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Revisiting Lévy flight search patterns of wandering
albatrosses, bumblebees and deer
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The study of animal foraging behaviour is of practical ecological
importance1, and exemplifies the wider scientific problem of
optimizing search strategies2. Lévy flights are random walks, the
step lengths of which come from probability distributions with
heavy power-law tails3,4, such that clusters of short steps are con-
nected by rare long steps. Lévy flights display fractal properties,
have no typical scale, and occur in physical3–5 and chemical6

systems. An attempt to demonstrate their existence in a natural
biological system presented evidence that wandering albatrosses
perform Lévy flights when searching for prey on the ocean
surface7. This well known finding2,4,8,9 was followed by similar
inferences about the search strategies of deer10 and bumblebees10.
These pioneering studies have triggered much theoretical work in
physics (for example, refs 11, 12), as well as empirical ecological
analyses regarding reindeer13, microzooplankton14, grey seals15,
spider monkeys16 and fishing boats17. Here we analyse a new,
high-resolution data set of wandering albatross flights, and find
no evidence for Lévy flight behaviour. Instead we find that flight
times are gamma distributed, with an exponential decay for the
longest flights. We re-analyse the original albatross data7 using
additional information, and conclude that the extremely long
flights, essential for demonstrating Lévy flight behaviour, were
spurious. Furthermore, we propose a widely applicable method
to test for power-law distributions using likelihood18 and Akaike
weights19,20. We apply this to the four original deer and bumblebee
data sets10, finding that none exhibits evidence of Lévy flights, and
that the original graphical approach10 is insufficient. Such a gra-
phical approach has been adopted to conclude Lévy flight move-
ment for other organisms13–17, and to propose Lévy flight analysis
as a potential real-time ecosystem monitoring tool17. Our results
question the strength of the empirical evidence for biological Lévy
flights.

In 1992, five wandering albatrosses (Diomedea exulans) on Bird
Island, South Georgia (54u 009 S, 38u 039 W), each had a salt-water
immersion logger21 attached to one of its legs. Over the course of a
bird’s foraging trip, the logger recorded the proportion of each hour
spent sitting on the sea surface. In ref. 7, flight durations (time inter-
vals between landing on the ocean) were then calculated as conse-
cutive hours for which a bird remained dry, to a resolution of 1 h. It
was assumed that birds landed on the water solely to feed, and that
flight durations were thus indicative of distances between prey.

Time series for 19 separate foraging trips7 were pooled to give a
total of 363 flights. The resulting log–log histogram of flight dura-
tions gave a straight line with a slope of approximately 2, and is

reproduced in Supplementary Fig. 1 from the original raw data.
The crux of the conclusion that the albatrosses were performing
Lévy flights was that the slope of 2 implied the probability density
function of flight durations t (in hours) was7,10

f (t) , t22 (1)

for t $ 1 h (leaving out the normalization constant). This is consist-
ent with the Lévy flight definition that the tail of the probability
density function is of the power-law form t2m, where 1 , m # 3
(although technically this is a Lévy walk4,7,22). The Lévy flight was
inferred to be an efficient foraging strategy for food that might be
fractally distributed on the ocean surface7.

We first analyse a newer, larger and higher resolution data set of
albatross flight durations to test for Lévy flights. In 2004, 20 wander-
ing albatrosses on Bird Island were each fitted with a salt-water logger
and a GPS device. The GPS data were too infrequent (at most one
location h21) to give distances between landings, but were needed to
estimate each bird’s departure time from Bird Island, in order to
calculate the duration of the initial flight before first landing on the
water (we calculated return flights similarly). The resulting data set of
flight records was pooled, as in ref. 7, yielding a total of 1,416 flights to
a resolution of 10 s (Fig. 1).

