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Network research has been focused on studying the properties of a single isolated network, which rarely

exists. We develop a general analytical framework for studying percolation of n interdependent networks.

We illustrate our analytical solutions for three examples: (i) For any tree of n fully dependent Erdős-Rényi

(ER) networks, each of average degree !k, we find that the giant component is P1 ¼ p½1# expð# !kP1Þ&n
where 1# p is the initial fraction of removed nodes. This general result coincides for n ¼ 1 with the

known second-order phase transition for a single network. For any n > 1 cascading failures occur and the

percolation becomes an abrupt first-order transition. (ii) For a starlike network of n partially interde-

pendent ER networks, P1 depends also on the topology—in contrast to case (i). (iii) For a looplike

network formed by n partially dependent ER networks, P1 is independent of n.
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In recent years, dramatic advances in the field of
complex networks have occurred [1–14]. The internet,
airline routes, and electric power grids are all examples
of networks whose function relies crucially on the con-
nectivity between the network components. An important
property of such systems is their robustness to node fail-
ures, studied using percolation theory. Almost all research
has been concentrated on the case of a single or isolated
network which does not interact with other networks [15].
Recently, based on the motivation that modern infrastruc-
tures are becoming significantly more dependent on each
other, a system of two coupled interdependent networks
has been studied [16]. A fundamental property of interde-
pendent networks is that when nodes in one network fail,
they may lead to the failure of dependent nodes in other
networks which may cause further damage in the first
network and so on, leading to a global cascade of failures.
Buldyrev et al. [16] developed a framework for analyzing
the robustness of two interacting networks subject to
such cascading failures. They found that interdependent
networks become significantly more vulnerable compared
to their noninteracting counterparts. A generalization has
been made in Ref. [17] where a more realistic case of a pair
of partially interdependent networks has been studied.
In this case both interacting networks have certain
fractions of completely autonomous nodes whose
function does not directly depend on the nodes of the other
network.

In many real systems, more than two networks depend
on each other. For example, diverse infrastructures
are coupled together, such as water and food supply,
communications, fuel, financial transactions, and power
stations [18–21]. Understanding the robustness due to

such interdependencies is one of the major challenges for
designing resilient infrastructures.
Here we develop a theory of robustness of a system of n

interdependent networks, which can be graphically repre-
sented (see Fig. 1) as a network of networks (NON), based
on the percolation approach. We develop an exact analyti-
cal approach for percolation of a NON system composed of
n fully or partially coupled randomly connected networks.
Our results generalize the known results for the percolation
of a single network (n ¼ 1) and the n ¼ 2 result found
recently [16,17], and show that while for n ¼ 1 the perco-
lation transition is a second-order transition, for n > 1
cascading failures occur and the transition becomes a first
order. Our results for n interdependent networks suggest
that the classical percolation theory extensively studied in
physics and mathematics is a limiting case of n ¼ 1 of a
general theory of percolation in a NON. As shown here this
general theory has many novel features that are not present
in classical percolation theory.

FIG. 1. (a) A treelike NON composed of five fully interde-
pendent networks. (b) Graphical representation of a system of
interdependent networks as a starlike NON. Circles represent
networks, arrows pointing from network i to network 1 represent
partial dependency of network 1 on network i indicating that
qi1 > 0 fraction of nodes in network 1 depend on nodes in
network i. (c) A looplike network of networks, where each
network depends partially only on one network.
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In our generalization, each node in the NON is a network
itself and each link represents a partially dependent pair of
networks. We assume that each network i (i ¼ 1; 2; . . . ; n)
of the NON consists of Ni nodes linked together by con-
nectivity links. Two networks i and j form a partially
dependent pair if a certain fraction qji > 0 of nodes of
network i directly depend on nodes of network j, i.e., they
cannot function if the nodes in network j on which they
depend do not function [See Fig. 1(b)]. Dependent pairs are
connected by unidirectional dependency links pointing
from network j to network i. This convention symbolizes
the fact that nodes in network i get supply from nodes in
network j of crucial commodity, for example, electric
power if network j is a power grid. A partially dependent
pair becomes fully dependent if qij ¼ qji ¼ 1.

