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Abstract. We discuss the role of the dynamic glass-forming fragile-to-strong crossover (FSC) in supercooled
liquids. In the FSC, significant dynamic changes such as the decoupling (the violation of the Stokes-Einstein
relation) of homologous transport parameters, e.g., the density relaxation time τ and the viscosity η, occur
at a characteristic temperature Tc. We study the FSC using a scaling law approach. In particular, we
use both forms of the mode-coupling theory (MCT): the original (ideal) and the extended form, which
explicitly describes energy hopping processes. We demonstrate that Tc plays the most important physical
role in understanding dynamic arrest processes.

1 Introduction

Glass transition (GT) is the material component of dy-
namic arrest (jamming), a phenomenon of great interest
across a wide range of scientific fields. GT occurs when
the temperature is decreased or when some other thermo-
dynamic variable, e.g., density or pressure, is changed. Al-
though much research has been done using sophisticated
theoretical models and various experimental techniques,
GT is far from being completely understood [1, 2].

A usual method of obtaining a GT is to rapidly quench
the system through a transformation range to very low T .
Below a given temperature Tg, an amorphous “glassy” ma-
terial is produced. The phenomenon is also characterized
by both hysteresis effects and a nonlinear response, terms
that are not apt in characterizing a glass because a glass is
strongly affected by the history of its production. Macro-
scopic size and rapid T variation of the system time scales
are essential if the phenomenon is to appear at ≈ Tg, and a
full microscopic understanding of the corresponding relax-
ation process is needed if experiments in this region are to
be evaluated. Note that Tg is an important quantity when
experimentally characterizing the system.

Supercooled liquids, i.e., liquids cooled below their
melting point (TM ), are a good illustration of the basic
mechanism of this intriguing phenomenon. In principle, all
liquids may be supercooled. In some cases crystallization
takes place in the proximity of TM , in others the physical
evolution of a liquid is still observable on further cooling,
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and the liquid eventually solidifies directly into the glass
phase. In this latter case, all the dynamic properties of
the material can be observed as it is arrested as a frozen
liquid. One example is the dramatic increase in the shear
viscosity η that within a few degrees evolves from 10−2

to 10−1 poise, from typical values of a simple liquid in
its normal state to values that exceed 1012 poise within
the supercooled state —a remarkable dynamic slowing-
down by more than 13 orders of magnitude [3, 4]. The
viscosity, like any other transport coefficient —the aver-
age relaxation time τα and the self-diffusion coefficient Ds,
reflects the underlying motion of the molecules in the sys-
tem. Thus the time scale of the dynamics of supercooled
liquids bridges the gap between microscopic and macro-
scopic times. These strongly T -dependent processes have
been referred to as structural relaxation processes and are
key in clarifying the physics of the GT process, and its
basic microscopic origin in particular.

Glasses are non-equilibrium materials and, according
to the experimental definition, are considered solids, e.g.,
they are capable of sustaining static shear stresses. Com-
pared to crystalline solids, however, they lack long-range
order. In terms of transport parameters, a glass is solid
only in the sense that the time scale used to characterize
typical liquid-like flow phenomena τ becomes so large that
it approaches infinity on normal experimental time scales.
The flow phenomena, which demonstrate that a glass is
not an ideal solid, manifest themselves as structural re-
laxation processes. This is the reason why the characteri-
zation of the latter is an important task in glass research.
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The central part of the liquid-to-glass transition problem
concerns the question: how do the structural relaxation
processes behave upon gradual cooling of the liquid?

Structural relaxation phenomena have been studied
in great detail in recent decades through use of various
theoretical models, dynamic simulations, and experimen-
tal approaches. Most of the studies focusing on dynam-
ics examine motion though large temporal intervals of
10−12 < τ < 102 s, or even longer. Although this first
seems to be the relevant dynamic window for exploring
the transition from the supercooled viscous liquid to the
glassy solid, within this window all the spectra of glass
formers change gradually, and there is no way to mean-
ingfully identify a liquid-to-glass transition temperature
Tg. On examining the measured τ , η, and Ds data as a
function of T , no anomalies that would indicate the pres-
ence of a liquid to glass crossover can be observed. The
only characteristic property is that a form of diverging
behavior is evident when T is decreased.

Although Tg is usually associated with specific heat,
in terms of transport Tg is defined as the temperature
at which the viscosity of the liquid is 1013 poise or when
the relaxation time is 102 s. Although the calorimetric Tg

refers to the transition from a strongly supercooled liquid
to a glass, if we base our approach on generalized hy-
drodynamic equations [5–9], considering the specific heats
cv = cv(ω) and cp = cp(ω) to be frequency dependent
and generalizing the transport coefficients —which are
also wave vector (q) dependent, e.g., the heat conductivity
λ(q,ω)— we see that Tg is located at the point where the
relaxation times become macroscopic, e.g., 10 s to 104 s.
Specific-heat experiments are usually performed by mon-
itoring the rate at which the energy E is added to or
subtracted from the system (∂E/∂T ) and measuring its
temperature T as a function of the time t. When T is de-
creased, the supercooled glassing-liquid exhibits a jump
∆C at a certain temperature. In contrast, the curve for
crystalline samples is smooth from the lowest tempera-
tures at TM . The location of the jump “defines” Tg. (Sim-
ilar jumps occur in the thermal compressibility ∆κ and
the expansivity ∆α.) This value of Tg and the behavior
of C(T ) (∆C, Tg and the T interval of the liquid/glass
crossover) are strongly dependent not only on the scan-
ning speed but also on the physical property measured.