The flights $1 h are clearly inconsistent with coming from the
power law t22 ascertained7 for the 1992 data. Furthermore, data from
a power law of any exponent (not just 2) would yield a straight line23,
and this is clearly not the case. In fact, the flight durations t (in h) are
consistent with coming from the shifted gamma distribution given by
the probability density function

f tð Þ~
rs

C sð Þ ys { 1e{ry ð2Þ

where y 5 t 2 1/120 accounts for the assumed 30-s period before
the bird searches for new food sources (see Methods), s 5 0.31 is
the shape parameter, r 5 0.41 h21 is the rate parameter, and C is
the gamma function. Equation (2) is valid for flights .30 s; for
shorter flights we have f (t) 5 0. The exponential term of equation
(2) dominates for large t, implying Poisson behaviour, such that for
long enough flights the birds essentially encounter prey randomly
with a constant low probability.

A brownian random walker’s displacement increases as tH where
H 5 1/2. If H . 1/2, we have ‘superdiffusion’, as originally inferred in
Fig. 2a of ref. 7. Superdiffusion is explained by one or both of the
following3,4: (1) the probability density function of flight lengths has a
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heavy tail, or (2) there is long-range persistence in direction or time.
The term Lévy flight is usually reserved4 for case (1). Reference 7 used
a Lévy walk model that assumes constant velocity, yielding a power
law probability density function of flight durations. The gamma
distribution (equation (2)) has m 5 1 2 s 5 0.69. This is such a slow
power-law decay that it is non-normalizable unless there is trun-
cation. Hence, unlike the truncated Lévy flight3 where 1 , m # 3,
equation (2) cannot be interpreted as a power law with exponential
truncation. Superdiffusion remains possible, but through directional
persistence only, not Lévy flights.

The longest flight in 2004 was 14.9 h, whereas for the original 1992
data7, 25 of the 363 flights were .15 h. In 1992, for six of the trips the
birds were also fitted with a satellite transmitter (Platform Terminal
Transmitter, PTT), which provided locations at irregular intervals.
Although these data are also too coarse to determine flight distances
between landings (and were not available for ref. 7), we use them here
to determine when each bird left and returned to Bird Island (see
Methods). Figure 2 shows the wet/dry data for these six trips, together
with the estimated departure and return times on the basis of the PTT
data. For trip 3B, for example, the first dry sequence, based solely on
the salt-water-logger data, is 46 h. However, the PTT data reveal that
the bird did not leave Bird Island until 41 h after the logger was
switched on. Thus, the true duration of the first flight was only 5 h.

For the remaining five trips, the original dry sequences from the
loggers (in the order of Fig. 2) of 44 h, 69 h, 26 h, 67 h and 23 h
represent, in reality, flight records of only 4 h, 3 h, 1 h, ,1 h and ,1 h,
respectively. Similarly, for final flights the raw logger data values of
4 h, 8 h, 13 h, 9 h, 34 h and 9 h get corrected to true flight records of
4 h, 5 h, 8 h, 2 h, 3 h and 7 h, respectively.

However, in ref. 7 the raw logger data were assumed to represent
true flights. We adjust the data for the remaining 13 trips, for which
no PTT data were collected, by eliminating the initial and final dry
sequences (see Methods). Using these adjusted data, in Fig. 3a we
compute a corrected version of the original log–log histogram shown
in Fig. 3a of ref. 7. There are now no flight durations in the two largest
bins, and the longest flight is only 20 h compared to the original 99 h.
The data thus no longer span two orders of magnitude, and the points

clearly lie on a curve, not a straight line that would indicate a power
law.

The data are also consistent with coming from a shifted gamma
distribution of the form of equation (2), illustrated in Fig. 3b. The
resulting confidence intervals for s and r are much larger than those
for the 2004 data, because of the smaller sample size, lack of
data ,1 h, and lower resolution of the data. Figure 3c shows the
uncorrected and corrected data as a rank/frequency plot, as in
Fig. 1. We conclude that, when time spent by the birds on the nests
is accounted for, the original 1992 albatross data do not support Lévy
flight behaviour.

