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Repulsive synchronization in complex networks
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ABSTRACT

Synchronization in complex networks characterizes what happens when an ensemble of oscillators in a complex autonomous system become
phase-locked.We study theKuramotomodel with a tunable phase-lag parameterα in the coupling term to determine howphase shifts influence
the synchronization transition. The simulation results show that the phase frustration parameter leads to desynchronization.We find two global
synchronization regions for α ∈ [0, 2π) when the coupling is sufficiently large and detect a relatively rare network synchronization pattern in
the frustration parameter near α = π . We call this frequency-locking configuration as “repulsive synchronization,” because it is induced by
repulsive coupling. Since the repulsive synchronization cannot be described by the usual order parameter r, the parameter frequency dispersion
is introduced to detect synchronization.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5089567

Networks of coupled oscillatory units have received wide con-
cern because it helps understand the synchronization in a variety
of systems such as biology, finance, and transportation. Most of
the studies focused on attractive couplings between the oscilla-
tors, in which all nodes can be synchronized to be either iden-
tical or just detuned within a small parameter range. In this
paper, we investigate the competing effect of attractive and repul-
sive interactions in oscillator ensembles. We study the Kuramoto
model with a tunable parameter α, and an intrinsic frequency
of each oscillator is fixed to be proportional to its degree. It
is found that there are two types of synchronization, normal
and repulsive ones. Since the latter is not described as the
Kuramoto global order parameter that is based on the phase-
locking, we, therefore, introduce a parameter that measures the
frequency dispersion. When α = π , even though phases are not
locked, the frequencies are well entrained. This repulsive syn-
chronization is known as the frequency-locking state, which was
only found in regular lattices and grids that repulsive coupling
leads to stable anti-ferromagnetic-type states. Here for the first
time, the repulsive synchronous state is observed on disordered
networks.

I. INTRODUCTION

Complex dynamical systems usually exhibitmacroscopic coher-
ent states when their coupling strength exceeds a threshold. This
behavior is ubiquitous in such far-from-equilibrium real and
artificial systems as the synchronous rhythmic light pulse in a
large population of flashing fireflies,1 the optical-forced oscilla-
tory Belousov–Zhabotinsky reaction,2 and the synchronization of
neuronal activities.3 Synchronization in complex networks is an
extensively explored topic, in particular the examination of the
interaction between network structure and synchronized dynamics,
because studying the relationship between dynamic behavior and
coupling structure is essential to understand, predict, and control
real-world complex systems.4–15

Although much has been learned about the synchronizations
of large amount of oscillators with attractive coupling, the effect of
repulsive coupling on the synchronization is not so clear. Actually,
the systems of repulsive interactions commonly exist in ecological
systems16 and human society. For instance, in the traffic systems, the
vehicles are trying to maintain a safe gap between neighbors, and
this speed adaptionmechanism is found to form a synchronized flow
state.17,18
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In order to investigate the effect of repulsive interactions
between oscillators, we use the Sakaguchi–Kuramotomodel,19 which
introduced a phase shift parameter in the original Kuramotomodel,20

and the coupling interactions between oscillators can change from
attraction to repulsionwhen tuning the phase shift. Previous research
has shown that phase shifts strongly impact the behavior ofmany sys-
tems—e.g., they can induce frustration in such disordered systems as
the Josephson series array21 and the XY spin-glass model22—because
of the competition between the difference in a pair of oscillators
and the phase shift that leads to either a positive or negative weak
coupling. Futhermore, it has shown that with the repulsive inter-
actions, the system will turn to partial synchronization from fully
synchronized state, and also traveling wave is observed.23 Recently,
some works have investigated about synchronizing phase frustrated
Kuramoto oscillators24–26 and found a complex relationship between
the phase shifts and the synchronization phase transition. In these
works, the phase shift is focused on the range of [0,π/2]. In addi-
tion, recent research has focused on first-order phase transitions in
complex systems;27–33 however, how frustration affects the first-order
synchronization phase transition has received less attention.

