number of trades, assets under management of trading institutions, and other power-law

relations linking them. Here, we review these empirical results and show that some of these

findings can be usefully interpreted within the framework of a reduced-form model [Gabaix,

X., Gopikrishnan, P., Plerou, V., Stanley, H.E., 2003. A theory of power-law distributions in

financial market fluctuations. Nature 423, 267–270] and an economic model [Gabaix, X.,

Gopikrishnan, P., Plerou, V., Stanley, H.E., 2006b. Institutional investors and stock market

volatility. Quarterly Journal of Economics 121, 461–504]. The features not only present a

challenge to models of market fluctuations, but their specific power-law nature also suggests
see front matter r 2007 Elsevier B.V. All rights reserved.
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new modeling directions, which include ideas from statistical physics which proved useful in

understanding similar relationships that occur in the physics of critical phenomena.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Statistical physics deals with systems comprising a very large number of
interacting subunits, for which predicting the exact behavior of the individual
subunit would be impossible. Hence, one is limited to making statistical predictions
regarding the collective behavior of the subunits. In the last century, statistical
physics has begun to address systems that are out of equilibrium, that is, are driven
by external ‘forces’ for which the exact interactions between the subunits comprising
the system are not known. Recently, it has come to be appreciated that many such
systems which consist of a large number of interacting particles obey universal laws
that are independent of the microscopic details. The finding, in physical systems, of
universal properties that do not depend on the specific form of the interactions gives
rise to the intriguing hypothesis that universal laws or results may also be present in
economic systems.

The interest of physicists in economic systems has roots that date back at least as
far as 1936, when the Italian physicist Majorana wrote a paper on the analogy
between statistical laws in physics and in the social sciences (Majorana, 1936).
Although Majorana’s work was initially considered of marginal interest, physics
research activity in this field has become less episodic and a research community has
begun to emerge. The hope of some is that their efforts could in time provide a
complementary approach to the approaches in economics, and indeed there is some
cause for optimism along these lines.1

One of the key conceptual elements in modern statistical physics is the concept of
scale invariance, codified in the scaling hypothesis that functions obey certain
functional equations whose solutions are power laws.2 The scaling hypothesis has
two categories of predictions, both of which have been remarkably well verified by a
wealth of experimental data on diverse systems. The first category is a set of
relations, called scaling laws, that serve to relate the various critical-point exponents
characterizing the singular behavior of functions such as thermodynamic functions.
The second category is a sort of data collapse, where under appropriate axis
normalization, diverse data ‘collapse’ onto a single curve called a scaling function.
1See, e.g., Anderson et al. (1988), Arthur et al. (1997), Blume and Durlauf (2005), Roehner (1995), Lux

(1997, 1998), Brock and Hommes (1998), Durlauf (1993, 1996, 1997, 1999), Blume and Durlauf (1998a,b),

Blume (1993), and Lux and Marchesi (1999).
2See, e.g., Bouchaud and Potters (2003), Mantegna and Stanley (2000) and Sornette (2000).
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Our research has been addressing a key question of interest: quantifying and
understanding large stock market fluctuations. Our work focussed on the challenge
of quantifying the behavior of the probability distributions of large fluctuations of
relevant variables such as the return, the volume, and the number of trades.
Sampling the far tails of such distributions require a large amount of data, and
indeed, analyzing the wealth of stock data has proven to be a challenge in itself.
Literally every transaction of every stock is recorded. As a result, for each stock there
are in the order of a few million data entries per year, and we analyze over one
trillion observations. Our empirical focus has been to quantify and test the
robustness of power-law distributions that characterize large movements in stock
market activity. Using estimators that are designed for serially and cross-sectionally
independent data, our findings thus far support the hypothesis that the power-law
exponents that characterize fluctuations in stock price, trading volume, and the
number of trades3 are seemingly ‘universal’ in the sense that they do not change their
values significantly for different markets, different time periods, or different market
conditions.