The original albatross study7 was followed by reports of Lévy
flight behaviour by deer (Dama dama)10 and bumblebees (Bombus
terricola)10. The deer data were plotted as a standard histogram log-
transformed (LT in the terminology of ref. 24), the bumblebee data as
a smoothed histogram log-transformed10, and straight lines were
compared to the tails. The problematic24,25 LT method was then used
to conclude Lévy flight behaviour in other studies13,15–17,26, and the
logarithmic binning with normalization24 (LBN) method used in
ref. 14. In no cases were alternative distributions properly considered,
or goodness-of-fit tests performed. In Box 1 we present a new method
to overcome these shortcomings. We now illustrate this approach by
re-analysing the deer and bumblebee data10.

Following ref. 10, we digitized data from ref. 27 concerning for-
aging times of deer in unfenced and fenced areas, and digitized data
from ref. 28 concerning flights of bumblebees between flower heads
in high- and low-food situations. In ref. 10 these data were all
assumed to relate to distances travelled between food items.
Likelihood functions modified from those in Box 1 are calculated
in the Supplementary Information (requiring numerical maximiza-
tion) to account for the data only being available already binned. The
resulting Akaike weights w1 for the unbounded power-law tail
were ,1028 for both deer data sets, and 0.40 and 0.001 for the bees,
respectively (for the 0.40 case, m is outside the Lévy range). Given
such negligible support for the unbounded power law in the Lévy
range, we also tested both models over the bounded ranges [a, b]
assumed in ref. 10; see Table 1.

We find that for the deer scenarios the exponential distribution is
favoured by Akaike weights of 0.9994 and 0.95. Furthermore, the
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Figure 2 | Data for the six wandering albatross trips in 1992 that have
known departure and return times. Red lines are hours for which a logger
was completely dry; blue lines indicate hours when a logger was wet for some
part of that hour; and grey lines indicate switches between these regimes.
Black lines indicate when each bird departed from and returned to Bird
Island, on the basis of the PTT data. Time 0 is when the loggers were switched
on at a computer—thus intervals before the first black lines include time
taken to affix the logger to a bird plus time spent by the bird sitting on its nest
before departing. All birds remained on Bird Island for long periods before
departing, but such periods were considered to be flights in the original
study7. Intervals after the final black lines correspond to time the bird sat on
its nest after returning plus time spent retrieving the logger, but these were
also originally considered as flights7.

0.01 0.1 1 10 100

1
10

10
0

1,
00

0

0 5 10 15

0
40

0
80

0

N
um

b
er

 o
f f

lig
ht

s 
≥t

Flight duration, t (h)

