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Many real-world networks interact with and depend upon other networks. We develop an analytical framework
for studying a network formed by n fully interdependent randomly connected networks, each composed of the
same number of nodes N . The dependency links connecting nodes from different networks establish a unique
one-to-one correspondence between the nodes of one network and the nodes of the other network. We study the
dynamics of the cascades of failures in such a network of networks (NON) caused by a random initial attack on
one of the networks, after which a fraction p of its nodes survives. We find for the fully interdependent loopless
NON that the final state of the NON does not depend on the dynamics of the cascades but is determined by a
uniquely defined mutual giant component of the NON, which generalizes both the giant component of regular
percolation of a single network (n = 1) and the recently studied case of the mutual giant component of two
interdependent networks (n = 2). We also find that the mutual giant component does not depend on the topology
of the NON and express it in terms of generating functions of the degree distributions of the network. Our results
show that, for any n ! 2 there exists a critical p = pc > 0 below which the mutual giant component abruptly
collapses from a finite nonzero value for p ! pc to zero for p < pc, as in a first-order phase transition. This
behavior holds even for scale-free networks where pc = 0 for n = 1. We show that, if at least one of the networks
in the NON has isolated or singly connected nodes, the NON completely disintegrates for sufficiently large n

even if p = 1. In contrast, in the absence of such nodes, the NON survives for any n for sufficiently large p.
We illustrate this behavior by comparing two exactly solvable examples of NONs composed of Erdős-Rényi
(ER) and random regular (RR) networks. We find that the robustness of n coupled RR networks of degree k is
dramatically higher compared to the n-coupled ER networks of the same average degree k̄ = k. While for ER
NONs there exists a critical minimum average degree k̄ = k̄min ∼ ln n below which the system collapses, for RR
NONs kmin = 2 for any n (i.e., for any k > 2, a RR NON is stable for any n with pc < 1). This results arises
from the critical role played by singly connected nodes which exist in an ER NON and enhance the cascading
failures, but do not exist in a RR NON.
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I. INTRODUCTION

Infrastructures, which affect all areas of modern life, are
usually interdependent. Examples include electric power, natu-
ral gas and petroleum production and distribution, telecommu-
nications, transportation, water supply, banking and finance,
emergency and government services, agriculture, and other
fundamental systems and services which are critical to security
and economic prosperity. Recent disasters ranging from
hurricanes to large-scale power blackout and terrorist attacks
have shown that significant dangerous vulnerability arises from
the many interdependencies across different infrastructures
[1–5]. Infrastructures are frequently connected at multiple
points through a wide variety of mechanisms, such that a
bidirectional relationship exists between the states of any
given pair of connected networks. For example, in California,
electric power disruptions in early 2001 affected oil and
natural gas production, refinery operations, pipeline transport
of gasoline and jet fuel within California and its neighboring
states, and the movement of water from northern to central
and southern regions of the state for crop irrigation. Another
dramatic real-world example of a cascade of failures is
the electrical blackout that affected much of Italy on 28
September 2003: the shutdown of power stations directly led

to the failure of nodes in the Supervisory Control and Data
Acquisition (SCADA) communication network, which in turn
caused further breakdown of power stations [5,6]. Identifying,
understanding, and analyzing such interdependencies are
therefore significant challenges. These challenges are greatly
magnified by the breadth and complexity of our modern critical
national interdependent infrastructures [4].

In recent years we have witnessed important advances in
the field of complex networks [7–19]. The internet, airline
routes, and electric power grids are all examples of networks
whose function relies crucially on the connectivity between the
network components. An important property of such systems
is their robustness to node failures. Almost all research has
been concentrated on the case of a single or isolated network
which does not interact with or depend on other networks.
Recently, based on the motivation that modern infrastructures
are becoming significantly more dependent on each other,
a system of two interdependent networks has been studied
[6,20–22]. A fundamental property of interdependent net-
works is that the failure of a node in one network may lead
to the failure of dependent nodes in other interdependent
networks, which in turn may cause further damage in the
first network and so on, leading to a global cascade of
failures. Reference [6] developed a framework for analyzing
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the robustness of two interacting networks subject to such
cascading failures. They found that interdependent networks
behave very differently from single networks and become
significantly more vulnerable compared to their noninteracting
counterparts. The case of a partially interdependent pair of
networks was studied [20].

More recently, two important generalizations of the basic
model [6] have been developed. (i) Because in real-world
scenarios the initial failure of important nodes (“hubs”)
may not be random but targeted, a mathematical framework
for understanding the robustness of interdependent networks
under an initial targeted attack has been studied [23]. They
developed a general technique that uses the random-attack
problem to map the targeted-attack problem in interdependent
networks. (ii) Also in real-world scenarios, the assumption that
each node in network A depends on one and only one node
in network B and vice versa may not be valid. To correct this
shortcoming, a theoretical framework for understanding the
robustness of interdependent networks with a random number
of support and dependence relationships has been developed
and studied [24].

In all of the above studies [6,20,23,24], the dependent
pairs of nodes in both networks were assumed to be chosen
randomly. Thus, when high degree nodes in one network
depend with a high probability on low degree nodes of another
network, the configuration becomes vulnerable. To quantify
and better understand this phenomenon, Ref. [25] proposed
two “intersimilarity measures” between the coupled nodes.
Intersimilarity occurs in coupled networks when (a) nodes with
similar degrees tend to be interdependent and (b) the neighbor-
ing nodes of interdependent nodes in each network also tend
to be dependent. They found that, as the coupled networks
become more intersimilar, the system becomes more robust
[25,26]. Reference [25] also studies a system composed of the
interdependent world-wide seaport network and the world-
wide airport network. They found indeed that well-connected
seaports tend to couple with well-connected airports. The case
in which all pairs of interdependent nodes in both networks
have the same degree was solved analytically in Ref. [27].