Our second focus was on developing a theoretical understanding for the empirical
facts. We have proposed a model that appears to explain the statistical regularities,
first in a reduced-form (Gabaix et al., 2003), then in a fuller economic model (Gabaix
et al., 2006b). In our model, large movements in stock market activity arise from the
transactions of large participants. A key ingredient in our model is the empirical size
distribution of large market participants (mutual funds), which we systematically
studied. We demonstrated that when mutual funds trade in an optimal way, one
finds the empirically observed power-law tails of the pdf’s of returns, volumes and
number of trades. Our model also explains the empirically observed relationships
between large fluctuations in prices, trading volume, and the number of transactions.
Such a theory, in which large participants ‘move the market,’ is consistent with
independent evidence that stock market movements are difficult to explain only with
changes in fundamental values (Cutler et al., 1989).

The second theme of modern statistical physics goes by the name ‘universality.’ 4 It
was found empirically that one could form an analog of the Mendeleev table if one
partitions all critical systems into ‘universality classes.’ Two systems belonging to the
same universality class are described by the same power-law exponents, though the
converse is not true. Remarkably, details of the interactions among the subunits
constituting a complex system appear to matter less than one might have initially
expected.

The ‘inverse cubic law’ of Eq. (1) holds over as many as 80 standard deviations for
some stock markets, with Dt ranging from 1min to one month, across different sizes
of stocks, different time periods, and also for different stock market indices (Jansen
and de Vries, 1991; Lux, 1996; Gopikrishnan et al., 1999). These findings raise the
possibility that the power-law distribution describing the return distribution is
3See, e.g., Mandelbrot (1963), Fama (1963), Lux (1996), Guillaume et al. (1997), Gopikrishnan et al.

(1998, 1999, 2000) and Plerou et al. (1999, 2000, 2001).
4See, e.g., Stanley (1971, 1999), Stanley et al. (2001), and Mantegna and Stanley (2000).
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‘universal’. Our analysis shows that the power laws (2) and (3) obtained for U.S.
stocks also hold for a distinctly different market, consistent with the possibility that
(2) and (3) hold across other markets as well. Moreover, data associated with
extreme events – including the 1929 and 1987 market crashes – still conform to
Eq. (1) (Gabaix et al., 2005).
2. Empirical results

We next describe the power laws and their associated exponents that we have
found to characterize stock market variables. We primarily analyzed two databases
(i) the NYSE’s Trades and Quotes database, from which we analyzed every
transaction for the 1,000 largest U.S. stocks for the 2-year period 1994–1995 – the
stocks we selected are the largest by market value on January 1, 1994; and, (ii) the
CRSP daily data from which we analyzed the 6,000 stocks for the 35-year period
1962–1996. In addition, we have analyzed returns of other major international equity
indices.

Our analysis proceeded as follows. Define Rt ¼ logPðtÞ � logPðt� DtÞ to be the
return at time t over a given time interval Dt, and PðtÞ denotes the stock price at time
t. We found that the probability that Rt is in absolute value larger than x was
consistent with the power-law form (cf. Fig. 1) (Lux, 1996; Gopikrishnan et al.,
1999).

PðjRtj4xÞ�x�zR with zR � 3. (1)

The specific values of zR were calculated using the quasi-maximum likelihood
estimator of Hill (1975). We calculate the inverse local slope g ¼ z�1R of the
cumulative distribution function PðRÞ, g � �ðd logPðRÞ=d logRÞ�1 for the negative
and the positive tail. We obtain an estimator for g, by sorting the normalized
increments by their size, Rð1Þ4Rð2Þ4 � � �4RðNÞ. The cumulative distribution can
then be written as PðRðkÞÞ ¼ k=N, and we obtain for the local slope

g ¼ ðN � 1Þ
XN�1
i¼1

logRðiÞ

" #
� logRðNÞ,

where N is the number of tail events used. We use the criterion that N does not
exceed 10% of the sample size, simultaneously ensuring that the sample is restricted
to the tail events (Pagan, 1996). Using this estimator individually for each of the
1,000 stocks, we obtain the mean value over Dt ¼ 15 min5

zR ¼
3:10� 0:03 ðpositive tailÞ;