The clarification of the underlying microscopic origin
of this slowing-down is a hot topic of much current re-
search. A common opinion is that the manner in which the
dynamic quantities approach their limiting values reveals
much about the nature of the arrest phenomenon. The ob-
servation that, as T decreases to a fraction of TM , trans-
port coefficients increase to several orders of magnitude,
surpassing in many cases the time required for experimen-
tal accessibility, has been considered for long time the on-
set of a “diverging behavior”: a phase transition to a state
in which the dynamic quantities become infinite following
analogous laws of universality and scaling of critical phe-
nomena. Although in the presence of conflicting opinions
on the consistency of this approach in terms of “criticality”
in the system properties [10–15], many theoretical models,
molecular dynamics simulations, and refined experiments

have been conducted to understand dynamic arrest. Al-
though these extensive studies have proposed many new
ideas and possible interpretations of the arrest, essentially
only a single mathematical form has been used over the
years to treat the dynamic data of the glass forming ma-
terials: the Vogel-Fulcher-Tammann (VFT) equation.

On this basis, and understanding that transport pa-
rameters change gradually as a function of T , two relevant
questions about dynamic arrest remain open:

i) Is there a way to identify meaningfully a liquid-to-glass
transition temperature? In terms of viscosity and re-
laxation times, there is no precise liquid-to-glass tran-
sition temperature, only a transformation region —and
the resulting glass is just a high-viscosity supercooled
liquid state. There is no distinction between the glassy
and the supercooled liquid states.

ii) Do the dynamic parameters of the glass-forming mate-
rials have a “diverging behavior,” i.e., is the dynamic
arrest characterized by a phase transition to a state
in which the dynamic quantities become infinite fol-
lowing laws analogous to the universality and scaling
of critical phenomena? Is there experimental evidence
that a conventional phase transition is the origin of
glass formation?

As a liquid approaches the glass phase it is not spa-
tially homogeneous [16–19] and it exhibits so-called dy-
namic heterogeneities (DH). These are characterized by
regions of space that exhibit strong dynamic correlations
where transport paremeters are decoupled so that the
Stokes-Einstein (SE) relation is violated at a certain dy-
namic crossover temperature (T×) within a region Tg to
TM located inside the supercooled phase. For many years
studies on glass-forming liquids have proposed that inside
the region of the supercooled phase limited by T× trans-
port parameters can have universal features [12,20–25].

Our work seeks to demonstrate that the dynamic ar-
rest process is essentially due to a dynamic crossover above
the calorimetric Tg, at which point significant couplings
in the system dynamics occur. This observation reveals a
potentially intriguing picture of dynamic universality in
which the crossover temperature is the main factor.

2 State of the art

The mode-coupling theory (MCT) in its ideal form fo-
cuses on the relation between collective density fluctua-
tions and single molecule dynamics in a cage model [10].
Using the MCT in this context we see that the structural
relaxations are characterized by a bimodal decay (a two-
step relaxation scenario) in the time-dependent density
correlation function. This is typically measured by means
of light-scattering and neutron-scattering and dielectric
relaxation frequency spectra —primary α- and secondary
β-processes in which molecules explore all the available
cage space. In the quasi-elastic-scattering time regime the
two contributions are superimposed, with the β contribu-
tion at the lowest time (just above the microscopic con-
tributions), but in the dielectric loss spectra frequency
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regime such a contribution is located at a frequency above
the α-peak frequency ωα = 1/τα. In the β-process the
relaxation times extracted by the dielectric spectra can
be described using an activated Arrhenius T behavior
ln τβ/τβ0 = E(T )/kBT , a behavior that differs signifi-
cantly from a Super-Arrhenius (SA) or a Vogel-Fulcher-
Tammann (VFT) behavior in which τα diverges. The main
finding of the MCT is that the transport data (with two
structural relaxation time scales) indicate the existence of
a crossover temperature Tc located above Tg, at which the
transport changes from one that is typical of a strongly
coupled fluid to one that is characteristic of a glass. Near
Tc, the α-relaxation —which governs the macroscopic time
dynamics on the fluid side and is characterized by a power
law divergence of the relaxation scale and the anomalies
of the Debye-Waller factor— exhibits hierarchical multi-
exponential temporal decay (the well-known stretched ex-
ponential form F (q, t) = F c

q exp[−(t/τα)β ] [10]). In con-
trast, the β-process reveals the crossover approaching with
two fractal time-decay behaviors (exhibiting non-universal
exponents). Short times produce identical dynamics from
both the fluid and glass sides, and long times produce
correlation functions that saturate in the glass phase but
decay algebraically in the fluid phase. The ideal MCT
crossover temperature can be calculated from the two time
scales and, in particular, for the α-process by means of a
power law