In many realistic examples, more than two networks depend
on each other. For example, diverse infrastructures such as
water and food supply, communications, fuel, financial trans-
actions, and power stations are coupled together [2,3,5,28].
Understanding the vulnerability due to such interdependencies
is a major challenge for designing resilient infrastructures.

We study here a model system [29,30] comprising a
network formed by n fully interdependent networks, where
each network consists of N nodes (see Fig. 1). Each of the N
nodes in one network is connected to a node in another network
by bidirectional dependency links, thereby establishing a one-
to-one correspondence. We develop a mathematical framework
[29] to study the robustness of tree-like “network of networks”
(NON) by studying the dynamical process of the cascading
failures. We find an exact analytical law for percolation of
a NON system composed of n coupled randomly connected
networks. Our result generalizes the known Erdős-Rényi (ER)
[31–33] result as well as the random regular (RR) result
for the giant component of a single network. We find that,
while for n = 1 the percolation transition is second order, for
n > 1 cascading failures occur and the transition becomes a

first-order transition. Our results for n interdependent networks
show that the classical percolation theory extensively studied
in physics and mathematics is in fact a limiting case of the
richer, more general, and very different percolation law which
holds for realistic interacting networks.

Additionally, we show for both ER and RR NONs that
(i) for any loopless topology of NON, the critical perco-

lation threshold and the giant component depend only on the
number of networks involved and their degree distributions but
not on the interlinked topology (Fig. 1),

(ii) the robustness of NONs significantly decreases with n,
and

(iii) for a network of n ER networks, all with the same
average degree k, there exists a minimum degree kmin(n)
increasing with n, below which pc = 1 (i.e., for k < kmin the
NON will collapse once any finite number of nodes fail).

The analytical expression for kmin(n) generalizes the known
result kmin(1) = 1 for ER below which the network collapses.
In sharp contrast, a NON composed of RR networks is
significantly more robust. In the RR NON case there is no kmin
which is independent of n below which the NON collapses
(kmin = 2 for all n). This is due to the multiple links of each
node in the RR system compared to the existence of singly
connected nodes in the ER case. We also discuss (Sec. VII) the
critical effect of singly connected nodes on the vulnerability
of the NON ER structure.

II. GENERATING FUNCTIONS FOR SINGLE NETWORK

We begin by describing the generating function formalism
for a single network that will be useful in studying interdepen-
dent networks. We assume that all Ni nodes in network i are
randomly assigned a degree k from a probability distribution
Pi(k) and are randomly connected with the only constraint that
the node with degree k has exactly k links [34]. We define the
generating function of the degree distribution

Gi(x) =
∞∑

k=0

Pi(k)xk, (1)

where x is an arbitrary complex variable. The average degree
of network i is

k̄i ≡
∑

kPi(k) = G′
i(1). (2)

In the limit of infinitely large networks, Ni → ∞, the
random connection process can be modeled as a branching
process in which an outgoing link of any node has a probability
kPi(k)/k̄i to be connected to a node with degree k, which in
turn has k − 1 outgoing links. The generating function of this
branching process is defined as

Hi(x) ≡
∑∞

k=0 Pi(k)kxk−1

k̄i

= G′
i(x)

G′
i(1)

. (3)

The probability fi that a randomly chosen outgoing link does
not lead to an infinitely large giant component satisfies a
recursion relation fi ≡ Hi(fi). Accordingly, the probability
that a randomly chosen node does belong to a giant component
is given by gi ≡ 1 − Gi(fi). Once a fraction 1 − p of nodes
is randomly removed from a network, its generating function
remains the same but must be computed from a new argument
z = pfi + 1 − p [35–37]. Thus P∞,i , the fraction of nodes
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FIG. 1. Three types of loopless NONs, each composed of five coupled networks. They all have the same percolation threshold and the same
giant percolation component.

which belongs to the giant component, is given by [36–38]

P∞,i = pgi(p), (4)

where

gi(p) = 1 − Gi(pfi(p) + 1 − p), (5)

and fi(p) satisfies

fi(p) = Hi(pfi(p) + 1 − p). (6)

As p decreases, the nontrivial solution fi < 1 of Eq. (6) grad-
ually approaches the trivial solution fi = 1. Accordingly, P∞,i

gradually approaches zero as in a second-order phase transition
and becomes zero when the two solutions of Eq. (6) coincide
at p = pc. At this point the straight line corresponding to
the left-hand side of Eq. (6) becomes tangential to the curve
corresponding to its right-hand side, yielding

pc = 1
H ′

i(1)
. (7)

For example, for Erdős-Rényi (ER) networks [31–33], char-
acterized by a Poisson degree distribution,

Gi(x) = Hi(x) = exp[k̄i(x − 1)], (8)

gi(p) = 1 − fi(p), (9)

fi(p) = exp{pk̄i[fi(p) − 1]}, (10)

and

pc = 1
k̄i

. (11)

Finally, using Eqs. (4), (9), and (10) we can obtain a direct
equation for P∞,i :

P∞,i = p[1 − exp(−k̄iP∞,i)]. (12)

III. DYNAMIC PROCESS OF CASCADING FAILURES

In this paper we will study a particular variant [6] of the
dependency among the networks participating in the NON,
namely, bidirectional dependency links establishing one-to-
one correspondence between the nodes of all networks in the
NON. Other variants, which include autonomous nodes [20]
and multiple dependency links [24], can be studied along the
same lines. We assume that the NON consists of n networks
each having N nodes (Fig. 1). Each node in Fig. 1 represents a
network, and each link between two networks i and j denotes

the existence of a one-to-one dependency between all the
nodes of the linked networks. The functioning of one node
in network i depends on the functioning of one and only one
node in network j (i, j ∈ {1,2, . . . ,n}, i (= j ), and vice versa
(bidirectional links). If node i in network A stops functioning,
the dependent node j in network B stops functioning within
the time of autonomous functioning, τa .