2:84� 0:12 ðnegative tailÞ:

(
(2)
5Our preliminary analysis using generated time series with similar statistical properties both

distributional and heteroskedastic show that a large proportion of the dispersion in measured exponentsbzi
R for each stock i is due to measurement noise. The asymmetry of the tail exponent, however, seems to be

genuine.
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Fig. 1. Empirical cumulative distribution of the absolute values of the normalized 15min returns of the

1,000 largest companies in the Trades And Quotes database for the 2-year period 1994–1995 (12 million

observations). We normalize the returns of each stock so that the normalized returns have a mean of 0 and

a standard deviation of 1. For instance, for a stock i, we consider the returns r0it ¼ ðrit � riÞ=sr;i , where ri is

the mean of the rit’s and sr;i is their standard deviation. In the region 2pxp80 we find an ordinary least

squares fit lnPðjrj4xÞ ¼ �zr ln xþ b, with zr ¼ 3:1� 0:1. This means that returns are distributed with a

power-law Pðjrj4xÞ�x�zr for large x between 2 and 80 standard deviations of returns. Source: Gabaix

et al. (2003).
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To explore the origins of the cubic distribution of returns, we also analyzed the
same databases to calculate the distribution of aggregate trading volume Q,6 which
we found to have a distribution (Gopikrishnan et al., 2000; Maslov and Mills, 2001)

PðQ4xÞ�x�zQ with zQ � 1:5. (3)

Further, we found a power-law distribution (Gopikrishnan et al., 2000) to hold for
individual transaction size q (Fig. 2)

Pðq4xÞ�x�zq with zq � 1:5. (4)

Finally, we found that the number of transactions N in Dt follows (Plerou et al., 2000):

PðN4xÞ�x�zN with zN ¼ 3:4. (5)

The mean values of exponents that we obtain for the 1,000 stocks in our database for
Dt ¼ 15 min are zq ¼ 1:53� 0:07, zQ ¼ 1:7� 0:1, and zN ¼ 3:40� 0:05. Here the
error-bars on the mean are calculated under the assumption that the exponent
estimates for each stock are independent.
6The volumes are here in normalized number of shares. Because the volumes V it for each share i are

normalized by their average value V i, defining volume as normalized fraction of shares outstanding or

normalized dollar value makes no material difference to the preliminary results.
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Fig. 2. Probability density of normalized individual transaction sizes q for three stock markets: (i) NYSE

for 1994–1995; (ii) the London Stock Exchange for 2001; and (iii) the Paris Bourse for 1995–1999. OLS fit

yields ln pðxÞ ¼ �ð1þ zqÞ ln xþ constant for zq ¼ 1:5� 0:1. This means a probability density function

pðxÞ�x�ð1þzqÞ, and a countercumulative distribution function Pðq4xÞ�x�zq . The three stock markets

appear to have a common distribution of volume, with a power law exponent of 1:5� 0:1. The horizontal
axis shows invidividual volumes that are up to 104 times larger than the absolute deviation, jq� q̄j. Source:

Gabaix et al. (2006b).
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In the following, we refer to Eqs. (3) and (4) as, respectively, the ‘half-cubic laws of

trading volume.’

2.1. Theoretical framework

Motivated by the empirical regularities we uncovered, we have begun to develop a
theory in which we can interpret these results. Specifically, in Gabaix et al. (2003) we
proposed a reduced-form model that provides an explanation for these empirical
power-laws.

To test the assumptions of the theory, we first performed an empirical analysis of
the distribution of the largest market participants – mutual funds. We found that, for
the largest 10% of mutual funds, the market value of the managed assets S for each
year of the period 1961–1999 obeys the power law

PðS4xÞ�x�zS with zS ¼ 1:05� 0:08. (6)

Exponents of � 1 have also been found for the cumulative distributions of city sizes
(Zipf, 1949) and firm sizes (Axtell, 2001; Stanley et al., 1995), and the origins of this
‘Zipf’ distribution are becoming better understood.7 Below, we show that if
managers of large funds trade on their intuitions about the future direction of the
7See, e.g., Simon (1955), Gabaix (1999), Gabaix and Ioannides (2004), and Fu et al. (2005).
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market, and if they adjust their trading speed to avoid moving the market too much,
then their trading activity leads to zr ¼ 3 and zQ ¼ 1:5.