We assume that after an attack or failure only a fraction
of nodes pi in each network i remains. We also assume that
only nodes which belong to a giant connected component
of each network i remain functional. This assumption leads
to a cascade of failures: nodes in network i which do not
belong to its giant component fail, causing failures of
nodes in other networks which depend on the failing nodes
of network i. The failure of these nodes causes further
failure in network i and so on. Our goal is to find the
fraction of nodes P1;i of each network which remains
functional at the end of the cascade of failures as a function
of all pi and all qij.

In each particular case, the cascade of failures and the
final giant components of the networks can be readily
found by computer simulations. However, it is important
to find an analytical solution at least under some simplify-
ing assumptions. This analytical solution can serve as a
benchmark for simulated solutions of more realistic cases.

In this study we develop an analytical solution of the
case in which all networks in the NON are randomly
connected networks characterized by degree distribution
PiðkÞ, where k is a degree of a node in network i.
We further assume that each node a in network i may
depend on only one node b in network j (uniqueness
condition) and if node a in network i depends on node b
in network j and node b in network j depends on node c in
network i, node a must coincide with node c (no-feedback
condition) [22].

We will arrive at a system of iterative equations some-
what analogous to Kirchhoff equations for the resistor
network. This system of equations has n unknowns xi
which represent the fraction of nodes that survived in the
network i after removing all nodes affected by the initial
attack and the nodes depending on the failed nodes in other
networks. However, xi does not take into account the
further failing of nodes due to the internal connectivity of
network i. The final giant component of each network can
be found from the equation P1;i ¼ xigiðxiÞ, where giðxiÞ is
the fraction of the remaining nodes of network i which
belong to its giant component. The function giðxiÞ can be

expressed [16,23–25] in terms of the generating function
GiðzÞ ¼

P
kz

kPiðkÞ of the degree distribution PiðkÞ and its
normalized derivative HiðzÞ ¼ G0

iðzÞ=G0
ið1Þ as giðxiÞ ¼

1#Gið1# xið1# fiÞÞ, where an auxiliary variable fi sat-
isfies equation fi ¼ Hið1# xið1# fiÞÞ.
The unknowns xi satisfy the system of n equations:

xi ¼ pi

YK

j¼1

ðqjiyjigjðxjÞ # qji þ 1Þ; (1)

where the product is taken over the K networks interlinked
with network i by the partial dependency links and

yji ¼ xj=½qijyijgiðxiÞ # qij þ 1&; (2)

has the meaning of the fraction of nodes in network j
survived after the damage from all the networks connected
to network j except from network i is taken into account.
The damage from network i must be excluded due to the
no-feedback condition. In the absence of the no-feedback
condition Eq. (1) becomes much simpler since yji ¼ xj.
We tested the numerical solutions of Eqs. (1) and (2) for

many NONs of different topologies and all analytical
results presented below by computer simulations of the
cascading failures of small NONs, consisting of n ( 10
interdependent networks, each comprised of Ni ¼ 106

nodes. In all cases we find excellent agreement between
the theory and simulations [26].
Note, that if n ¼ 2, Eqs. (2) yield y12 ¼ p1, y21 ¼ p2

and Eqs. (1) can be simplified: x1 ¼ p1½p2q21g2ðx2Þ #
q21 þ 1&, x2 ¼ p2½p1q12g1ðx1Þ # q12 þ 1& which coin-
cides with Ref. [17].
An interesting simplification can be made for a network

of networks having a treelike structure without loops
[Fig. 1(a)] in which all connected pairs of networks are
fully dependent. Note that the no-feedback condition in
this case establishes a one-to-one correspondence between
all the nodes in different networks of the NON.
Accordingly, random attacks on the individual networks
which remove fractions of nodes 1# pi from each network
are equivalent to a single attack on one of the networks
which removes 1# p ¼ 1#Qn

i¼1 pi fraction of nodes. In
this case, Eqs. (1) and (2) yield xigiðxiÞ ¼ xjgjðxjÞ ¼ P1,
where P1 is the fraction of nodes in the mutual giant
component which is the same for all the networks in the
tree. Finding yij one by one starting from the singly con-
nected nodes of the NON, one can show that P1 is the
product:

P1 ¼
Yn

i¼1

pigiðxiÞ; (3)

where each xi satisfies the equation xi ¼ P1=giðxiÞ.
The system of Eq. (3) defines nþ 1 unknowns:
P1; x1; x2; . . . ; xn as functions of fpig and the degree dis-
tributions fPiðkÞg.
Next we present three examples which can be solved

analytically explicitly: (i) a treelike NON fully dependent,
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(ii) a starlike NON partially dependent and (iii) a looplike
NON partially dependent [see Fig. 1(c)]. All cases
represent different generalizations of percolation theory
of a single network. (i) We solve explicitly the
case of a treelike NON [Fig. 1(a)] formed by n Erdős-
Rényi (ER) [27–29] networks with average degrees
!k1; !k2; . . . ; !ki; . . . ; !kn, pi¼p and qij¼qji¼1. We have
GiðxÞ¼HiðxÞ¼ exp½ !kiðx#1Þ& [24]. Accordingly giðxiÞ ¼
1# exp½ !kixiðfi # 1Þ&, where fi ¼ exp½ !kixiðfi # 1Þ& and
thus giðxiÞ ¼ 1# fi. Using Eq. (3) for xi we get

fi ¼ exp
!
#p !ki

Yn

j¼1

ð1# fjÞ
"
; i ¼ 1; 2; . . . ; n: (4)

These equations can be easily solved analytically. They
have only a trivial solution (fi ¼ 1) if p < pc, where pc is
the mutual percolation threshold. When the n networks
have the same average degree !k, !ki ¼ !k (i ¼ 1; 2; . . . ; n),
we obtain from Eq. (4) that fc ) fiðpcÞ satisfies

fc ¼ exp½ðfc # 1Þ=nfc&; (5)

where the solution can be expressed in term of the Lambert
function WðxÞ [30], fc ¼ #½nWð# 1

n e
#ð1=nÞÞ&#1.

Once fc is known, we obtain pc and P1;n ) P1ðpcÞ,

pc ¼ ½n !kfcð1# fcÞðn#1Þ&#1; P1ðpcÞ ¼ ð1# fcÞ=n !kfc:
(6)

For n ¼ 1 we obtain the known result pc ¼ 1= !k of Erdős
and Rényi [27–29]. Substituting n ¼ 2 in Eqs. (5) and (6)
yields the exact results of [16].

To analyze pc as a function of n for different values of !k,
we find fc from Eq. (5) and substitute it into Eq. (6)
[Fig. 2(a)]. We see that the NON becomes less robust
with increasing n or decreasing !k (pc increases when n
increases or !k decreases). Furthermore, for a fixed n, when
!k is smaller than a critical number !kminðnÞ, pc * 1meaning
that for !k < !kminðnÞ, the NON will collapse even if a single
node fails. Using Eq. (6) we get !kmin as a function of n
[Fig. 2(b)]:

!k minðnÞ ¼ ½nfcð1# fcÞðn#1Þ&#1: (7)

Note that for n ¼ 1, Eq. (7) together with Eq. (5) yield the
value of !kminð1Þ ¼ 1, reproducing the known ER result,
that !k ¼ 1 is the minimum average degree needed to have a
giant component. For n ¼ 2, Eq. (7) yields the result
obtained in [16], i.e., !kminð2Þ ¼ 2:4554.

From Eq. (3) we obtain an exact equation for the order
parameter, the size of the mutual giant component P1 for
all values of p, !k, and n:

P1 ¼ p½1# expð# !kP1Þ&n: (8)

Solutions of Eq. (8) which are valid for all tree NON
topologies (e.g., line, star), are shown in Fig. 2(c) for
several values of n. The special case n ¼ 1 is the
known ER second-order percolation law for a single

network [27–29]. In contrast, for any n > 1, the solution of
(8) yields first-order percolation, i.e., a discontinuity of P1
at pc [see Eq. (6)]. For a treelike NON fully interdependent
which is composed of scale-free (SF) networks we sub-
stitute into Eq. (3) the generating functions of SF networks.
The numerical solutions are shown in Fig. 3(a). (ii) The
partially dependent starlike NON [Fig. 1(b)]. We first
remove a fraction of 1# p nodes only in the root network.
These damages spread to all other networks, and then back
to the root network, back and force. In this case, yi1 ¼ 1,
where the index 1 represents the central network and i

101 102 103
0.2

0.4

0.6

0.8

1

n

p c

(a)

10
0

10
1

10
2

10
3

1

3

5

7

9

11

n

(b)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p

P
∞

n=1
n=2
n=5
n=10

Tree

(c)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p

P

q=0.8
q=0.2

(d)