If the NON has a tree-like topology, the dependency links
establishing one-to-one correspondence between the pairs
of directly linked networks establish a unique one-to-one
correspondence between the nodes of any two networks of the
NON. The removal of a single node in one network causes the
removal of the set of all n correspondent nodes each belonging
to a different network. If we assume the existence of such a
unique one-to-one correspondence, our treatment applies not
only to a tree-like NON but to a NON of any topology.

On the other hand, if in the NON there is a mismatch
in the correspondence of the nodes in the dependency links
forming a loop, a failure of a single node may cause a complete
collapse of all the networks forming a loop. Indeed if any node
Ai stops functioning then a different node Ati in the same
network will stop functioning. If ti is a permutation of the
nodes i = 1,2,3 . . . N , then all the nodes forming a cycle in
this permutation which includes node i will stop functioning.
The probability for a randomly selected element to belong to
a cycle of length " in a random permutation of N elements
follows a uniform distribution P (") = 1/N . As N → ∞, the
mathematical expectation of a fraction of elements that do
not belong to the cycles to which k = pN randomly selected
elements belong scales as

1
k + 1

∼ 1
pN

→ 0. (13)

Thus, removal of an infinitesimally small fraction of nodes
from a NON with a loop completely eliminates all the networks
in a loop if no assumptions on the nature of the permutation
created by the mismatch are made. Once a single network in
the NON will stop functioning, all other networks in the NON
will stop functioning and hence the NON with a loop will
completely disintegrate unless there is a unique one-to-one
correspondence established by the dependency links among
the nodes of each network, or the permutation characterizing
the mismatch in the dependency links along the loop is not
random. Here, we restrict ourselves to the simple case of the
one-to-one correspondence.
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We assume that, within network i, the nodes are randomly
connected by connectivity links with degree distribution Pi(k).
We further assume that only the nodes belonging to the giant
connected cluster of each network can function. Other nodes
which belong to smaller clusters become nonfunctional within
a time τc. For simplicity, we assume that τc are equal for all
nodes in all networks and that τa ) τc. However, the final
state of the model does not depend on these details, since it
is completely defined by the mutually connected clusters (i.e.,
the clusters of the correspondent nodes in each network, which
are independently connected by the connectivity links of each
network of the NON).

Once a fraction of nodes 1 − p is removed from a single
network, which we will call the root, the corresponding
dependent nodes in all networks become nonfunctional within
a short time interval bounded by

t0 ≡ nτa ) τc. (14)

At time t1 = τc + t0 ≈ τc, the nodes which do not belong
to the giant components of the individual networks stop
functioning. Since the dependency links are random, the
fraction of corresponding nodes which simultaneously belongs
to the giant components in all networks is

µ(t1) = p
∏

gi[xi(t0)], (15)

where xi(t0) = p for every network and the functions gi(xi)
are defined by Eq. (9) in which p = xi . From the point of
view of each individual network this is equivalent to a random
attack after which the fraction

xi(t1) = µ(t1)
gi[xi(t0)]

(16)

randomly survives from the entire network, since the fraction
µ(t1) of survived nodes is selected from the current giant
component with fraction gi[xi(t0)]. Accordingly, at time
t2 = t1 + τc only the nodes of the new giant component of
each network gi[xi(t1)] remain functional and only the set of
corresponding nodes which simultaneously belong to the giant
components of each network will remain functional after time
τa . The fraction of these nodes is

µ(t2) = p
∏

gi[xi(t1)]. (17)

Thus at each stage of the cascade, the fraction of nodes that
remains functional is

µ(tn+1) = p
∏

gi[xi(tn)], (18)

where tn+1 = tn + τc and

xi(tn) = µ(tn)
gi[xi(tn−1)]

. (19)

At the end of the cascade, no further failures occur and
µ∞ = µ(tn+1) = µ(tn) is the mutual giant component of the
NON. Obviously, xi(tn) = xi(tn+1) ≡ xi , so the final state
of the NON obeys n + 1 equations with n + 1 unknowns
x1, x2, . . . , xn, and µ∞, where

xi = µ∞/gi(xi), (20)

and

µ∞ = p

n∏

i

gi(xi). (21)

A different cascade of failures leading to the same final
state emerges if τa + τc. This cascade is easy to describe if
τa are equal for all the nodes in all networks and if a NON
has a tree-like topology in which the shortest path distance
Dij between any two networks of the NON can be uniquely
defined. We initialize xi(t) = 1 for t " 0. The root of the NON
is the network i = 1 from which a fraction 1 − p of nodes are
removed due to random failure. Accordingly, we set x1(0) =
p. Computing the subsequent failures at times 0, τa, 2τa, . . .
starting from the root, we can show that the number of nodes
that remain functional in each network at time t > 0 is

µi(t) = xi(t)gi[xi(t)], (22)

where

xi(t) = min



p

n∏

j=1,j (=i

gj [xj (t − Dijτa)],xi(t − τa)



 . (23)

In this cascade, the state of each network changes on every
second stage of the cascade. For example the state of the root
(i = 1) changes at time

t = 0, 2τa, 4τa, . . . , (24)

while the state of the networks in the kth shell of the root with
Dj1 = k, changes at times

t = kτa, (k + 2)τa, (k + 4)τa, . . . . (25)

For t → ∞ Eqs. (22) and (23) become equivalent to Eqs. (21)
and (20). Figure 2 shows the dynamic of cascading failures at
different time stages, and Fig. 3 shows how damage spreads in
a NON system.

Simulations of the cascading failures in the tree-like NON
of different topologies shown in Fig. 1 for the case τc ) τa

agree well with Eqs. (22) and (23). In Figs. 4 and 5 we compare
our theoretical results, Eqs. (23) and (22), with simulation
results for 3 different types of NON: ER networks, RR
networks, and SF networks. We find that while the dynamics is
different for the three topologies shown in Fig. 1, the final P∞
is the same as predicted by the theoretical results, Eqs. (21)
and (20).