We presented empirical evidence for the curvature of the price impact function,
proposed an explanation for this curvature, and showed how the resulting trading
behavior generates power laws (1)–(5).

The price impact Dp function of a transaction of size V is increasing and concave
in V (e.g., Hasbrouck, 1991; Plerou et al., 2002).8 We hypothesized that for large
volumes its functional form is

r ¼ Dp�kV 1=2 (7)

for some constant k. When we aggregate over several transactions of size V , Eq. (6)
predicts that the square return, r2, varies linearly with the aggregate trading volume,
Q – a result consistent with our preliminary results (Plerou et al., 2004) that for large
volumes Q

E½r2jQ��Q. (8)

Since Eq. (7) implies Pðr4xÞ�PðkQ1=24xÞ ¼ PðQ4x2=k2
Þ�x�2zQ , it follows that

zr ¼ 2zQ. (9)

Thus, the power law of returns, Eq. (1), follows from the power law of volumes,
Eq. (3), and the square root form of price impact, Eq. (7). We are developing a
framework for explaining Eqs. (3) and (7).

In our reduced-form model (Gabaix et al., 2003), large volumes and large returns
are created by the transactions of large investors. Qualitatively, our theory can be
motivated by the following argument. Consider a large investor who decides to trade
in a stock because he perceives mispricing. For a sufficiently large investor, the
desired quantity of the particular stock will be comparable to its daily turnover.
Therefore, if the investor executes the transaction quickly, an undesirably large price
impact will result. However, the alternative to performing the transaction quite
slowly over time is not attractive either, since the mispricing cannot be expected to
remain indefinitely. So, the desire to profit quickly from the transaction is balanced
by the loss that will occur from the large price impact. Under a set of plausible
conditions, we show that the investor’s optimal trading behavior generates power-
law distributions for returns, volumes and the number of transactions with the
specific values of exponents consistent with our empirical results, i.e., the exponents
zQ ¼ zq ¼

3
2
for the volume, and zr ¼ zN ¼ 3 for the returns and the number of

transactions. The model makes ‘out of sample’ predictions about the relation
between trading imbalance and returns which are qualitatively borne out by the data
(Gabaix et al., 2003, Fig. 2).
8Here V denotes the size of the block trade of a given trader and Q denotes the aggregate volume traded

by all market participants over a given time interval. The aggregate volume Q is directly observable by the

econometrician, but V is not.
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3. Large returns – are they driven by number of trades, volume, or something else?

The existence of scale-free power-law distributions, and the seemingly universal
nature of exponents for stock markets are important for the applicability of the
statistical physics paradigm. A further challenge is to understand the origin of these
power-law distributions.

The question of understanding the power-law behavior of large returns is
especially interesting since extreme stock market movements present challenging
problems for existing theories of efficient markets. For example, there is enough
evidence that crashes have occurred without significant causative news (see Cutler
et al., 1989; Fair, 2002), and there seems to be significant excess volatility (Campbell
and Shiller, 1989; French and Roll, 1986; Roll, 1988; Shiller, 1989; Shleifer, 2000),
perhaps linked to limited arbitrage (Gabaix et al., 2007) or bounded rationality
(Gabaix and Laibson, 2002; Gabaix et al., 2006a). Many theories have been
proposed to accommodate crashes (Romer, 1993; Gennotte and Leland, 1990;
Bernardo and Welch, 2004) but, as yet, there is no consensus. A typical view is to
regard market movements in terms of ‘normal events’ and a few outliers for which a
special model must be introduced. But if there is only one law describing both
everyday events and rare events, then there is likely to be only one economic
mechanism at work.
3.1. Returns and number of trades

We propose to analyze first the relationship between R and N. Previous work has
proposed that market activity measured by volume or number of trades may give rise
to large returns, and in particular Clark (1973), Tauchen and Pitts (1983), Stock
(1988), Ane and Geman (2000) have suggested that the fat-tailed behavior of returns
may arise from the underlying process occurring in a subordinated intrinsic time. In
our context, this question translates to whether zR arises from zN . Our work detailed
in the next sections shows that the value of zN is not sufficient to explain zR ¼ 3.