τα = τα0

∣

∣

∣

∣

T − Tc

Tc

∣

∣

∣

∣

−γ

, (1)

where γ is a non-universal exponent. This latter form de-
scribes well the α-relaxation times obtained from dielectric
experiments and the viscosity data of supercooled fluids
when TM > T > Tc, and thus the temperature region
from the liquid stable phase to the coupled fluid phase,
i.e., the moderately supercooled state. This is a limit of
the ideal MCT [10]. A very similar power law approach
has been used, independent of the MCT, to describe the
strong increase in transport parameters that occurs when
the lowering temperature of a normal liquid enters the
moderately supercooled region [7, 20–23]. This approach
was used to investigate the dynamics of glass-forming liq-
uids by the explicit inclusion of the cooperative nature of
their transport processes on a microscopic scale [7, 26].

In recent decades, this slowing-down of transport
—from the stable liquid phase to the deepest supercooled
regime, including in many cases the calorimetric glass
transition temperature Tg— has been described using the
VTF equation,

η = η0 exp

(

B

T − T0

)

= η0 exp

(

DT T0

T − T0

)

, (2)

a form that accurately predicts diverging behavior at a
non-zero temperature T0 and a strength coefficient DT

related to the concept of “fragility.” The excellent data fit
and its few parameters, together with the diverging scales
(of τ(T ), Ds(T ), and η(T )) contained within eq. (2) are
essential ingredients when describing the arrest process

as an underlying phase transition to a state of infinite
relaxation time [27]. Thus a large class of experiments
have also used the VFT formalism to relate T0 to the
temperature Tg, i.e., TM > Tg > T0.

In recent years this has been confirmed by associating
the VFT fitting parameter T0 with the Kauzmann tem-
perature TK [13], i.e., T0 ∼ TK . As an ideal glass tem-
perature, TK is defined as the temperature at which the
configurational entropy SC of the liquid phase extrapo-
lated below the glass transition converges with the crystal
phase entropy. This can be understood using the Adam-
Gibbs theory [27] which relates the T -dependence of the
structural relaxation time, τα, to the change in SC , i.e.,
τα = τ0 exp(C/TSC). If SC goes to zero at a finite temper-
ature (e.g., SC = a(T −TK)/T ), then we obtain the VFT
form when TK is identified with T0. Indeed, this identifi-
cation between TK and T0 supports the physical validity
of eq. (2).

In describing the dynamics of supercooled liquids, Ar-
rhenius behavior is when a single particle hops over barri-
ers of uniform height, and the cooperative super-Arrhenius
behavior is when the barriers have a broad distribution
of heights. Super-Arrhenius behavior describes the ther-
modynamics of supercooled systems in terms of their so-
called inherent structures [28, 29]. This approach utilizes
potential energy topology, e.g., the number and depth of
local minima (basins) of the potential-energy landscape.
Within this framework, the short-time dynamics of the
supercooled liquid are characterized as intrabasin motion
and the long-time slow dynamics as interbasin motion.

Glass-forming liquids have long been classified in terms
of their “fragility” [3]. “Fragile” liquids have a marked
VFT temperature dependence and “strong” liquids ex-
hibit pure Arrhenius dynamic behavior. The Arrhenius
distortion of different fluids on approaching the dynamical
arrest is quantified in terms of their fragility DT . Although
VFT has often been treated as a “universal” feature of su-
percooled fluids, this has been questioned, e.g., it has been
pointed out [30] that B = DT T0 does not in fact yield the
Arrhenius form for T0 = 0.

In addition to the possible “criticality” of the arrest proc-
ess, this classification of liquids as “fragile” or “strong”
has given rise to two other relevant aspects of the dynamic
arrest puzzle:

i) It is possible that some supercooled liquids show a
dynamic FSC at a certain temperature T× (where
Tg < T× < TM ) [20], i.e., there is a temperature that
marks the boundary between two types of viscous be-
havior. The liquid viscous behavior is Arrhenius for
Tg < T < T× and super-Arrhenius for T > T×, and
the corresponding data can be fit using a power law
form similar to eq. (1). The existence of a FSC at
T× ∼ 228K has been proposed for water [31] —in
a manner similar to the proposal that such thermo-
dynamical anomalies of water as the isothermal com-
pressibility KT exist —by assuming that the occur-
rence of the phenomenon corresponds to a change in
the local structure of the liquid. Similar results have
been obtained in a detailed comparison of DC con-
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ductivity and dielectric relaxation of many different
fluids, through the use of a temperature derivative ap-
proach [32].