FIG. 2. (Color online) Dynamics of cascading failures at different
time stages. In this figure, each node represents a network. The arrow
(on the link) illustrates the direction of damage spreading from the
root network to the whole NON shell by shell.
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FIG. 3. (Color online) How does the damage spread in a NON
system? In this figure, each node represents a network. When looking
at network 12 for example, it becomes damaged at t = 2k + 1 (k =
1, 2, 3, . . .). It receives the damage from network 8 at t = 2k + 3,
because network 8 gets damage at t = 2 for the first time and its
damage spreads to network 12 at t = 5 for the first time. This agrees
with Eqs. (23) and (22) that network i receives damage from network
j if and only if t − Dij ! D1j .

Next we study the final steady state of the NON. Equa-
tions (20) and (21) can be simplified if we introduce a new
variable [38]:

zi = fixi + 1 − xi. (26)

Using Eqs. (5) and (6) we obtain

fi = Hi(zi), (27)

xi = (1 − zi)[1 − H (zi)] (28)

and

1 − zi = p[1 − Hi(zi)]
n∏

j=1,j (=i

(1 − Gj (zj )), (29)

P∞ ≡ µ∞ = p

n∏

i=1

(1 − Gi(zi)) = [1 − Gi(zi)](1 − zi)
1 − Hi(zi)

≡ Fi(zi). (30)

One can show that, if k̄i exists, the functions Fi(zi) are analyt-
ical functions for |zi | < 1 and are monotonically decreasing
from k̄i[1 − Pi(0)]/[k̄i − Pi(1)] at zi = 0 to zero at zi = 1 (see
Sec. VII). Selecting i such that Fi(0) has the smallest value,
we can solve equations

Fj (zj ) = Fi(zi) (31)

with respect to zj , and zj (zi) can be substituted in Eq. (29) as

1
p

=
∏n

j=1[1 − Gj (zj (zi))]
F (zi)

≡ Ri(zi). (32)

The right-hand side of Eq. (32), Ri(zi), is an analytical
function for zi ∈ [0,1], such that Ri(0) " 1 and Rp(zi) → 0
for zi → 1. If its maximal value Rc in this interval is greater
than unity, Eq. (32) has roots for z ∈ [0,1) for 1/Rc " p " 1.
The smallest of these roots gives the physically meaningful
solution from which the mutual giant component 1 > P∞ > 0
can be found from Eq. (30). The minimal p = pc = 1/Rc

below which the solutions cease to exist corresponds to the
maximum of Ri(zi). The point zc

i at which this maximum is
achieved satisfies the equation

dRi

(
zc
i

)

dzc
i

= 0. (33)

It can be shown (see Sec. VII), that if at least for one network
Pi(0) + Pi(1) > 0 (condition I), and there exist two constants
M > 0 and η > 0 such that for each network

∑
k<M Pi(k) > η

(condition II), then for sufficiently large n, Ri(zi) is less than
unity for any z ∈ [0,1] and hence a physically meaningful
solution of Eq. (32) does not exist. In other words, if at least for
one network there exist isolated or singly connected nodes, the
NON completely disintegrates even for fully intact networks
for sufficiently large n. This happens because a network which
has a finite fraction of isolated and singly connected nodes by
necessity has a finite fraction of nodes which do not belong to
its giant component for p = 1 either because these nodes do
not have links at all, or because they form the pairs of singly
connected nodes linked to each other. These nodes will become
nonfunctional at the first stage of the cascade and will cause
the death of a finite fraction of nodes in each network due
to-one-one correspondence of the interdependent nodes in all
networks. Because we assume that the networks are randomly
connected, these dead nodes will cause a disconnection of
a finite fraction of nodes in all the networks. Again due to
one-to-one correspondence of interdependent nodes, the death
of these disconnected nodes will cause the death of a union
of n finite sets of dependent nodes in any of the networks.
Since from the point of view of each network, these n sets
are randomly selected, for sufficiently large n, the fraction of
nodes that does not belong to this union will become less than
the percolation threshold for a certain network. Hence, this
network will entirely collapse and, by necessity, will cause the
collapse of the entire NON.

In contrast, it can be shown that if for all networks
Pi(0) + Pi(1) = 0, then for any n, there exists p(n) < 1 such
that for 1 ! p > p(n) the mutual giant component of the
NON exists (see Sec. VII). In other words, if there are no
singly connected or isolated nodes in the entire NON, the
mutual giant component will survive for sufficiently large p
for any n. A simple physical reason for this is that, in the
absence of isolated and singly connected nodes, small isolated
clusters must contain finite loops, the chances of which in
a randomly connected network are infinitesimally small for
N → ∞. Therefore, for p = 1, the giant component of each
network coincides with the entire network, and hence the
cascade that destroys the NON can start only for p < 1.
It can be also proven that under condition II, p(n) → 1
for n → ∞.

For the case of n coupled networks when all networks are
with the same degree distribution, all Gi = G0 and Hi = H0
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FIG. 4. (a) Simulation results of giant component of root network µt,1 after t cascading failures for three types of NON composed of
the 5 ER networks shown in Fig. 2. For each network in the NON, N = 100 000 and k̄ = 5. The chosen value of p is p = 0.85, and the
predicted threshold is pc = 0.764 49 [from Eqs. (44) and (47)]. All points are the results of averaging over 40 realizations. Note that while the
dynamics is different for the three topologies, the final P∞ ≡ µ∞,1 is the same (i.e., the final P∞ does not depend on the topology of the NON).
(b) Simulations of the giant component, µt,1, for the tree-like NON (Fig. 2) with the same parameters as in (a) but for p = 0.755 < pc = 0.764 49.
The figure shows 50 simulated realizations of the giant component left after t stages of the cascading failures compared with the theoretical
prediction of Eqs. (8), (22), and (23).