Figure 1 | Rank/frequency plot23 of 2004 wandering albatross data,
showing no evidence for Lévy flight behaviour. Circles show number of
flights $t for each flight duration t (calculated by ranking flights by size).
The red curve is the fit to the shifted gamma distribution (equation (2)) with
maximum likelihood estimates (MLEs) of s 5 0.31 (95% confidence
interval (CI): 0.27–0.34) and r 5 0.41 h21 (95% CI: 0.36–0.46), obtained by
maximizing the multinomial likelihood function that takes into account the
discrete sampling nature of the loggers (see Supplementary Information).
The data are consistent with coming from this distribution (n 5 1,416,
degrees of freedom 5 37, G 5 28.9, P 5 0.83). Flights are correct to
within 610 s (see Supplementary Information). If the flights $1 h followed
the power law with exponent m 5 2 as in ref. 7, the points would lie on the
straight blue line23 (that has been vertically shifted slightly for clarity)—this
is clearly not the case. The inset shows the 2004 data as a conventional
histogram on linear axes, with number of flights against flight duration in
hours.
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reported power-law m values10 lie outside the 95% confidence inter-
vals (CIs) for the maximum likelihood estimates (MLEs), and are
inconsistent with the data. Figure 4 shows the log–log histograms of
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Figure 3 | When corrected, the 1992 wandering albatross flight durations
no longer follow a power law. a, Blue open circles show the original log–log
histogram of 1992 data (Fig. 3a of ref. 7). Breakpoints of bins are at 1, 2, 4, 8,
16, 32, 64 and 128 h (with bin intervals 1 # t , 2, 2 # t , 4, and so on), and
results are plotted at the geometric means. The frequencies are each
normalized by their respective bin widths to yield frequency densities that
compensate for the increasing bin widths30 (termed logarithmic binning
with normalization, LBN, in ref. 24). The straight line indicates a power law
of exponent m 5 2 (ref. 7). Red filled circles are adjusted flight durations that
take into account time spent on Bird Island, binned in the same manner,
showing no power-law behaviour. b, The gamma distribution fitted to the
(unbinned) flight durations (red curve) has MLE values s 5 0.73 (95% CI:
0.19–1.32) and r 5 0.33 h21 (95% CI: 0.22–0.46), and the data are consistent
with coming from this distribution (n 5 335, degrees of freedom 5 8,
G 5 11.9, P 5 0.16). This distribution yields expected counts in each bin
(black open circles), which are what should be compared with the binned
data. Our multinomial likelihood approach accounts for the fact that the
loggers’ memory limitations meant that a record of 1 h could correspond to a
flight anywhere in the range 1–3 h. This fact, plus the effects of the binning
procedure, result in the differences between the red curve and black circles
(note the log scale); see Supplementary Information. c, Original (blue open
circles) and adjusted (red filled circles) data as a rank/frequency plot. Each
record yields a point, and because the resolution of the logger data was 1 h,
there can be multiple points for each given flight duration t. The ordinate
shows proportion rather than number of flights, because of the different
sizes of the data sets.

Box 1 | When is a power law not a power law?

The approach widely used to test for biological Lévy flight search
patterns has been: (1) plot the move-length data as some form of
histogram on log–log axes; (2) draw or fit a straight line across the full
range of data or just the tail; (3) define m to be the negative of the slope
of the line; (4) conclude that the data follow a power law of exponent m
(across the full range or just the tail); (5) then if 1 , m # 3 conclude that
the organism performs a Lévy flight with exponent m.

It is well known that log–log axes tend to make relationships look
straight, and so it is problematic to only plot the data on a log–log plot
and then conclude that the data lie on a straight line. One should at
least consider an alternative move-length distribution, such as the
exponential that corresponds to a simple uncorrelated Poisson random
process. Reference 16 did also test the exponential, although used the
unreliable24,25 LT method for the power law and compared the
distributions by comparing coefficients of variation29 (R2), which is not
useful for choosing between models19.

Here we summarize how to use modern statistical methods of
model selection19,20 to test whether a given data set x 5 {x1, x2, x3, …,
xn} provides more evidence for a power-law tail or an exponential tail.
Considering the tail to start at a, the power-law tail has probability
density function

f1(x)~Cx{m, x§a ð3Þ
where the normalization constant C 5 (m 2 1)am21, and the exponential
tail has probability density function

f2(x)~le{l(x{a), x§a ð4Þ

The log-likelihood function18,19 for the power law is23

log L1 m data xjð Þ½ �~n log m { 1ð Þz n m { 1ð Þ log a{m
Xn

j~1

log xj ð5Þ

where L1(mjdata x) is the likelihood of a particular value of the unknown
parameter m given the known data x (and log is natural log). For the
exponential model the unknown parameter is l, and

log L2 l data xjð Þ½ �~n log lznla{l
Xn

j~1

xj ð6Þ

SolvingfortheMLEsanalytically23givesm̂m~1{n
.

