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Critical exponents of a Bose system are calculated microscopically without an expansion in 1/n or e. As expected,
quantum corrections are found to be absent and the results to agree with the 1/n expansion result, forn = 2, to
o(1/n).

The purpose of this letter is to discuss the critical behavior of a quantum system, which exhibits a phase transi-
tion, without the commonly employed techniques of 1/n or € expansions [1] (n is the number of components of
the order parameter and € = 4 —d, where d is the spatial dimension of the system). Our motivations for such an in-
vestigation are three-fold: First, to present an alternative calculation of critical indices not based on an expansion
in n or d, in order to break away from the a priori assumption of “universal” significance given to these quanti-
ties; second, to treat a quantum mechanical system strictly within a quantum statistical formulation to test the
universality assumption that the critical exponents are independent of quantum effects; third, to establish a closer
connection between the standard microscopic approaches to many-body theory |2] and the newly developed 1/n
and € expansions [1].

As our model, we consider a system of spinless bosons of mass m at temperature T above T, and at a fixed
density in a unit volume. In order to avoid arbitrary assumptions about the strength of the potential and introduc-
tion of cutoffs [3, 4], we consider only a specific potential and assume that the particles are interacting with the
Coulomb potential, ¥'(g) = 4me?/¢2 and the system is placed in a rigid background of opposite charge to ensure
overall charge neutrality.

Certain static critical exponents are defined by the asymptotic form of the relevant correlation functions for
small k at T,. For example, the order parameter correlation function G(k) and (in a charged system) |3] the irre-
ducible density correlation function I1(k) for small k at T, behave like G(k) ~ k=2 and I(k) ~ k™ if A <0, de-
fining the exponents 7 and X which we now proceed to calculate for our model.

We employ the usual diagrammatic perturbation theory techniques [2] and seek the lowest order correction to
the properties of the non-interacting system (i.e., ideal Bose gas). The simplest self-consistent approximation is
the well-known Hartree-Fock approximation, which for a charged Bose gas in the static limit takes the form {2]

G k)= —ek) - Z(k)+ () ~r,  (r=0atT) (1)
where
3
20 = [-L2 (V)1 - V() () np+k), @
(2n)
3
ne)= [ (‘; ’)’3 [n(p+k) —n(p)] [e(p+k) —e(p)] ~*, 3)
m

e(k) = n2k2{2m, and n(k) is the Bose-Einstein distribution function. Eq. (3) represents the contribution of the
simple RPA polarization bubble, which using contour integration is found to be

111



Volume 53A, number 2 PHYSICS LETTERS 2 June 1975

im

_2m\? o hz) ko (B2 T/2)E(1/2)
H(k)—(;z—) (4mBk) [drutdn(,)—— n (BE)" TR, )

]

Note that at T, (i.e. when r = 0), I[I(k) diverges as k = 0, and in this limit we recover the classical field approxima-
tion result [3, 4], (k) = (2m/A2)(86k)~!. Once (4) is substituted in (2), it is found that the quantum correction
term (bracketed in eq. (4)) does not affect the k2In k term in (k) — Z(0), and in the limit k = 0

S(k) - 2(0)= —e(k)nlnk + O(k™), where n=4/37%. (5)

in complete agreement with the 1/n expansion result [3, 4] with # = 2 for a Bose system with a two-component
(real) order parameter.

In order to calculate the exponent A, we note that to zeroth order (i.e. for a non-interacting system) X is ob-
tained from eq. (4), which represents the density propagator for the ideal Bose gas [2]. From (4) we have that
(k) ~ &1 for an ideal Bose gas and as expected A = 1 to zeroth order [3]. To find the leading correction to
this result we can make use of standard diagrammatic expansion for the density response function and calculate
the leading correction to RPA. However, we choose to consider another approach which is considerably simpler.
We make use of Landau’s quasiparticle picture and assume that as & = 0, at T, the interacting Bose gas can be
viewed as an ideal gas of particles with a modified energy spectrum w(k) ~ k2=, where £ is some small number
to be determined. It should be pointed out that w(k) is a highly temperature dependent quantity and the Landau
picture can be used here only because we need the long wavelength form of w(k) at T.. If we were interested in
calculating exponents which are not defined at T, then our use of the Landau picture could not have been justi-
fied. As usual, the excitation spectrum is determined from the pole of the dynamic temperature Green function

(2]
Gk, w) = [iw; — e(k) ~ Z(k, w) + £(0,0) - 7] h (6)

where w; = 2r7/B(j =0, 1, £2, .}, and Z(k, w]-) is the dynamic Hartree-Fock self-energy [2]. We first let w;
w(k) —iy(k) in (6), where w(k) and y(k) are both real. From the pole of (6) we find the real part of the excita-
tion spectrum,

w(k)=e(k) + Z(k, e(k)) — Z(0, 0). (7)

at T, where Z denotes the real part of the Hartree-Fock self-energy, and to lowest order we have let w(k) > e(k)
on the rhs of (7). The k2 Ink term in (7) is found by expanding the distribution functions in the T functions and
investigating the individual terms. We find that only one term behaves as k2 Ink, so that (7) becomes

w(k) = ()1 —Elnk] ~k*75, (8)

where £ = 16/372. In order to find A to first order we replace all the w(k) in (3) with e(k) and investigate the
long wavelength form of (k). We find

Nk~ k2% or  a=-1+32/377, (9)

in complete agreement with the 1/ expansion result for a Bose system [3, 4].

Other exponents can be obtained similarly or from n and X via the scaling laws [3],e.g. vy = ~2(2-n)/A--d and
—a& = \y/2 —n. The results thus obtained are exactly the same as the 1/n expansion with n =2 to O(1/n) [3, 4].
We have thus found that for our particular quantum mechanical model the critical exponents are independent of
quantum mechanics and do not depend on the details of the interaction. Thus the exponents obtained apply uni-
versally to any Bose system, as previously argued by Ma [3].

The significance of the the present calculation is that with standard perturbation theory, i.e. with an expansion
essentially in V(k), we obtained the same result as the 1/n expansion for our model. Our procedure differs from
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both the classical field and quantum versions of the 1/n expansion [3, 4] and € expansion [1] in two important
ways: (1) we do not assume an expansion in n or d, and (2) we are not required to either renormalize the bare
potential, as done in the € expansion [1], or to require the screened potential to be given by —1/I1, as is assumed
in 1/n expansion [3, 4]. In ail previous 1/n expansion theories [3, 4] it had to be assumed that the screened po-
tential approaches —1/I1 in order to eliminate the bare potential ¥ from the theory not by a renormalization pro-
cedure but by a screening approximation in the limit £ = 0. In the present model calculation we used the unre-
normalized perturbation theory, made the usual screening approximation for the Coulomb potential [2], and did
not assume that the screened potential is independent of the bare potential. This allowed us to keep the bare inter-
action in the formulation to the end of the calculation and thus demonstrate that critical exponents are independ-
ent of the bare coupling constant of the model (in this case 2), as well as quantum mechanics.

We wish to thank Professor T.S. Chang, J.F. Nicoll, G.F. Tuthill, and J. Rogiers for very useful discussions.

# The bare potential was also assumed to be weak, i.e., of the order of 1/n.
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