and Eqs. (30)–(33) can be simplified as

1
p

= [1 − G0(z0)]n−1[1 − H0(z0)]
1 − z

, (34)

P∞ = p[1 − G0(z0)]n = [1 − G0(z0)](1 − z0)
1 − H0(z0)

, (35)

and

1 =
(
1 − zc

0

)
H ′

0

(
zc

0

)

1 − H0
(
zc

0

) +
(
1 − zc

0

) (n − 1)kH0
(
zc

0

)

1 − G0
(
zc

0

) . (36)

Thus we obtain the critical threshold pc as

pc = 1 − zc
0[

1 − G0
(
zc

0

)]n−1[1 − H0
(
zc

0

)] . (37)

IV. CASE OF NETWORK OF NETWORKS COMPOSED OF
N ER NETWORKS

A. General case

The case of a NON composed of n Erdős-Rényi (ER)
[31–33] networks with average degrees k̄1, k̄2, . . . , k̄i , . . . , k̄n
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FIG. 5. (a) Simulation results for giant component of root network µt,1 after t cascading failures for three types of NON composed of 5 RR
networks. The structures of the NON are as shown in Fig. 2. For each network in the NON, N = 100 000 and k = 5. The chosen value of p

is p = 0.65, and the predicated threshold pc = 0.6047 [from Eqs. (58) and (62)]. The points are the results of averaging over 40 realizations.
It is seen that, while the dynamics is different for the three topologies, the final P∞ ≡ µ∞,1 is the same (i.e., the final P∞ does not depend on
the topology of the NON). (b) Simulation results of the giant component of the root network µt,1 after t cascading failures for tree-like NON
composed of the 5 SF networks shown in Fig. 2. For each network in the NON, N = 100 000, λ = 2.3, and m = 2. The value of p chosen is
p = 0.875 (below pc). The figure shows 50 simulated realizations of the giant component left after t stages of the cascading failures compared
with the theoretical prediction of Eqs. (65), (22) and (23).
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FIG. 6. Loopless NON is composed of (a) ER networks, (b) RR networks, and (c) SF networks. Plotted is P∞ as a function of p for k = 5
(for ER and RR networks) and λ = 2.3 for SF networks and several values of n. The results obtained using Eq. (43) for ER networks, Eq. (60)
for RR networks, and Eq. (65) for SF networks, agree well with simulations.

can be solved explicitly [29]. In this case, the generating func-
tions of the n networks are defined by Eq. (8), Hi(zi) = Gi(zi).
Using Eq. (30) we obtain Fi(zi) = 1 − zi and hence zi =
zj ≡ z.

Using Eqs. (30), (32), and (8) we get

P∞ = 1 − z. (38)

and

1
p

=
∏n

i=1(1 − ek̄i (z−1))
1 − z

. (39)

Hence the mutual giant component satisfies the self-consistent
equation

P∞ = p

n∏

i=1

(1 − e−k̄iP∞ ). (40)

The value of mutual giant component at criticality, P c
∞ satisfies

[see Eqs. (30)–(33)]
n∑

i=1

k̄ie
−k̄iP

c
∞

1 − e−k̄iP c
∞

= 1
P c

∞
, (41)

and hence

pc = P c
∞∏n

i=1(1 − e−k̄iP c
∞ )

. (42)

B. Case of network of networks with same average degree

When the n networks have the same average degree k̄, k̄i =
k̄ (i = 1, 2, . . . , n), Eq. (40) gives the percolation law for the
order parameter as function of k̄, p, and n [29]:

P∞ = p[1 − exp(−k̄P∞)]n. (43)

The solutions of equation (43) for several n values are shown in
Fig. 6(a) and for several k̄ values are shown in Fig. 7(a). Results
are in excellent agreement with simulations. The special case
n = 1 is the known ER second-order percolation law for a
single network [31–33]. The giant component at criticality
satisfies simplified Eq. (41):

e−k̄P c
∞ =

[
k̄nP c

∞ + 1
]−1

. (44)

If we introduce a new parameter w = −k̄P c
∞ − 1/n, the

solution of Eq. (44) can be expressed in terms of the Lambert
function W (w):

w = W−[−1/n exp(−1/n)], (45)

where W−(x) is the smallest of the two real roots of the Lambert
equation

exp(W−)W− = x. (46)
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FIG. 7. Loopless NON is composed of (a) ER networks, (b) RR networks, and (c) SF networks. Plotted is P∞ as a function of p for n = 5
for several values of k̄ (ER networks), k (RR networks), and several values of m (SF networks for λ = 2.3). The results obtained using Eq. (43)
for ER networks, Eq. (60) for RR networks, and Eq. (65) for SF networks, agree well with simulations.

(The largest root in this case is a trivial solution W+ = −1/n.)
Thus we obtain pc and P∞(pc) by substituting k̄i = k̄ into
Eqs. (41) and (38), with the result

pc = − w

k̄[1 + 1/(nw)]n−1
, (47)

and

P∞(pc) = −(w + 1/n)/k̄. (48)

For n = 1 we obtain the known ER results pc = 1/k̄, and
P∞ = 0 at pc (representing the second-order transition)

10
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0.6

0.8

1

n

p c
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(a) ER
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(b) RR

FIG. 8. Critical fraction pc for different k and n for (a) an ER NON system and (b) a RR NON system. The results for the ER NON system
are obtained from Eqs. (44) and (47), while the results of the RR NON system are obtained from the solution of Eqs. (58) and (62). The results
are in good agreement with simulations. In the simulations pc was calculated from the number of cascading failures which diverge at pc [39]
(see also Fig. 10).
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FIG. 9. For a loopless network of n ER networks, (a) k̄1pc and (b) k̄1P∞ as function of the ratio k̄1/k̄2 for n = 2 (dashed), n = 3 (dotted),
n = 4 (dashed dotted), and n = 5 (solid) and for s = 1 (◦), s = 2 (#), s = 3 (-), and s = 4 (.), where s denotes the number of individual
networks whose average degree are the same k̄2 and average degree of the other n − s networks are k̄1. The results are obtained using Eqs. (38),
(47), (48), and (53).