ii) Dynamical heterogeneities (DH) may be present. As
mentioned above, this topic has recently received wide-
spread attention [15,18,19,33–36]. Due to microscopic
cooperative processes, when a liquid approaches ar-
rest there is an onset of high spatial correlations,
i.e., a rapid increase in characteristic length and time
scales —a situation in which the α-relaxation time
τ can depend on a typical length scale ξ, e.g., τ =
exp(µξ(T )/T ). Thus, as T decreases in the supercooled
region due to the molecular interaction, spatial regions
appear in which the structural relaxation time differs
by orders of magnitude from the average over the en-
tire system. According to this description, the physics
of the arrested process is dominated by so-called “spa-
tially heterogeneous dynamics” [33]. It has been ar-
gued that the presence of these heterogeneities causes
the breakdown of the Stokes-Einstein (SE) relation (or
the appearance of the fractional Stokes-Einstein rela-
tion) and a dynamic FS crossover [17–19,37] in a region
located inside the supercooled phase at some temper-
ature within the TM–Tg range. Since the derivation
of the SE relation assumes the uncorrelated motion
of particles, it is reasonable that the onset of correla-
tions could result in a failure of the same relation. If
this is the case, the SE violation represents a useful
approach to studying deeper aspects of the glass tran-
sition and other relevant phenomena observed in the
TM–Tg range.

The possible existence of a temperature T× marking
dynamical changes of fragile supercooled liquids below TM

has been already studied [12,20–23,38,39]. This work as-
sumes that the GT shows some degree of universality. Re-
cently, the VFT dominance in describing the dynamics of
glass-forming liquids has been questioned in terms of the-
ory [15] and such alternative data analysis techniques as
the Avramov form [24] τ(T ) = τ0 exp(B/Tn). In the first
case, by considering a glass-forming system composed of
particles interacting via soft potentials, it was explicitly
demonstrated that the configurational entropy is finite at
any temperature [15], i.e., a Kauzmann temperature TK ,
where the liquid is out of the equilibrium, does not exist
and thus the VFT may be considered only a fitting form.
In the second one, instead, the study [24] of the dielectric
relaxation times τ(T ) for 42 ultraviscous glass forming
fluids confirms the previous suggestion that there is no
compelling evidence for the VFT prediction that trans-
port parameters diverge at a finite T providing a demon-
stration on the superiority, versus the VFT, of equations
showing no divergence at a finite (non-zero) temperature
(e.g., Avramov); the validity of such scenario has been
proved by considering the segmental relaxation data of
glass-forming polymers as T → T0 [40]. Similar findings
have been reported also for polymers and small molecule
glass formers (see, e.g., refs. [7–9] of ref. [40]), suggest-
ing that the main finding of the model proposed for soft
systems can be generalized.

Immediately following these studies, two additional ap-
proaches were proposed. The first approach, based on the
parabolic form [(To/T )]2, considers the relaxation times
and the viscosities of 58 liquids and demonstrates that
a certain degree of universality below the onset tempera-
ture To (defined as the temperature above which transport
coefficients are T -independent) exists [25]. The second ap-
proach [41] applies a constraint theory to the Adam-Gibbs
model basic equation (τ(T ) = τ0 exp(K/T exp(C/T )))
and produces an improved description of the η(T ) and
τ(T ) of inorganic and organic materials with the same
number of parameters as those of the previous equations.
Very recently, by means of a distortion-sensitive enthalpy
space linearized- or derivative-based empirical analysis,
the validity of all these VFT alternative forms has been
tested by considering the evolution of the primary α-
relaxation time [42], demonstrating that the parabolic ap-
proach is less valid than the other approaches, and propos-
ing the one associated with the Adam-Gibbs model to be
the divergenceless successor to the VFT approach.

Over the course of studying glassy water by means
of experimental [43–46] and molecular dynamic simula-
tion [47–49] techniques in both confined and bulk super-
cooled contexts, we have observed that both the SE viola-
tion and the dynamic FS exhibit a crossover at the same
temperature T× ∼ 225K, with Tg < T× < TM . Drawing
on these results we now use an extended MCT (EMCT)
to study the general case of glassy materials [50,51]. Note
that although the ideal MCT assumes that structural re-
laxation is the bottleneck of all molecular motion, the
EMCT, which includes density fluctuations, suggests that
phonon-assisted hopping processes may explain structural
relaxation processes [50].