Our work is in the spirit of time deformation proposed by Clark (1973), Tauchen
and Pitts (1983), Stock (1988), Lamoureux and Lastrapes (1990), and Engle and
Russell (1998). Returns R over a time interval Dt can be expressed as the sum of
several changes dpi due to the i ¼ 1; . . . ;N trades in the interval ½t; tþ Dt�,

R ¼
XN

i¼1

dpi. (10)

If Dt is such that Nb1, and dpi have finite variance, then one can apply the classic
version of the central limit theorem, whereby one would obtain the result that the
unconditional distribution PðRÞ is Gaussian (Clark, 1973). It is implicitly assumed in
this description that N has only narrow Gaussian fluctuations, i.e., has a standard
deviation much smaller than the mean hNi.

A investigation of N suggests stark contrast with a Gaussian time series with the
same mean and variance – there are several events of the magnitude of tens of
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standard deviations which are inconsistent with Gaussian statistics.9 For each stock
analyzed, we chose sampling time intervals Dt such that it contains sufficient N; for
actively traded stocks Dt ¼ 15 min, and for stocks with the least frequency of
trading, Dt ¼ 390 min (1 day) (Plerou et al., 2000). We find that the distribution of N

appears to display an asymptotic power-law decay

PfN4xg�x�zN ðxb1Þ. (11)

For the 1,000 stocks that we analyze, we estimate zN using Hill’s method (Hill, 1975)
and obtain a mean value zN ¼ 3:40� 0:05. Note that zN42 is outside the Lévy
stable domain 0ozNo2 and is inconsistent with a stable distribution for N, and with
the lognormal hypothesis of Clark (1973).

Since we have found that PfR4xg�x�a, we can ask whether the value of zN we
find for PfN4xg is sufficient to account for the fat tails of returns. To test this
possibility, we shall implement, for each stock, the ordinary least squares regression

ln jRðtÞj ¼ aþ b ln NðtÞ þ cðtÞ, (12)

where cðtÞ has mean zero and the equal time covariance hNcðtÞi ¼ 0. Preliminary
results on 30 actively traded stocks yield the average value of b ¼ 0:57� 0:09.

We note that values of b � 0:5 are consistent with what we would expect from
Eq. (10), if dpi are i.i.d. with finite variance. In other words, suppose dpi are chosen
only from the interval ½t; tþ Dt�, and let us hypothesize that these dpi are mutually
independent, with a common distribution Pðdpijt 2 ½t; tþ Dt�Þ having a finite
variance W 2. Under this hypothesis, the central limit theorem, applied to the sum
of dpi in Eq. (10), implies that

jRðtÞj�W ðtÞ
ffiffiffiffiffiffiffiffiffi
NðtÞ

p
. (13)

Eq. (13) implies that the fat tails of PfjRðtÞj4xg�x�a cannot be caused solely due to
PfN4xg�x�zN , because by conservation of probabilities Pf

ffiffiffiffiffi
N
p

4xg�x�2zN with
2zN � 6:8. Eq. (13) then implies that N alone cannot explain the value a � 3.

3.2. Large returns and volume

The second possibility that we examine is the connection between large returns
and volume. Indeed, as the old Wall Street adage goes, ‘it takes volume to move
prices.’ The present subsection presents evidence for that view, which is generally
supportive.