[31–33]. Substituting n = 2 in Eqs. (47) and (48) we obtain
the exact results derived in Ref. [6].

Since for ER networks P (0) + P (1) > 0 for any k̄, the
NON consisting of n ER networks for sufficiently large n
must completely disintegrate even for p = 1 [see Fig. 8(a)].
This occurs as the right-hand side of Eq. (47) becomes greater
than unity. Conversely, for each n there exists k̄min(n), such
that for k̄ < k̄min(n) the network of n ER networks completely
disintegrates even for p = 1. Substituting pc = 1 into Eq. (47)
we obtain k̄min(n) as function of n:

k̄min(n) = − w

[1 + 1/(nw)]n−1
. (49)

Since for n → ∞,

W−

[−1
n

exp
(−1

n

)]
= − ln n + O(ln n), (50)

we have

k̄min(n) = ln n + O(ln n). (51)

Note that Eq. (49) together with Eq. (44) yield the value of
k̄min(1) = 1 for n = 1, reproducing the known ER result; that
〈k〉 = 1 is the minimum average degree needed to have a giant
component. For n = 2, Eq. (49) yields the result obtained in
Ref. [6], namely,

k̄min = 2.4554. (52)

In contrast, for a NON of n RR networks, P (0) + P (1) = 0,
and hence pc approaches 1 only when n → ∞ [see Fig. 8(b)]
and kmin(n) = 2 for any n (see also Sec. V).

C. Case of network of networks with two different
average degrees

We next study the case where the average degree of all
n networks is not the same. Without loss of generality we
assume that s networks have the same average degree k̄2, and
other n − s networks have the same average degree k̄1. We

define α ≡ k̄1/k̄2 where 0 < α " 1. Using Eq. (39) we can
show that fc ≡ ek̄1(zc−1) satisfies

fc = exp

[
(fc − 1)

(
1 − f

1/α
c

)

(n − s)fc

(
1 − f

1/α
c

)
+ sf

1/α
c (1 − fc)/α

]

. (53)

Results for pc and the mutual giant component for different
values of s and α are shown in Fig. 9. The case of k̄1 ) k̄2
is interesting. In this limit, the s networks with large k̄2, due
to their good connectivity, cannot cause further damage to
the n − s networks with k̄1. Thus the NON can be regarded,
with respect to percolation, as a NON of only n − s networks.
Indeed, for α → 0, P∞ as a function of p, s, n, and k̄1 is
described by Eq. (43), but n and k̄ are replaced by n − s and
k̄1, respectively, as seen also in Fig. 9.

Our analytical results are in very good agreement with
simulations. To determine pc in simulations we measure the

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100
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<τ
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k̄ = 10
k̄ = 15
k̄ = 20

FIG. 10. For a star-like network of 5 ER networks, the average
convergence stage 〈τ 〉 is plotted as a function of p for different
k̄. In the simulations N = 106, and averages are obtained from 30
realizations. This feature enables us to find an accurate estimate for
pc in simulations [39].
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number of cascading failures (iterations) until the system
reaches a steady state (see Fig. 10). As found in Ref. [39],
when cascading failures occur, near criticality, their number
diverges. Thus the value of pc where the peak occurs can be
used as a good estimate for pc. This is analogous to the case
of the second-order phase transition of regular percolation, in
which the size of the second largest cluster diverges at pc [40].

V. ANALYTICAL RESULTS FOR CASE OF NETWORK OF
NETWORKS COMPOSED OF N RR NETWORKS

Next, we study the case of a tree-like NON of n random
regular (RR) networks. The degree of network i is ki . Using
Eqs. (1) and (3), we obtain,

Gi(zi) = (zi)ki , (54)

Hi(zi) = (zi)ki−1. (55)

Substituting Eqs. (54) and (55) in Eqs. (29) and (30) we obtain
equations

1
p

=
(
1 − z

ki−1
i

) ∏n
j=1,j (=i

(
1 − z

kj

j

)

1 − zi

, (56)

and

P∞ = p

n∏

j=1

(
1 − z

kj

j

)
. (57)

When all n networks have the same degree k, i.e., ki = k
(i = 1, 2, . . . , n), zi = z, and the n equations [Eqs. (56)] are
reduced to a single equation

1
p

= (1 − zk−1)(1 − zk)n−1

1 − z
≡ R(z), (58)

which can be solved graphically for any p (see Fig. 11). The
fraction of nodes in the mutual giant component is

P∞ = p(1 − zk)n. (59)

0 0.5 1
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3

4

z

1/
p

n=1,k=5
n=2,k=5
n=5,k=5
n=5,k=2

z
c

FIG. 11. For the RR NON, 1/p as a function of z for different
values of k and n. All the lines are produced using Eq. (56). The
symbols -, ◦, and # show for k = 5 the critical solutions for n = 1,
n = 2, and n = 5 respectively. These critical thresholds coincide with
the results in Fig. 7(b). The dashed-dotted line shows that, when
k = 2, the function (56) has only a trivial solution z = 0 for p = 1.

We can obtain P∞ as a function of p by substituting z from
Eq. (58) into Eq. (57),

P∞ = p



1 −


p

1
n P

n−1
n

∞






[

1 −
(
P∞

p

) 1
n

] k−1
k

− 1




 + 1




k




n

.