We conclude that EMCT predicts a dynamic crossover
in the τα and in Ds, as implied by the structure of its
equations of motion. This crossover occurs near the criti-
cal temperature Tc of the idealized version of the theory,
and is due to the change in the dynamics from the one de-
termined by the cage effect to that dominated by hopping
processes. When combined with a model for the hopping
kernel developed from the dynamical theory for diffusion-
jump processes, the crossover can be identified as a fragile-
to-strong crossover (FSC) in which the α-relaxation time
and the self-diffusion cross over from a non-Arrhenius
to an Arrhenius behavior. Such a result, obtained for a
Lennard-Jones system, provides a possible explanation of
the FSC observed in a variety of glass-forming fluids. In
addition, such an EMCT approach demonstrates that the
Stokes-Einstein relation (SER) breaks down in different
ways on the fragile and strong sides of the FSC, in agree-
ment with the experimental observation in confined wa-
ter. This study also demonstrates that the SER violation,
in both the fragile and strong regions, can be fitted rea-
sonably well by a single fractional relation with an em-
pirical exponent of 0.85. For the self-diffusion coefficient,
the EMCT gives Ds ≈ Dhop + Did, with the calculated
values (see fig. 1, top) characterized by the dynamical
crossover at T ≈ Tc from D ≈ Did to Dhop. In particu-
lar fig. 1 shows the EMCT numerical results. The dashed
curve refers to Did, which must vanish at Tc/T = 1 with a
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Fig. 1. The EMCT self-diffusion coefficient Ds ≈ Dhop + Did,
with the calculated values (top panel) characterized by the
dynamical crossover at T ≈ Tc from D ≈ Did to Dhop. The
dashed curve refers to the ideal contribution Did that must van-
ish at Tc/T = 1 with a power law Did ∼ |T − Tc|

γ according
to the prediction of the idealized MCT, and the dashed-dotted
curve represents Dhop due to the hopping processes. The bot-
tom panel gives evidence of the full agreements between the
EMCT results and the thermal behavior of glassing fluids by
reporting the Ds data measured in two very different sys-
tems like confined water (NMR spectroscopy [45]) and liquid
Pd43Cu27Ni10P20 alloys (radiotracers [52]); as can be seen in
both cases, the MCT power law well fits the experimental data
in the SA region indicating the temperature (Tc) where the ex-
perimental data cross toward a precise Arrhenius behavior.

power law Did ∼ |T −Tc|γ reflecting the dynamical arrest
predicted by the idealized theory, and the dashed-dotted
curve represents Dhop caused by the hopping processes.
Again, the behavior of Ds from the EMCT is determined
by the larger one between Dhop and Did, and this explains
why it crosses over from D ≈ Did to Dhop near Tc. In ad-
dition, one infers from this figure that the self-diffusion
coefficient exhibits nearly an Arrhenius behavior at low
temperatures, hence the calculated EMCT Ds exhibits the
FSC at T ≈ Tc.

Such an EMCT analysis not only indicates the phys-
ical significance of the concept of Tc in terms of a well-
established theory of glass-forming systems, but it also
confirms all the water results: the FSC, and the break-

down of the SER both occurring near and below Tc, for
which T× ≡ Tc. In addition, many features of dynamical
heterogeneities emerge at this characteristic temperature
and, in contrast, no singular physical characteristic are
observed in the vicinity of the traditional glass transition
temperature Tg [51]. To support the full agreement of the
EMCT results and the thermal behavior of glassing flu-
ids, at the bottom of fig. 1 we show the Ds data measured
in two very different systems, i.e., confined water (NMR
spectroscopy [45]) and liquid Pd43Cu27Ni10P20 alloys (ra-
diotracers [52]). Note that in both cases the MCT power
law fits the experimental data in the SA region and in-
dicates the temperature point (T× ≡ Tc) at which the
experimental data cross that of the Arrhenius behavior.

3 Results and discussion

Using our EMCT findings, we conclude that the dynamic
crossover temperature is a significant characteristic of dy-
namic arrest. After conducting an analysis of the data on
84 liquids [53], we believe this to be a significant univer-
sal feature, and that the Tc temperature —evaluated in
terms of the MCT power law— is the most relevant for
understanding the physics of dynamic arrest.

In fig. 2, four supercooled liquids: Glycerol [54],
OTP [54], Salol [55], and bulk water [56] are shown. The
η(T ) data are reported in an Arrhenius plot (log η vs.
1000/T ). Note that a crossover from a fragile-to-strong
glass-forming behavior is evident in all the plots (except
water) where the crossover temperature (Tc) is indicated
by a star. The FSC is not observable in the water data
because the system can be supercooled only within a
limited T range. The measured Tc are located for the
four materials in the supercooled liquid phase and are
TGLY

c = 225± 5K, TOTP
c = 274± 5K, T SAL

c = 245± 5K,
and TH2O

c = 225± 5K for glycerol, OTP, Salol and water
respectively. The data fits in all figures are shown by using
three different functional forms: the Avramov (red curve),
the parabolic (green curve), and the MCT power law (blue
curve). Among these three, only the power law curve ad-
equately reproduces the data points in all the SA region,
and also predicts, for the reasons given above, the region
within which the crossover temperature falls. The other
forms only work within a limited T -range: the Avramov
only at the highest T , and the parabolic in a finite range
for T > Tc. In response to recent results concerning the
non-diverging nature of supercooled materials [42,57,58],
we have considered only those materials that are unam-
biguously characterized by a dynamical crossover without
reporting a VFT data fit. The viscosity crossover tem-
perature value obtained for salol agrees with the MCT
analysis for the light scattering α and β relaxation times
(256 < Tc < 266K) measured in the same liquid [38, 39].
Finally, comparing the results among these four VFT al-
ternative forms confirms the derivative test results of the
α-relaxation time [42].