To examine this relationship in detail, we analyze the price impact function for the
1,000 largest stocks in our NYSE TAQ database. Our results support the hypothesis
that large returns arise from large volumes. Indeed this is also predicted by our
theory (Gabaix et al., 2006b) that we outlined above. Under some circumstances,
this theory predicts that the price impact function takes a square-root form.
9See, for example, Clark (1973), Mandelbrot and Taylor (1962), Epps and Epps (1976), Tauchen and

Pitts (1983), Stock (1988), Engle and Russell (1998), Guillaume et al. (1995), Ane and Geman (2000),

Ghysels et al. (1996), Jones et al. (1994), and Plerou et al. (2000).
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This particular functional relationship gives a natural connection between return and
volume, i.e., zR ¼ 2zQ – a relationship bourne out by the empirical data.

Here we present results of our analysis of the price impact function, i.e., the
relation between returns and volume. In order to quantify variations in demand and
supply, we distinguish two types of trades – buyer and seller initiated – based on
which of the two participants in the trade is more eager to execute the trade. When
such distinction is not possible, we label the trade as indeterminate. We quantify
demand-supply fluctuations through the order imbalance, defined as the difference
between the number of shares traded in buyer-initiated and seller-initiated trades in a
time interval Dt,

F �
XN

i¼1

qiai, (14)

where ai 2 f�1; 0; 1g has value �1 if the trade is seller initiated, 1 if the trade is buyer
initiated, and 0 if the trade is indeterminate, qi is the number of shares traded in each
trade, and N is the number of trades in Dt. We use the procedure of Lee and Ready
(1991) to determine ai.

We quantify the equal-time dependence of order-imbalance and price change
using the conditional expectation function

F ðFÞ � EðDpjFÞ, (15)

which gives the equal-time expectation value of price change Dp for a given order
imbalance FðtÞ. Analysis indicates F ðFÞ�Fb for small F while for large F the curve
seems to plateau (Plerou et al., 2002; Lillo et al., 2003; Farmer and Lillo, 2004).

The above estimation, however, suffers from the fact that in practice, large orders
are executed by splitting into orders of smaller size (Chan and Lakonishok, 1995;
Keim and Madhavan, 1997) which are observed in the trade time series as the trade
size qi. The true impact function EðDpjV Þ is indeed notoriously difficult to measure
since the information about the unsplit order size is usually proprietary and not
available. The quantity of interest pertains to Dp, the total impact in price of a large
order of size V .

Consider an example. Suppose that a large fund wants to buy a large number V of
shares of a stock whose price is $100. The fund’s dealer may offer this large volume
for a price of $101. Before this transaction, however, the dealer must buy the shares.
The dealer will often do that progressively in many steps, say 10 in this example. In
the first step, the dealer will buy V=10 shares, and the price will go say, from $100 to
$100.1, and in the second the price will go from $100.1 to $100.2. After some time
elapses, the price will have gone to $101 in increments of $0.1. At this stage, the
dealer has his required number of shares, and hands them over to the fund manager
at a price of $101. The true price impact here is 1%, since the price has gone from
$100 to $101. But in any given transaction, the price has moved by no more than
$0.1. So an analysis of EðDpjV Þ would find an ‘apparent’ price impact of no more
than $0.1, i.e., 0.1% of the price. Since as the transaction is executed the price of the
stocks goes from $100 to $101, the true price impact is 1%. As a result the procedure
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above will measure a value 10 times smaller than the true value. This downward bias
perhaps explains the plateau behavior of EðDpjV Þ for large V .

We can quantify the bias in the above example. Suppose that a trade of size V is
split into K ¼ V a (10 in our example) trades of equal size q ¼ V=K ¼ V 1�a, with
0oao1. Then the apparent impact dp incurred by each trade (0.1% in our example)
will be 1=K ( 1

10
in our example) of the total price impact Vb (1% in our example), i.e.,

dp ¼ Vb=K ¼ Vb�a. So a power law fit of dp vs q will give dp�qb0 with

b0 ¼ ðb� aÞ=ð1� aÞob.

So the measurement of price impact directly from Eq. (15) leads to a biased
measurement b0 of the exponent b of the true price impact.