n log a{
Pn

j~1 log xj

� �

and l̂l~1
. Pn

j~1 xj

�
n{a

� �
. Akaike’s information criterion18, 19 (AIC) for

model i (i 5 1, 2) is

AICi~{2 log Li ĥhi data xj
� �h i

z2Ki ð7Þ

where ĥh1 ~ m̂m, ĥh2 ~ l̂l, and Ki is the number of parameters being estimated
for model i (K1 5 K2 here). The best model is the one with the minimum AIC,
AICmin. Then, AIC differences are given byDi 5 AICi 2 AICmin. The Akaike
weights19 are relative likelihoods of each model, given by

wi~
e{Di=2

e{D1=2ze{D2=2
ð8Þ

normalizedsotheweightssumto1.Theweightwi isconsideredastheweightof
evidence infavourofmodel i beingthebestmodel for thegivendata, outof the
models considered. Multiple models of varying complexity may also be
simultaneously considered19. Natural data that follow a power law must be
finitely truncated; any approach that neglected this would suffer to some
degree (see Supplementary Information). Future work could explore the
problem of inference of truncated3 Lévy flights.

The likelihood approach clarifies what is meant by the ‘tail’ of the
data (permitting goodness-of-fit tests), eliminates binning problems
associated with log–log histograms (outlined in ref. 24), and yields
95% CIs (computed using the profile likelihood-ratio test18).
Furthermore, if the power law is supported by the data, then the MLE
for m is more accurate (A.M.E., manuscript in preparation) than the
estimate obtained from the LBN method.
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the deer data and reported power laws from ref. 10, plus the expo-
nential distributions calculated in Table 1. By eye, the two distribu-
tions do not appear as different as concluded statistically. However,
the log–log nature of Fig. 4 acts to minimize (to the eye) any differ-
ences, and de-emphasizes the fact that there are far more data repre-
sented by some points (bins) than others. This illustrates the
problems involved with fitting lines (or curves) to histograms plotted
on a log–log scale.

For the bumblebee high-food situation, the Akaike weights essen-
tially favour neither model (Table 1). For the low-food situation, the

power law is favoured, but not convincingly. However, we have
assumed maximum attainable flight values (b) based simply on the
ranges of the power-law lines drawn in ref. 10. This assumption
favours preference for the power law, and relaxing it slightly (because
it is very unlikely to hold) eliminates the marginal preference for the
power law in the low-food bumblebee scenario (see Supplementary
Information). Hence, none of the four data sets exhibits evidence for
the power law over the exponential.

Furthermore, the deer foraging times10 actually correspond to
times spent cropping and processing food (that is, handling times)
at a particular feeding site (pages 608 and 610 in ref. 27), rather than
time spent moving between sites. Also, the bumblebee data actually
represent the distances between successively visited flower heads,
rather than the flight times or distances flown (Fig. 1 in ref. 28).
Therefore, neither of these data sets was ideal for testing for Lévy
flight search behaviour. Nonetheless, we have re-analysed these data
sets to demonstrate the problems with inferring Lévy flight behaviour
by fitting (or drawing) a straight line through points on a log–log
histogram, not considering alternative distributions, and not per-
forming goodness-of-fit tests. Our approach used here is grounded
in the statistical theory of likelihood18,19, avoids any binning, and does
not ignore bins with zero counts25. Given these issues relating to the
identification of power laws, we query whether the current evidence
for Lévy flights would withstand more rigorous statistical analysis.
This then raises questions as to when might a foraging animal satisfy
the necessary conditions for a Lévy flight to be an optimal2,10 search
strategy.

METHODS SUMMARY

Maximum likelihood estimates were obtained by numerically maximizing the

appropriate log-likelihood functions, and 95% CIs were computed using the

profile likelihood-ratio test18. All goodness-of-fit tests were performed using

the G-test (likelihood-ratio test) with Williams’s correction29. Akaike weights

were computed according to ref. 19, with bias-adjusted AICc used for high-food

bumblebees due to the small sample size. Computations were performed using R,

version 2.2.0 (http://www.r-project.org).