Figure 3 provides an additional test showing that many
supercooled fluids are characterized by an Arrhenius be-
havior in the very-low-temperature region immediately
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Fig. 2. (Colour online) The Arrhenius plot (log η vs. 1000/T ) of the viscosity of four well-known supercooled liquids: Glyc-
erol [54], OTP [54], Salol [55] and bulk water [56]. As can be seen, a crossover from a fragile-to-strong glass-forming behavior is
evident in all the plots (except water that can be supercooled only for a limited T range) where the crossover temperature (Tc) is
indicated by a star. The measured Tc are located for the four materials in the supercooled liquid phase and are TGLY

c = 225±5 K,
TOTP

c = 274 ± 5 K, T SAL
c = 245 ± 5 K and TH2O

c = 225 ± 5 K for glycerol, OTP, Salol and water, respectively. In all figures the
data fitting, by using three different functional forms, are also reported: the Avramov (red curve), the parabolic (green curve)
and the MCT power law (blue curve).

prior to dynamic arrest. This test assumes that the inverse
temperature derivative of the logarithm of the transport
parameters (d ln η/d(T−1) or d ln τ/d(T−1)) is constant
if these quantities follow an Arrhenius behavior. At the
lowest temperatures, the six fluids (Tri-α-naphtylbenzene,
Salol, Dibutyl phthalate, B2O3, α-phenyl-o-cresol, and o-
terphenyl) are characterized by T -independent behavior
of such quantities.

Taking into account the conclusions of ref. [24] and the
suggestion [15] that the VFT approach should be reconsid-
ered, we verified the universality of the FS crossover tem-
perature in terms of an EMCT that considers the trans-
port changes at the same temperature as the natural ef-
fects of the underlying system structure. In a temperature-
dependent molecular structure, i.e., a structure with char-
acteristic local energy basins, the system particles exhibit
two transition state trajectories: one in which T > Tc and
one in which T < Tc. According to the EMCT model,
Tc can be the border temperature separating a region in
which barrier effects are not important from a region in
which they are essential, with the main factor being the
hopping (Arrhenius) process. Thus, after properly fitting
the transport quantities, for each liquid we evaluate the
three parameters of the power law form: the significant Tc,
the non-universal exponent γ, and the intercept value η0

(or τ0 and D0). We are then able to construct a master
curve that supports the validity of the MCT power law
approach to describing the super Arrhenius temperature
dependence of transport. The upper panel of fig. 4 is a
plot of the viscosity in terms of (η/η0)−1/γ vs. T/Tc. A
single master curve is obtained. (We considered only 20
liquids, those for which a crossover is visually observable
from the experimental data, although such an analysis
has been successfully done on 80 supercooled fluids [53].)
The lower panels show analogous master curves for self-
diffusion (left, (Ds D0)1/γ vs. T/Tc) and relaxation time
(right, (τ/τ0)−1/γ vs. T/Tc). The symbols identifying the
fluid are the same as those in the viscosity case. Note that
i) for the same liquid, within the error bars the Tc has the
same value independent of the transport parameter used,
and ii) the master curve, which is a scaled representation
of eq. (1), is valid only for T > Tc, where the three master
curves can be superimposed.

Figure 5 plots the viscosity η(T )/η(Tc) vs. Tc/T of the
20 fluids normalized for crossover temperature. Two dif-
ferent behaviors above and below (Tc/T ) = 1 are clearly
evidenced. When T < Tc, the fluids have an Arrhernius
behavior and, when T > Tc, they follow an MCT power
law. The dotted lines represent the data fit of some flu-
ids by means of eq. (1). When T < Tc (the Arrhenius
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Fig. 3. The inverse temperature derivative of the logarithm of the viscosity (d ln η/d(T−1)) of six supercooled fluids: Tri-α-
naphtylbenzene, Salol, Dibutyl phthalate, B2O3, α-phenyl-o-cresol and o-terphenyl. As can be seen, the lowest-temperature
behavior is T -independent indicating an Arrhenius behavior just before the dynamical arrest.

side), the viscosity of the 20 reported supercooled liquids
has a corresponding activation energy (E) that ranges
from the high value of the polystyrene to the low value of
germanium oxide, GeO2. This result agrees well with the
EMCT approach, confirms the original suggestion that the
transport processes are driven by hopping, and suggests
that the crossover temperature Tc may be more significant
in classifying the flow properties of liquids approaching a
dynamic arrest temperature than the temperature T0 of
the VFT equation (i.e., TK) or the glass transition tem-
perature Tg. In fact, many believe that the VFT is only a
convenient fitting formula [15,24,41] and that there is no
compelling evidence of any singular characteristic in the
fluid transport properties around Tg. It appears instead
that, when T decreases, the transport coefficients do not
diverge but, on crossing Tc, alter their temperature de-
pendence and resume an Arrhenius form.