To address this bias we examine Eðr2jQÞ in Gabaix et al. (2003). As is well
established empirically, the sign of returns is unpredictable in the short term, so the
reasoning in Gabaix et al. (2006b) shows that Eðr2jQÞ will not be biased.

Our analysis (Gabaix et al., 2003) was presented with data for the 116 most
actively traded stocks. To check if the result of b ¼ 0:2 for large volumes presented in
Lillo et al. (2003) could arise from increasing the size of the database, we now extend
our analysis to the 1,000 largest stocks in our database for the 2-year period
1994–1995. Fig. 3 shows that Eðr2jQÞ�Q is consistent with our theory. This
regression is, however, not definitive evidence for Eq. (7). This regression is
performed in fixed Dt so is exposed to the effect of fluctuations in the number of
trades – i.e., if N denotes the number of trades in Dt, r2�N and V�N so Eq. (8)
could be a consequence of this effect. Fortunately, when we perform the analysis
0.1

1

10

100

0.001 0.01 0.1 1 10 100

Aggregate volume Q

A
v
e
ra

g
e
 s

q
u

a
re

d
 r

e
tu

rn
 E

[r
2
|Q

]

Fig. 3. Conditional expectation E½r2jQ� of the squared return r2 in Dt ¼ 15 min, given the aggregate

volume Q in Dt. r is in units of standard deviation, and Q in units of absolute deviation, jQ� Q̄j. The

results are averaged over the largest 100 stocks in the New York Stock Exchange market capitalization on

January 1, 1994. The data spans the 2-year period 1994–1995 and is obtained from the Trades and Quotes

database, which records all transactions for all listed securities in the NYSE, AMEX and NASDAQ. One

cannot reject E½r2jQ� ¼ aþ bQ large enough ðQX3Þ. This is consistent with a square root price impact of

large trades. Source: Gabaix et al. (2006b).
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with a constant number of trades (Plerou et al., 2004), we find again support for
Eq. (8).

In sum, we find empirical support for the view that large trades move prices, and
can explain quantitatively the cubic power law of returns. This result is potentially
important because, as articulated in Gabaix et al. (2006b), it provides support for a
unified explanation of the power laws of volumes and returns.

Encouraging though it is, this result does not close the debate, as there are surely
other sources of large returns. For instance, work by Farmer and Lillo (2004)
suggests that large fluctuations are not due to large volumes, but rather due
to liquidity fluctuations (see also Plerou et al., 2005). This is indeed a valid
possibility, and further work is needed to carefully discern the role of volume and
liquidity in price formation. The main other candidate explanation is that prices
would be purely driven by news, that would at the same time move number of trades,
volume, and liquidity. Further research should investigate this possibility system-
atically.

4. Quantifying and understanding the origin of long-ranged volatility persistence

A third focus of our proposed research is to quantify and understand long-range
dependencies in financial data. Although we have focused above on distributional
aspects of returns, volume, and market activity, these variables also show
remarkable time dependence. Indeed, it is well known that the volatility displays
correlations that persist for significant periods of time. Several previous studies have
reported that the volatility of price fluctuations has correlations that decay slowly.10

Our analysis not only confirms the long-persistence of volatility correlations, but
more importantly shows that these correlations decay as a power-law function. This
is especially interesting in the view of the market as a strongly interacting system,
since power-law decay of correlation functions is one of the signatures of strongly
interacting physical systems.

The origin of these correlations are especially puzzling, since most models predict
short-ranged correlations. We extend the analysis of time correlations to related
variables such as N and Q. Our results show the existence of power-law correlations
in both N and Q with almost identical values of power-law exponents describing the
decay of correlation functions. Our work suggests that the long-ranged correlations
in volatility and in volume arise from those of N.