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Initial and final albatross flights. A salt-water logger only detects whether a bird

is sitting on the water or not, and its clock starts when it is switched on at a

computer. Thus a logger is recording before being attached to a bird, and also,

crucially, while the bird sits on a nest21. The logger is dry, but the bird is not

flying. So the initial sequence of dry readings includes pre-take-off time plus time

spent in flight before first landing on water. For the 2004 data we used the GPS

data to determine when the birds left Bird Island, and hence obtained the dura-

tion of the initial flights (to within an hour), eliminating the time spent on the

nest. Return times to the island were used to determine durations of final flights,
eliminating the dry period between landing and logger retrieval.

In 1992, PTT devices were used in 6 of the 19 trips (Fig. 2). Departure and

return times were calculated to within 2 h (typically 1 h) from a combination of

the PTT fixes and direct observations of the birds. For the remaining 13 trips,

departure and return times remain unknown. As each trip’s initial and final dry

sequences were potentially spurious, we omitted them from the data. If the

albatrosses really exhibited Lévy flight behaviour then there would be nothing

special about the first and last flights, so eliminating these 26 dry sequences

should not markedly impact the results. However, the 14 longest dry sequences

(for the 13 trips), ranging from 21–99 h, all occurred at the start or end of trips

and were eliminated. These were much longer than the maximum flight of 14.9 h

in 2004.

Albatross data analysis. The 2004 data consisted of a wet/dry reading every 10 s.

A flight is therefore represented by a sequence of consecutive dry readings in

between two wet readings. For example, a sequence wet-dry-dry-dry-dry-wet

gives a record of 4 dry readings, and represents a flight in the range 30–50 s. We

assume 30 s to be the minimum time after take off for a bird to start searching for

new food sources. This excludes instances where a bird may have only lifted its
leg out of the water to scratch (yielding a sequence wet-dry-wet), or abandoned a

take off.

The 1992 data consisted of the number of 15-s intervals within each hour

for which a bird was considered wet (for example, Fig. 1 of ref. 7). Flights ,1 h

could not be directly inferred from the data. In ref. 7, consecutive hourly wet

counts of 0 (that is, fully dry hours), in between non-zero hours, were used to

infer flight times of 1, 2, 3, … h. A sequence of hours wet-dry-wet was then

assumed to be a flight of 1 h. However, such a record could come from a true

flight anywhere in the range 1–3 h. In the Supplementary Information we derive

the likelihood functions for each data set, taking into account the respective

sampling protocols.

Deer and bumblebee data analysis. We digitized the deer and bumblebee data

from the original histograms27, 28 and from ref. 10. For the deer data the original

linear histograms27 were log-transformed10 (LT method24), as reproduced in

Fig. 4 from the original data27, whereas the bumblebee bins28 were smoothed

using running averaging and then lumped to produce log–log histograms10 (see

Supplementary Information). However, our likelihood approach and results in

Table 1 do not involve any smoothing or lumping of the original binned data.
We fit the power-law and exponential distributions over unbounded, [a, ‘),

and bounded, [a, b], ranges. For the bounded power law we consider the prob-

ability density function

f (x) 5 Cx2m, xg[a,b] (9)

where C is the normalization constant given by C 5 (m 2 1)/(a1 2 m 2 b1 2 m). For

the bounded exponential distribution, we have

f (x) 5 Ae2l x, xg[a,b] (10)

where A is the normalization constant given by A 5 l/(e2la 2 e2lb). The data

were digitized from histograms27,28, and so are already binned. In the

Supplementary Information we derive the likelihood functions for each distri-

bution, modified from those in Box 1 to account for the pre-binned data and the

bounded ranges. For each scenario in Table 1 we took [a, b] to be the ranges
implied by the power law straight lines drawn in ref. 10. These ranges imply that

it is impossible to obtain data larger than that observed, an assumption that is

very unlikely to be true in practice, but that we find favours preference for the

power law over the exponential. We investigate sensitivity to b in the

Supplementary Information, showing that the result of the power law being

slightly favoured for the low-food bumblebees (Table 1) is not robust to relaxa-

tion of this assumption.
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