If we evaluate the Debye-Stokes-Einstein ratio RDSE ≡
η/τT (see fig. 6 inset), or the Stokes-Einstein ratio RSE ≡
Dsη/T , we observe a breakdown in RDSE near Tc. This
agrees well with an EMCT study [50] and other exper-
imental observations of glass-forming liquids [18, 59–64]
which indicate that these SE and DSE violations occur
very close to Tc and are caused by a decoupling of trans-
port coefficients [49] whose microscopic origins are due
to dynamic heterogeneities at the onset of typical length
scales that increase rapidly as T decreases [15]. To be

precise, although EMCT is able to predict the SE (and
DSE) breakdown, the experiments reveal larger decou-
plings. This dynamic heterogeneity picture implies corre-
lations between the time scale and the length scale: the in-
crease in the time scale, as the arrest point is approached,
leads to a growing length scale of dynamically correlated
regions in space, suggesting that supercooled liquids may
display dynamic scaling. Under these conditions and below
a certain temperature the supercooling causes the SE (and
the DSE) relations to give way to a fractional SE relation
Ds ∼ τ−ζ , where the index ζ is related to the characteris-
tic spatial-temporal length scales of the “spatially hetero-
geneous dynamics” [18, 59–64]. It has been proposed [14]
that ζ = α(T )/β(T ) with α and β being temperature-
dependent scaling exponents of Ds and τ , respectively.
Analogous arguments hold for the viscosity η.

Figure 6 shows liquid transport parameters in terms
of our scaling approach. For all the liquids we have pro-
posed, the onset of the breakdown takes place at about
the same value of viscosity, η× ∼ 103 poise, a value which
is 8–10 decades lower than the value usually found near
Tg. The principal result of this latter figure is the pro-
posed universality degree. It is significant that this result
emerges directly from the values of two transport param-
eters measured independently. The crossover temperature
arises from a universal behavior rather than a definition
linked to a specific cooling rate, such as the calorimetric
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Fig. 4. Top panel: data collapse for the shear viscosity η for 20 indicated different liquids (including the 6 liquids of fig. 3,
displaying Arrhenius behavior at the lowest T ). Shown is the scaled viscosity (η/η0)

−1/γ as a function of the scaled temperature
T/Tc. The non-universal scaling exponent γ takes on slightly different values for each liquid we studied, with γ ≈ 2 ± 0.3.
Bottom panels show the self-diffusion constant Ds (left part), and the characteristic structural relaxation time τ (right part).

Tg. In the fractional DSE (and SE [53]), the decoupling in
transport properties takes place at the crossover temper-
ature Tc where the system recovers Arrhenius behavior.

The exponent of the DSE scaling plot is ζ = 0.85±0.02
(approximately the same as that of the SE [53]). Figure 6
shows a correspondence at Tc among i) the dynamical FS
crossover, ii) the breakdown of the Stokes-Einstein and
the Debye-Stokes-Einstein relations, and iii) the dynamic
heterogeneities. In addition, ζ = 0.85 ± 0.02 agrees with

experimental data [18, 45, 59, 62] and theoretical studies
predicting a crossover from hierarchical SA dynamics for
short length scales to pure Arrhenius dynamics at larger
length scales as revealed by the EMCT approach (see
the transport behavior shown in fig. 5). This crossover
is caused by a change in the dynamics from those deter-
mined by the cage effect to those dominated by hopping
processes [51].
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Fig. 5. The crossover temperature normalized representation, η(T )/η(Tc) vs. Tc/T , of the viscosity for the 20 fluids considered.
Two separate behaviors above and below (Tc/T ) = 1 are clearly evidenced. For T < Tc the fluids have a precise Arrhenius
behavior whereas, in the opposite case they do follow the MCT power law (the dotted lines represent the data fitting of some
fluids by means of eq. (1)). On the side where T < Tc, the Arrhenius activation energies (E) range from the high value of the
polystyrene to the low one of germanium oxide, GeO2. Stars indicate the corresponding calorimetric Tg. This overall result agrees
well with the EMCT approach, confirming the relevant indication that the crossover temperature Tc can be more significant for
classifying the flow properties of liquids approaching the dynamical arrest.

4 Concluding remarks

As mentioned above, dynamic changes in SA glass-forming
liquids have a structural origin. This can be clarified in
terms of thermal fluctuations and corresponding density-
density correlation lengths. A T decrease corresponds to a
growth of correlated regions whose lengths can in princi-
ple diverge (like critical phenomena) causing the transport
to slow down (i.e., the invoked η(T ) divergence at a cer-
tain finite temperature). A phenomenon hampered by the
dynamical crossover forcing this “apparent” criticality to
evolve, at a certain temperature, towards a non-divergent
behavior. The reason for this may be that in supercooled
liquids this growth process originates solely in disordered
and finite correlation regions (a kind of finite polydisperse
dynamical clustering) whose molecules are more “slug-
gish” than those in the less correlated regions. The in-
ternal motions of these clusters are dynamic and strongly
dependent on the temperature. A decrease in T causes
them to progressively slow until they reach a tempera-
ture at which they are virtually frozen and an intercluster
dynamic is the result. This is the crossover temperature,
above it the molecular motion, identified by DS and re-

flected in τ and η, depends on cluster dynamics. Clus-
ter polydispersity and the interaction between clusters
give rise to hierarchical relaxation times that are reflected
in the time dependence of the density-density correlation
function F (q, t) as the well-known super-exponential de-
cays and, in transport parameters such as η, as the super-
Arrhenius behavior emerges.