In the current work, we focus on the change of the synchronous
state when coupling of the oscillators turns from attraction to repul-
sion when the phase shift changes continuously from 0 to 2π . We
find that phase frustration can induce desynchronization, and most
interestingly, repulsive coupling can lead to the frequency-locking
synchronization with homogeneous phase distribution in the dis-
ordered systems, which is called repulsive synchronization. Also,
the repulsive synchronization behavior in heterogeneous networks is
investigated and found the first-order phase transition in the system
with a heterogeneous topological structure. This helps to understand
thoroughly the synchronization state in different coupling structures.
The investigation of this repulsive synchronous state may give a hint
in the regulation of the complex systems with the repulsive coupling
effect.

II. MODEL

In a complex network of N coupled oscillators in which each
has a phase θi ∈ [0, 2π) and a natural frequencyωi, then the instanta-
neous phase velocity is vi = θ̇i. Thus, the dynamical equation of phase
oscillators is

θ̇i = ωi + λ

N
∑

j=1

Aij sin(θj − θi − α). (1)

This model with a constant phase lag α is well known as Sak-
aguchi–Kuramoto model.19 The coupling strength of two arbitrary
oscillators i and j is λ, when they are connected such that Aij = 1;
otherwise, they are not directly coupled when Aij = 0. Here, α is a
phase frustration parameter that can introduce a constant phase shift
between connected oscillators.

Previous research34,35 defines the order parameter r that quanti-
fies the degree of synchronization

r(t)eiψ(t) =
1

N

N
∑

j=1

eiθj(t). (2)

When the system is fully synchronized, r → 1 and all oscillators are
locked in a common average phase. In contrast, when r → 0, the sys-
tem is incoherent. Thus, the synchronous state can be indicated by the
r value, but as an order parameter r cannot be applied to all coherent
states, instead, is valid only for global phase-locked synchronization,
and cannot give accurate partial synchronization results with certain
symmetries. For instance, if there are a variety of synchronized clus-
ters in a synchronous system and the oscillating phases vary between
different clusters, then rmay be quite small. In this paper, we propose
a new order parameter σ( to deal with this kind of coherent state
that numerically describes the phase transition of synchronization
including the cluster synchronization.

It was found that for scale-free networks, there is an explosive
phase transition from r = 0 to r = 1 with increasing λ, if the natural
frequencies are in positive correlation with node degrees ki.31 Here,
we set ωi = ki, in order to focus on the effect of frustration in the
first-order synchronization transition.

III. RESULTS

The Kuramoto synchronization process is simulated on a
Barabási-Albert (BA)36 network ofN = 1000 oscillators with an aver-
age degree ⟨k⟩ = 6. The value of phase shift α is tuned in the range
of [0, 2π) due to the periodicity of trigonometric functions.

In Fig. 1, the synchronization diagrams of six different α are
presented in the six panels, respectively. Here, we focus on α <
π because the synchronization behavior of [π , 2π) is similar to
[0,π), as we will see below. From α = 0 to 1.0, r keeps dropping
until zero when α exceeds 1.0, where no synchronous transition is
observed from the synchronization diagram. This phenomenon is
referred to as desynchronization, because fully synchronization state
is destroyed by the phase frustration, and only a cluster of oscillators
can come up to the phase-locking state.

In addition, we can also recognize that the critical coupling
strengths λ of both forward and backward continuations in the syn-
chronization phase transition are raised with increasing α. Also, it

FIG. 1. Forward (red circles) and backward (blue squares) continuations in λ with
α = 0, 0.3, 0.6, 0.7, 0.8, 1.0. r is averaged over the last 5000 time steps.
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is noted that the width of hysteresis in the synchronization diagram
(i.e., the difference between forward and backward critical couplings)
increases when α is growing from 0 to 0.6, but declines after α > 0.6.

To examine the frequency dynamics as a function of α, we
calculate the effective frequency(i to be

(i =
1

T

∫ t+T

t

θ̇i(τ )d(τ ). (3)

In contrast with the natural frequency, (i is the observed fre-
quency of an oscillator. With this parameter, we explore how the
effective frequencies of the system change with phase frustration α at
certain coupling strengths and form the synchronization tree shown
in Fig. 2.