The dependencies in the data can be seen even in the behavior of the distribution
of returns on varying time scales. Since the values of zR we find are inconsistent with
a statistically stable law, we expect the distribution of returns Pðr4xÞ on larger time
scales to converge to Gaussian. In contrast, our analysis of daily returns from the
CRSP database suggests that the distributions of returns retain the same functional
form for a wide range of time scales Dt, varying over three orders of magnitude,
5 minpDtp6240 min ¼ 16 days. The onset of convergence to a Gaussian starts to
10See, e.g., Campbell et al. (1997), Ding et al. (1993), Granger and Ding (1996), and Andersen et al.

(2001).
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occur only for Dt416 days (Plerou et al., 1999). In contrast, n-partial sums of
computer-simulated time series of the same length and probability distribution
display Gaussian behavior for nX256 (Gopikrishnan et al., 1999). Thus, the rate of
convergence of PðRÞ to a Gaussian is remarkably slow, indicative of time
dependencies (Campbell et al., 1997; Lo and MacKinlay, 1988) which violate the
conditions necessary for the central limit theorem to apply.

To test for time dependencies, we performed a preliminary analysis of the
autocorrelation function of returns, which we denote hGðtÞGðtþ tÞi, using 5 min
returns of 1,000 stocks. Our preliminary results show pronounced short-time
ðo30 minÞ anti-correlations, consistent with the bid-ask bounce (Campbell et al.,
1997). For larger time scales, the correlation function is at the level of noise,
consistent with the efficient market hypothesis.11 Lack of linear correlation does not
imply independent returns, since there may exist higher-order correlations. Our
recent studies (Liu et al., 1997, 1999) show that the amplitude of the returns
measured by the absolute value or the square has long-range correlations with
persistence12 up to several months,

hjGðtÞjjGðtþ tÞji�t�a, (16)

where a has the average value a ¼ 0:34� 0:09 for the 1,000 stocks studied. In order
to detect genuine long-range correlations, the effects of the U-shaped intra-day
pattern (Wood et al., 1985; Admati and Pfleiderer, 1988) for jGj has been removed
(Liu et al., 1997). This result is consistent with earlier studies13 which also noted
long-range correlations. In addition to analyzing the correlation function directly,
we are also applying power spectrum analysis and the recently developed detrended
fluctuation analysis (Liu et al., 1997; Peng et al., 1994). Both of these methods yield
consistent estimates of the exponent a. We shall also apply estimators such as those
developed in Robinson (1994, 1995) to obtain accurate estimates of the exponent a.

To better understand the origin of correlations in jRj, we shall analyze time
correlations in N, and attempt to relate it to the time correlations of jRj. If N is a
long-range correlated variable, it is indeed possible that the volatility correlations
arise from N since R2

t�N, from Eq. (13), so correlation structure of N translates to
the same in R2

t .
Preliminary studies on the same 30 actively traded stocks indicate that the

autocorrelation function hNðtÞNðtþ tÞi�t�n, with a mean value of the estimates of
n ¼ 0:32� 0:09 using the detrended fluctuation analysis (Peng et al., 1994). To detect
genuine long-range correlations, the marked U-shaped intra-day pattern (Wood
et al., 1985; Admati and Pfleiderer, 1988) in NDt is removed (Liu et al., 1997). It
would be interesting to substantiate the analysis of long memory using semi-
parametric estimators such as those due to Robinson14, and test the dependence of
the exponent n on the type of industry sector, and market capitalization.
11See, e.g., Campbell et al. (1997) and Fama (1965, 1970, 1991).
12See, for example, Granger (1966, 1980), Granger and Joyeux (1980), and Beran (1994).
13See, e.g., Campbell et al. (1997), Ding et al. (1993), Granger and Ding (1996), and Andersen et al.

(2001).
14See, e.g., Robinson (1994, 1995).
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Finally, investigations on the 30 stocks seem to indicate the absence of long-range
correlations in W , the above investigation of correlations could yield the interesting
statement that the long-range correlations in volatility are due to those of N.
Together with the above discussion on distribution functions, these preliminary
results are indicative of an interesting dichotomy – that the fat tails of returns R arise
from W and the long-range volatility correlations arise from trading activity N.
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