These two dynamics have a different physical scenario.
The first dynamic assumes the existence of a multibasin
energy landscape (conceptually the same as the inherent
structure entropy approach [28,29,65]) with a correspond-
ing large frequency (and thus correlation time) distribu-
tion. The second dynamic assumes a two-state basin with
a single frequency. At the highest temperatures the multi-
basin dynamic is favored, i.e., the transport parameters
exhibit super-Arrhenius behavior. Each of these basins is
characterized by a temperature-dependent weight factor.
When T decreases there is a progressive numerical reduc-
tion and the weight decreases to negligible values. At this
stage the only relevant dynamic is the molecule migration
from one cluster to another, i.e., a hopping process with
only one typical energy scale: the Arrhenius scale. In con-
clusion, the EMCT approach describes the situation well
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Fig. 6. The breakdown of the DSE law for 6 liquids that occurs just near the crossover temperature, identified by the MCT
power law (inset). The main plot shows the fractional DSE, for all the liquids studied, the scaling exponent ζ takes almost the
same value, ζ = 0.85 ± 0.02. We note that the onset of the DSE fractional breakdown takes place at about the same value of
viscosity, η(Tc) ≈ 103 poise. These data demonstrate a remarkable degree of universality in the temperature behavior of the
transport properties of supercooled liquids confirming the special role of Tc to understand arrested processes.

by defining the dynamical crossover temperature to be one
that reveals the two different dynamic regimes in terms of
two different energy landscapes.

The data generated by EMCT, which incorporates bar-
rier hopping caused by dynamic clustering reflected in en-
ergy landscapes, strongly support the idea that arrested
processes may be characterized by a crossover in dynamic
properties. We have seen that the singularity implied by
genuine structural arrest is not supported by the exist-
ing experimental data, and that the VFT approach seems
to lose any physical basis. Using a scaling law approach
characterizing the MCT, we have analyzed the tempera-
ture dependence of the transport coefficients of many liq-
uids and have demonstrated the existence of a well-defined
fragile-to-strong dynamic crossover temperature Tc in the
supercooled liquid regime. Note that the description of the
transport in terms of MCT concepts confirms and explains
the main finding of our previous analysis of 84 liquids:
the dynamic crossover temperature is as important as the
calorimetric glass transition temperature [53]. We have
thus conclusively demonstrated that this phenomenon is
a general property of all glass-forming liquids. Based on
these considerations, we propose a different scenario for

dynamic arrest: as is shown in figs. 5 and 6, the main fac-
tor is the dynamic crossover. In particular, fig. 5 shows:

i) that the FS crossover phenomenon can be more widely
generalized than the traditional classification of liquids
into two separate classes of glass formers, and

ii) that transport coefficients only exhibit a significant
change in behavior near Tc.

Previous classifications of supercooled fluids have been
based on the assumption that the glass transition temper-
ature Tg is phenomenologically defined as the temperature
at which the viscosity of the liquid is 1013 poise (or when
the relaxation time is 102 s). In our scaling law approach,
the crossover MCT temperature separates two different
dynamical regimes: the super-Arrhenius regime (far from
the arrest point) and the Arrhenius regime (near the ar-
rest point). This observation, based on results presented
here, is fully supported by the current understanding of
the MCT. Although the super-Arrhenius region can be de-
scribed by its original formulation [10] (one that perhaps
introduced the concept of the crossover temperature), the
temperature behavior of the transport parameters seems
to be better described using an extended form which in-
corporates barrier hopping [51].
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Note that i) the FS crossover, the appearance of the
fractional Stokes-Einstein violation, the Debye-Stokes-
Einstein violation, and the dynamic heterogeneities are
directly linked with Tc, and ii) the onset of the breakdown
takes place at approximately the same value which is many
decades lower than the value generally found near Tg.

Our conclusion is that a) Tc appears to be more rel-
evant than Tg or T0 to the physics of dynamic arrest
phenomena, and b) the universality shown in the mas-
ter curves from the scaled description of the Stokes-Ein-
stein and Debye-Stokes-Einstein violations is a “ground-
breaking” reality that suggests a new approach to explor-
ing arrested processes. In this context, using the system
concentration as the order parameter rather than the tem-
perature might be a productive future approach to the
study of dynamic arrest. Such a study would shed more
light on dynamic arrest by approaching it from another
direction and by utilizing the vast previous research on
colloids and polymers and its technique of interpreting the
evolution of transport parameters as a function of concen-
tration.
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