Figure 2(a) shows that, when the coupling strength is suffi-
ciently weak, the effective frequency of all oscillators almost remains
unchanged and is consistent with its node degree at every α. Never-
theless, in Fig. 2(b), two synchronized regions emerge at the vicinity
of α = 0 and α = π , respectively, as the coupling value is increased
to λ > λc, where λc is the critical point of synchronized transition
in the absence of phase shift. Beyond the two synchronized regions,
however, when α deviates from 0 or π , a number of the oscilla-
tors will be separated from the synchronous cluster, leading to first
partial synchronization and finally to complete desynchronization.
Figure 2(c) shows that when λ is further increased, the position of
the synchronization area changes slightly, but the width of the area
remains approximately the same. Note that there is an inversion in
the curve where the effective frequencies(i convert from positive to
negative values. This is because some of the coupling terms in Eq. (1)
are negative, causing a negative total coupling strength, and thus neg-
ative effective frequency. Moreover, effective frequency ( of nodes
with higher degrees are more negative than that with less degrees,
which can be clearly observed from Fig. 2(c), when α ∈ (π , 2π), The
top three lines with highest degrees (blue, red, and purple) goes to the

FIG. 2. The synchronization tree(i vs α at (a) λ = 0.5, (b) λ = 5, (c) λ = 20.
Various colors of lines are related with different natural frequencies ωi , which are
also node degrees due toωi = ki . The color coding can be read from (a), in which
the node degree decreases from up to down.

FIG. 3. rmax (represented by the blue line and solid circles) in the steady state
changes with α (λ = 100 is chosen so that the steady state can be obtained
for more α values). Roughly speaking, rmax decreases with α, because globally
synchronized oscillators are broken when fluctuation α increases. All results are
averaged over 50 independent realizations.

bottom. The reason is that the sum of the negative coupling terms is
more negative for higher degree nodes.

There are two synchronous regions in the synchronization tree
described above, one near α = 0 and the other near α = π . Figure 3
shows a plot of the order parameter r in the steady state rmax as a func-
tion of α that verifies this. The line indicates when α is sufficiently
greater than 0, at which point the desynchronization is induced and
the system partially synchronized, consistent with Fig. 2. Note, how-
ever, that although frequency entrainment is realized when α = π

(a)

(b)

FIG. 4. Phase distribution of the oscillators in the synchronized state when
λ = 20 and α is in the vicinity of (a) 0 and (b) π .
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FIG. 5. Phase transition diagram for the BA network with N = 1000 described
by r (red lines) and normalized σ( (blue lines) at (a) α = 0, (b) α = π , and
(c) α = 0.6, respectively. Similar results are also found on the BA network with
N = 2000.

from the synchronization tree, no phase-locking is present because
rmax is approaching 0. Although for bothα = 0 andα = π the system
is clearly synchronized with entrained frequencies among all oscilla-
tors, rmax is different. This indicates that the synchronization states of
the two areas of entrained effective frequency have different patterns.

We find that the phase distributions of the oscillating system
near α = 0 and α = π differ. Figure 4 reveals that the phase of the
oscillators is approximately equal near α = 0. They form a phase-
locked cluster that moves synchronously, and order parameter r
reaches its maximum. In contrast, when α is near π , the distri-
bution of the oscillator phases is homogeneous in [0, 2π), and the
value of order parameter r is low. But the entire whole system is fre-
quency locked, i.e., the frequency of all oscillators is the same. This
anomalous phase synchronization, which has been rarely observed in
network synchronization, differs from the traditional phase-locked
synchronization and thus cannot be described using the order
parameter r because it is characterized by a phase distribution instead
of a frequency distribution. We thus introduce a new indicator to
describe synchronization by defining the dispersion of effective fre-
quencies to be

σ( =

√

∑N
j=1 ((j − ⟨(⟩)2

N
. (4)

FIG. 6. Phase transition diagram on the ER network with N = 1000 and average
degree ⟨k⟩ = 6 described by r (red lines) and dispersion of effective frequencies
σ( (blue lines), respectively. The phase shifts are (a) α = 0 and (b) α = π .