Loop

FIG. 2. (a)–(c) Loopless fully coupled (q ¼ 1) NON. (a) The
critical fraction pc for different !k and n and (b) the minimum
average degree !kmin as a function of the number of networks n.
The results of (a) and (b) are obtained using Eqs. (6) and (7)
respectively. (c) Fraction of nodes in the mutual giant component
P1 as a function of p for !k ¼ 5 and several values of n, obtained
from Eq. (9). (d) The giant component for a loop type partially
dependent NON [Fig. 1(c)], P1 as a function of p for !k ¼ 6 and
two values of q, obtained from Eq. (14).
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FIG. 3. Dependence of the fraction of nodes at the end of the
cascade of failures, P1, on the fraction of nodes, p, survived the
initial failure for different number of interacting networks, n:
(a) for a treelike fully interdependent (q ¼ 1) SF NON with
! ¼ 2:5 and minimum degree 2. (b) for a starlike partially
coupled (q ¼ 0:8) ER NON with !k ¼ 5.
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denotes the other networks. Under the simplifying condi-
tions that qi1 ¼ q1i ¼ q and that the average degrees of all
networks are equal to !k, we have x2 ¼ x3 ¼ . . . xn, so
Eqs. (1) becomes

x1 ¼ p½qg2ðx2Þ # qþ 1&n#1;

x2 ¼ pqg1ðx1Þ½qg2ðx2Þ # qþ 1&n#2 # qþ 1:
(9)

Since for ER networks giðxiÞ ¼ 1# expf !kxiðfi # 1Þg
and fi ¼ expf !kxiðfi # 1Þg, from Eqs. (9) we obtain

f1 ¼ expfp !kð1# qf2Þn#1ðf1 # 1Þg;
f2 ¼ expf !k½pqð1# f1Þð1# qf2Þn#2 # qþ 1&ðf2 # 1Þg:

(10)

From the definitions of P1;i, gi and fi, we obtain

P1;i ¼ # lnðfiÞ= !k: (11)

Solving numerically Eq. (10), we get f1 and f2, and
substituting them into Eqs. (11) we get P1;1 of the root
network and P1;2 of the other networks.

Figure 3(b) shows the solution for the giant component
of the root network. Note that for a fully dependent NON,
q ¼ 1, f1 ¼ f2 and Eqs. (10) and (11) can be reduced to
Eq. (8) as expected. However, while Eq. (8) is derived
for qij ¼ 1 and valid for all treelike structures, Eqs. (10)
and (11) are derived for qij < 1 and are valid only for a
starlike NON. Thus, in contrast to a fully dependent NON,
for a partially dependent NON, each tree topology will
have a different solution that can be derived from Eqs. (1)
and (2). (iii) The case of a looplike NON of n ER networks,
shown in Fig. 1(c). In this example all the links are unidir-
ectional, and the no-feedback condition is irrelevant. If the
initial attack on each network is the same 1# p, qi#1i ¼
qn1 ¼ q, and !ki ¼ !k, using Eq. (1) we obtain that P1
satisfies

P1 ¼ pð1# e# !kP1ÞðqP1 # qþ 1Þ: (12)

Note that if q ¼ 1, Eq. (12) has only trivial solution P1¼0
while for q ¼ 0, it yields the known giant component of a
single network, as expected. We present numerical solu-
tions of Eq. (13) for two values of q in Fig. 2(d).

In summary, we have developed a general framework,
Eqs. (1) and (2), for studying percolation of different types
of NONs for any degree distribution. We demonstrate our
approach on three examples which can be solved analyti-
cally exactly, Eqs. (8), (11), and (12) for three cases of a
network of n interdependent ER networks. All these equa-
tions represent different generalizations of the known
single network case. In particular for any n * 2, cascades
of failures naturally appear for strong coupling, and the
phase transition becomes a first-order transition compared
to a second-order transition in the classical percolation of a
single network (n ¼ 1). These findings show that the per-
colation theory of a single network is a limiting case

of a more general case of percolation of interdependent
networks. Finally we wish to note that we recently solved
the case of a random regular (RR) network of ER networks
[31]. Our results show that the percolation threshold and
the giant component depend only on the average degree of
ER network and the degree of RR network, but not on the
number of networks. Thus, the framework presented here
opens the possibility to study percolation of different top-
ologies of a NON.
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