(60)

When k = 2, Eq. (58) has only a trivial solution z = 0 for
any n. When k > 2 and n = 1, R(z) is an increasing function
of z, so the critical threshold pc can be obtained by substituting
z → 1 into Eq. (58), pc = 1/(k − 1) and P c

∞ = 0 as known
for the second-order percolation phase transition of random
regular network. When k > 2 and n ! 2, the critical case
corresponds to the maximal R(z), as shown in Fig. 11. Thus,
we obtain that the value of zc satisfies

1 = (1 − zc)zk−2
c

[
(n − 1)kzc

1 − zk
c

+ k − 1

1 − zk−1
c

]
. (61)

Solving zc from Eq. (61), we obtain the critical value of pc:

pc = zc − 1
(
zk−1
c − 1

)(
1 − zk

c

)n−1 . (62)

The numerical solutions of pc increasing as a function
of n are shown in Fig. 8(b). The numerical solutions of
Eq. (60) are shown in Figs. 6(b) and 7(b). Here, again,
like in the ER case, for n = 1 we obtain the known con-
tinuous second-order percolation transition, while for n > 1
we obtain discontinuous, first-order transitions. In contrast
to ER case, for RR NON, pc < 1 for any n, because for
a RR network P (0) + P (1) = 0. Accordingly, ER NON is
significantly more vulnerable compared to RR NON, due to
the critical role played in the ER by singly connected nodes.
Since limn→∞ pc = 1, even RR NONs with large k become
extremely vulnerable as n → ∞. Indeed, solving Eqs. (61)
and (62) in the limit n → ∞ we obtain [41]

pc = 1 −
(

1 + 1
k

)
(kn)−

1
k−1 + O

(
n− 1

k−1
)
. (63)

VI. ANALYTICAL RESULTS FOR A NETWORK OF
NETWORK COMPOSED OF N SCALE-FREE

NETWORKS

Next we study the case of a tree-like NON composed of
n scale-free (SF) networks. SF networks are characterized by
a power law degree distribution, P (k) ∼ k−λ with m " k "
M , where m is the minimal degree and M is the maximal
degree of a node. Reference [42] shows that it is possible to
construct an uncorrelated SF network without multiple and
looped links only if M )

√
N , a natural structural cutoff.

However, in random SF networks, without an imposed cutoff
an expected natural cutoff for M scales as N1/(λ−1) !

√
N for

λ " 3 [11]. Thus, the generating function method produces
correct results in thermodynamic limit only if M increases with
the network size slower than

√
N . However, for interdependent

SF networks with λ > 2, the general formalism of Eqs. (30),
(32), and (33) remains unchanged. This is true because the
only singularity that can affect the behavior of these equations
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FIG. 12. For the SF NON, 1/p as a function of z (a) for different values of λ when n = 2 and m = 1, (b) for different values of n when
λ = 2.4 and m = 2. All the lines are produced from the Ri,i,n(z) function, Eq. (68). (a) The symbols ◦ and - show the physical solutions for
λ = 2.2 and λ = 2.3 respectively when p = 0.95. The symbols # and . show the critical solutions (zc,pc) for λ = 2.2 and λ = 2.3 when
p = pc. (b) The symbol ◦ shows the physical solution for n = 3, p = 0.8. The critical solutions (zc,pc) are shown as n = 7, (-), n = 5 (#),
and n = 3 (.).

is the factor

1 − H (z) ∼ (1 − z)λ−2. (64)

Hence, limzi→1 Fi(zi) = 0 and limzi→1 Ri(zi) = 0 as for any
other NON with a finite second moment of the degree
distribution (Fig. 12). The critical threshold is determined by
the maximum of Ri(zi) which is achieved for zi < 1, for which
the tail of the degree distribution is not important for accurate
calculation of generating functions. Hence we expect that the
analytical results based on Eqs. (30) and (32) are correct in the
thermodynamic limit (33) for SF networks with and without a
structural cutoff. In summary, we do not expect any qualitative
differences in the behavior of SF NONs compared to NONs
with a finite second moment. The value of the lower cutoff m
is more important than λ and M for the behavior of SF NONs
for n → ∞. If m = 1, Pi(1) > 0, and hence such networks
completely disintegrate for sufficiently large n even if p = 1
(see Sec. VII).

In order to test our analytical predictions, we analyze a
NON of n SF networks with the degree distribution defined by
the generating function

Gi(zi) =
∑M

m [(k + 1)1−λi − k1−λi ]zk
i

(M + 1)1−λi − m1−λi
, (65)

with the same λ, m, and M for all networks. Figs. 6(c) and
7(c) show the solutions for P∞ for several values of n and m,
respectively. For n ! 2, pc becomes finite compared with the
case of n = 1 where pc = 0 [11]. Note that, when the SF are
partially dependent, pc = 0 even for coupled networks [43].

VII. CRITICAL EFFECT OF SINGLY CONNECTED NODES

An interesting question is how vulnerable the NON be-
comes for n → ∞. Will it for sufficiently large n collapse
even for p = 1? For any n, does there exist p(n) < 1 such
that, for 1 > p > p(n), the NON has a nonzero mutual giant
component? We will show that such a p(n) exists if and only if
Pj (0) + Pj (1) = 0 (condition I), provided that all the networks
of the NON have a finite fraction of nodes of finite degree;

namely, that there exist constants η > 0 and M ! 0 such that
for any j

M∑

k=0

Pj (k) ! η (66)

(condition II).
In order to show this, we must first show that equations (31)

Fj (zj ) = Fi(zi) define a unique monotonically increasing
function zj = F−1

j (Fi(zi)) for zi ∈ [0,1] if Fi(0) " Fj (0) or
for zi ∈ [zij ,1], where Fi(zij ) = Fj (0) if Fi(0) > Fj (0). In
order to prove this, we must show that Fi(zi) is a monotonically
decreasing function for zi ∈ [0,1]. This will follow from the
monotonical increase of the function [1 − Hi(z)]/(1 − z) for
z ∈ [0,1), because 1 − Gi(z) monotonically decreases. Indeed,

d

dz

1 − Hi(z)
1 − z

= [1 − Hi(z) − (1 − z)H ′
i (z)

(1 − z)2
= H ′′

i (θ )/2 > 0,

(67)

where 0 < θ < 1, which follows from the Taylor expansion
formula with a residual term since H ′′

i (θ ) > 0 for any degree
distribution except the trivial cases Pi(m) = 0 for m > 1, for
which the giant component does not exist even for an isolated
network. Thus, Fi(z) monotonically decreases.