Here, ⟨(⟩ is the average value of the effective frequencies. If the
oscillators are phase-locked, the observed frequencies are locked in
a common average frequency, the dispersion of effective frequency is
thus considerably small.

Figure 5 compares the abilities of normalized σ( and r to detect
a synchronized phase transition. The normalized σ( is obtained by
dividing each original σ( by the value of σ( at λ = 0. Figure 5(a)
shows that when α = 0, the value of r increases from 0 to 1 when λ
exceeds the critical coupling. Meanwhile, normalized σ( decreases
from 1 to 0 during the synchronization transition, in accordance
with r. Figure 5(b) shows that when α = π , the order parameter
r cannot detect a synchronization transition, but normalized σ(
detects in the system a phase transition to the frequency-locking
state that forms a hysteresis loop between the forward and backward
continuations.

Thus, phase frustration can induce an anomalous type of global
synchronization state which has not been observed in disordered sys-
tems. The difference between the two synchronization states is in
their coupling patterns. Near α = 0, the coupling between adjacent

FIG. 7. The critical coupling of forward (black squares) and backward (red circles)
phase transition when α changes from 0 to π on the ER network with N = 1000
and average degree ⟨k⟩ = 6.
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oscillators is an attractive interaction that concentrates the phase and
increases the r value. In contrast, when α is nearπ , the weak coupling
turns into a repulsive force between each pair of oscillators. Suppose
there are only two oscillators, the phase difference is π , and as the
population grows, they become uniformly distributed and the phase
differences among the oscillators converge.Whenα ∈ (0,π), the sys-
tem is either partially synchronized or desynchronized, as a result of
the competition of the attractive and repulsive coupling. Figure 5(c)
shows a typical example in which α = 0.6 and r < 1 and σω > 0 are
stationary, which is a partially synchronous state.

Therefore, in a large system at α = π , the states of all oscil-
lators enter a regime of “repulsive synchronization”, which is
engendered by negative or repulsive coupling. This repulsive syn-
chronization explains the mechanism in some synchronization
behaviors. For instance, the synchronized flow state in the three-
phase traffic theory17,18 occurs when moving vehicles adapt their
speed to other vehicles and decelerate to avoid collision. This speed
adapation mechanism corresponds to the phase frustration in the
Kuramoto model, and this is more intuitive when the traffic pattern
forms a circle.17 If an ensemble of self-driving cars set to have a strong
speed adaption to maintain a safe gap between vehicles move along a
circular road, a synchronized flow state emerges and all vehicles are

approximately distributed in an homogeneous lane with a common
angular velocity or frequency. Thus, the Kuromotomodel with phase
frustration explains this traffic problem. Other examples of repulsive
synchronization include competitive coevolution.16,37 More impor-
tantly, the synchronized transition due to the negative coupling
should be described by the parameter related with the observed
frequency, rather than r.

Note that the frequency locking state with a uniformly dis-
tributed phase among the oscillators is related to the phase frustration
α and is prevalent in many complex networks other than the regu-
lar lattice as it initially found. Figure 6 presents the synchronization
transition diagram in an Erdös-Rényi (ER) random network, which
is similar to that in a BA network. This result shows the survival of
repulsive synchronization in disordered networks. Also, the frustra-
tion effect is reflected in Fig. 7, in which α − λ diagram showing the
critical forward as well as backward transition points for frequency-
locking transition. Similar to the BA network, there are two synchro-
nized regions, one is near α = 0 and the other is near α = π . When
α is in the neighborhood of 1.2, no synchronization is observed.

Furthermore, in order to find out how the disorder of the net-
works influences the synchronization, we conduct simulation on
Watts-Strogatz (WS) small-world networks generated with different

FIG. 8. Phase transition diagram on the WS
small-world network with N = 1000. In the left
column, from (a) to (e), phase lag α = 0, while
in the right column, from (f) to (j), α = π .
From the top downward, in each row, the WS
network is generated with rewiring probabilities
p = 0.01, 0.02, 0.04, 0.1, 0.5, respectively. There
are two types of order parameters, r and σ(,
which are represented by green and blue squares,
respectively. From the figures, whenα = π , repul-
sive synchronization state is observed, which can
be described by σ(.
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FIG. 9. Phase transition diagram on scale-free networks with different power-law
degree exponents γ . In the left three panels, α = 0, while in the right panels,
α = π . Both r and dispersion of effective frequencies σ( are used, displayed as
red squares and blue circles, respectively. From the figures, the explosive behav-
iors of repulsive synchronization at α = π are quite different from the explosive
synchronization at α = 0.

rewiring probabilities p. In Fig. 8, the repulsive synchronous state at
α = π [shown in Figs. 8(f)–8(j)] emerges for all networks, and repul-
sive synchronization phase transition remains almost unchanged
with different p’s. It demonstrates that the properties of repulsive syn-
chronization have little relationship with the randomness or disorder
of the network. Notice that in Figs. 8(a)–8(b), r is very small. This is
because natural frequencyωi of each node i equals to its degree ki, and
the degree distribution ismore homogeneous for smaller p; therefore,
the frequency will get locked before the phases of more oscillators
become synchronized.

To examine the explosive behaviors associated with repulsive
synchronization, we plot the phase transition diagram on a scale-free
(SF) network, shown in Fig. 9. These SFnetworks have a degree distri-
bution P(k) ∼ k−γ with γ = 2.2, 2.6, and 3.4.We obtain the three left
diagrams at α = 0 and the right at phase shift α = π . For the sake of
comparison, we measure r and σω as order parameters. When α = 0
we see thatwhen coupling strengthλ is increased the synchronization
from the order parameters is r → 1 and σω → 0. In addition, there is
a transformation from a first-order synchronization phase transition

FIG. 10. The critical coupling of forward (black squares) and backward (red
circles) phase transition when α changes from 0 to π on the scale-free network
with N = 1000, average degree ⟨k⟩ = 6 and γ = 2.2.

to a second-order transition when the degree exponent γ increases
from top to bottom, which is consistent with previous findings.31

When α = π , we see repulsive synchronization in all SF net-
works irrespective of γ . As it increases the coupling strength, σω
evolves from 1 to 0, revealing the ubiquity of this frequency-
locked configuration. In addition, as γ increases, the synchronization
changes from a first-order to a second-order phase transition and the
width of the hysteresis loop decreases. This is associated with the het-
erogeneity in the degree and natural frequency distribution. When
the network is heterogeneous, some of the synchronous clusters of
oscillators first emerge and then different clusters become entrained,
leading to explosive behaviors. Note that this repulsive synchronous
state is not reflected in the order parameter r.

The α − λ diagram in Fig. 10 gives the critical forward as well as
backward transition points for the frequency-locking transition. The
two synchronized regions near α = 0 and π are also presented, and
with different α, there is a transition from first-order to second-order
synchronization phase transition.

IV. CONCLUSION

In this paper, we have investigated the synchronization phase
transition in complex systems with repulsive interactions among the
oscillators. By tuning the phase shift α in the Sakaguchi–Kuramoto
model, we find that a large phase shift α causes desynchronization.
Moreover, two distinct synchronization patterns emerge when the
phase frustration parameter α is changed. One is caused by attrac-
tive coupling when α nears 0, and a synchronized cluster emerges in
which both phases and frequencies of the oscillators are entrained.
The other frequency locking pattern is caused by repulsive coupling,
which has a uniform distribution of oscillating phases. Because this
repulsive synchronization, therefore, cannot be characterized by the
order parameter r, we introduce the dispersion of effective frequen-
cies σ( to describe it. However, since σ( is defined statistically, the
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classical analysis25 cannot be used, hence a new approach is expected
in the future. The repulsive synchronization is found to exist in com-
plex networks with different structures, such as BA, ER, scale-free
networks, and small-world networks, somay be prevalent in complex
networks. Since the synchronization with repulsive coupling widely
existed in ecological systems and human society, our results may be
helpful to understand the mechanism in these systems.
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