We next show that if Pj (0) + Pj (1) = 0 for all 1 " j " n
the NON has a nonzero giant component for any n provided
that k̄j > 2 for each network. The last condition excludes
degenerate loop-like networks for which each node has degree
2. Among all j we can select j = i, such that Fi(0) " Fj (0).
Then for any zi ∈ [0,1] we have 1 ! zj (zi) ! 0 and we can
represent Eq. (32) as

Ri,",n(zi) = Ri,i,n(zi)

=
∏n

j=1,j (="[1 − Gj (zj (zi))][1 − H"(z"(zi))]
1 − z"(zi)

= 1
p

.

(68)

If Pj (0) + Pj (1) = 0 for any j then Hj (0) = Gj (0) = 0.
Hence, Fi(0) = Fj (0) for any i and j and we can select any i,
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so that zj (zi)|zi=0 = 0 and Ri,"(0) = 1. Moreover,

F ′
i (0) = −1 + 2Pi(2)

k̄i

< 0 (69)

and
dzj

dzi

∣∣∣∣
zi=0

=
(

1 − 2Pi (2)
k̄i

) / (
1 − 2Pj (2)

k̄j

)
> 1 − 2Pi (2)

k̄i

= C1 > 0. (70)

Finally,

dRi,i,n (zi)
dzi

∣∣∣∣
zi=0

= 1 − 2Pi (2)
k̄i

> 0. (71)

Hence Ri,"(zi) must reach its maximum value r = Ri,"(zi,m) >
1 at zi = zi,m where 0 < zi,m < 1, for any n. Accordingly,
Eq. (68) has a nontrivial solution for 1/r < p < 1, and the
NON has a nonzero mutual giant component for sufficiently
large p for any n.

Next we show that if Pj (0) + Pj (1) = 0 for all j =
1, 2, . . . , n, then a NON has a nonzero giant component for
any n for pc " p " 1, and if condition II is satisfied then
pc → 1 for n → ∞. Suppose for n = 2, the maximum of
Ri,",2(zi) is r2. Given δ > 0 we will find L > 0 such that for
n > L, Ri,",n < 1 + δ. Because Ri,",2(zi) has finite derivatives,
we can select z∗ < C0δ such that Ri,",2(z∗) < 1 + δ. Because
dzj/dzi > C1, and the second derivative of zj (zi) does not
exceed a constant C2 for any j for z ∈ [0,z∗], it is clear
that zj (z∗) > C1z∗ − z2

∗C2/2. Thus, we can select z̃∗ < z∗
such that zj (z̃∗) > z∗C3. Hence, if condition II is satis-
fied 1 − Gj (zj (z∗)) < 1 − η(δC0C3)M and hence when n >
L = ln[(1 + δ)/r2]/ ln[1 − η(δC0C3)M ] + 2, Ri,",n(zi) < 1 +
δ, for any zi ∈ [0,1].

Suppose now that the function Ri,",2(0) < 1 and condition
II is satisfied. In this case for sufficiently large n, Ri,",n(zi) < 1
for any zi ∈ [0,1], Let again r2 be the maximum of Ri,",n(zi).
Since Ri,",2(zi) is an analytical function, Ri,",2(zi) < 1 for zi <
z∗. Making analogous considerations as before, we see that
for n > ln[1/r2]/ ln[1 − η(z∗C3)M ] + 2, Ri,",n(zi) < 1 for any
zi ∈ [0,1].

Now we will show that if for a network r , Pr (0) > 0 then
Ri,",2(0) < 1. In order to show this we will use identity

Ri,",2(0) = [1 − Hi(0)][1 − G"(z"(0))]. (72)

If F"(0) = Fi(0), we can select " = r . If r = " we have 1 −
G"(z"(0)) < 0. If r = i, then Fi(0) < F"(0). Thus z"(0) > 0
and hence 1 − G"(z"(0)) < 1.

Now we will show that if for a network j = r , Pr (1) > 0,
then Ri,",2(0) < 1. If F"(0) = Fi(0), we select i = r . If r = i
our proposition follows from Eq. (72) because 1 − Hi(0) <
1 If r = ", it means that Fi(0) < F"(0). Thus z"(0) > 0 and
hence 1 − G"(z"(0)) < 1.

VIII. CONCLUSION

In summary, we have developed a framework, Eqs. (20) and
(21), for studying percolation of NON from which we derived
an exact analytical law, Eqs. (43) (for ER networks) and (60)
(for RR networks), for percolation in the case of a network
of n fully interdependent networks. In particular, we find that,
for any n ! 2, cascades of failures naturally appear and the
phase transition becomes a first-order transition compared to a
second-order transition in the classical percolation of a single
network. These findings show that percolation theory and
graph theory of a single network is a limiting case of a more
general case of interdependent networks. Due to cascading
failures which increase with n, vulnerability significantly
increases with n. We also find that for any tree-like network
of networks the critical percolation threshold and the mutual
giant component depend only on the number of networks and
not on the topology (see Fig. 1). We discuss the cases for n
coupled ER networks, RR networks, and SF networks. We find
that for ER NON there exists a minimal k̄ ∼ ln n below which
even a completely intact NON collapses. This occurs because
the ER network has isolated and singly connected nodes. In
the absence of such nodes (except in the case of a degenerate
loop-like network in which all nodes have degree 2) the NON
survives for any n for sufficiently large p, as in the case of
RR NON.
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