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Abstract
Network systemswith clustering have been givenmuch attention due to their wide occurrence in the
real world.One focus of these studies has been on robustness of single clustered networks and
interdependent clustered networks under randomattack (RA) or hub-targeted attack.However,
infrastructure networks could suffer from a damage that is localized, i.e. a group of neighboring nodes
attacked or fail, a topic that was not studied earlier on clustered networks. In this paper, we analytically
and via simulations study the robustness under localized attack (LA) of single Erdős–Rényi clustered
network and interdependent clustered network. For generating networks with clusteringwe use two
models: (i) double Poisson distribution (DPD) and (ii)fixed degree distribution (FDD). For the LA
case, theDPDmodel shows a second order phase transition behavior for a single clustered network,
while for dependent networks, the systemundergoes a change of percolation phase transition from a
first order (abrupt transition) to a second order (continuous) transitionwhen the coupling strength q
decreases below a critical value qc. Our results imply that single networks become significantlymore
vulnerable with increasing clustering coefficient cwith respect to LA. This is in contrast to RAwhere
the robustness is almost independent of c.We obtain similar results when testing different real
networks. For LA on dependent networks, we also observe that the systembecomesmore vulnerable
as c increases. This is again in contrast to RA,where for, q<qc, the system robustness is almost
unaffected by increasing clustering.We also solved analytically the case of LA on random regular
networkswhich are clustered and interdependent andfind that asm (the number of clustered
networks that each network depends on) or c increases, the systembecomes significantlymore
vulnerable.We also analyzed via simulations the case of generating clustering in networks for the
model of keeping a FDD, andfind that the influence of clustering on the robustness of two partially
interdependent networks under LA is smaller than forDPD,which is very different from these cases
under RA.

1. Introduction

Over the past two decades, the study of complex networks has gained increasing attention. Themain reason is
thatmany real systems in our daily life can be described and better understoodwhen represented as complex
networks. Examples include the Internet andWorldWideWeb, foodwebs, social networks, transportation
systems, electricity distribution networks, genetic networks, brain networks andmany others [1–11]. An
important concern in the study of complex networks is their robustness, which is important formany fields,
such as ecology, biology, economics and engineering [12–18]. Network robustness deals usuallywith the
question of the response of the network to random failures and targeted attacks. This question can be analyzed
and characterized using percolation theory by studying the critical thresholds or the integrated size of the largest
cluster during the attack process [19–23].
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Many useful results have been obtained by analyzing the robustness of single isolated networks. However,
inmany real scenarios, critical infrastructures rarely appear in isolated state but usually depend on other
infrastructures for functioning. This has led to the emerging sub-field of research in network science, called
interdependent networks ormore general, networks of networks (NON).Many constructive conclusions have
been obtainedwhich improve our understanding of the robustness of interdependent networks. Buldyrev et al
[24] developed a framework for understanding the robustness of two fully interdependent networks under
random failures, and found that interdependent networks become, due to cascading failures, significantlymore
vulnerable compared to their single networks counterparts and undergo an abrupt (first order transition)
collapse. Subsequently, a systemof two partially interdependent networks (where a fraction of q nodes in both
networks depend on each other) under random failures has been studied by Parshani et al [25]. It was found,
both analytically and numerically that reducing the coupling strength below a critical value qc, yields to a change
froma first order to a second order percolation transition. Gao et al developed a general framework to study the
percolation behavior of n interdependent networks, suffering from random failures [26–28]. The above studies
reveal that dependency links between networksmake the systemhighly vulnerable to random failures thatmay
yield cascading failures and understanding theirmechanismsmight help to design resilient infrastructures and
improve existing infrastructures.

Due to the broad degree distribution of real networks, it was proposed to analyze the vulnerability with
respect to a targeted attack on the high degree nodes. Such attacks have dramatic structural effects on single
networks and can lead easily to network fragmentation [18, 20, 29–33]. By introducing a probability function of
node degree to fail, Gallos et al found that for the targeted attacks case, even little knowledge of the highly
connected nodes can reduce significantly the robustness compared to the randomattack (RA) case [34]. By
mapping the targeted-attack problem to the RAproblem,Huang et al [35] studied the robustness of two fully
interdependent networks under targeted attack. Later, Dong et al [36, 37] studied the robustness of two partially
interdependent networks against targeted attack, and further proposed a general theoretical framework for
understanding the targeted-attack problem in aNON system.

However, inmany real scenarios, attacks are neither randomnor targeted, but localized, whichmeans a
group of neighboring nodes in a network are attacked or fail due to natural disasters like earthquakes orfloods.
For example, when an earthquake occurs, it releases energy in the formof seismicwaves that spread from the
epicenter in all directions. According to local amplification effect, even for low-intensity earthquakes, local
geological features can induce high levels of shaking ground surface in a certain radius around the center, which
can destroy locally the infrastructures. Only few studies on such localized attacks (LAs) strategy have been
reported. Shao et al developed a theoretical and numerical approach to study the robustness of complex
networks against LA [38]. Berezin et al described and predicted the effects of LA on spatially embedded systems
with dependencies, and found that a LA can cause substantiallymore damage compared to an equivalent RA
[39]. Bymapping the LAproblem to aRAproblem, Yuan et al showed how the broadness of the degree
distribution affects the fragility of interdependent networks due to LA [40]. Zhao et al finds amapping between
overload failures and dependency links [41]. Dong et al proposed amodified partially LA strategy, and studied
the network robustness against this attack analytically and numerically [42].

As one of the key issues in complex networks, clustered networks, which is a realistic feature appearing
frequently in real network, have attractedmuch attention in both theoretical research and in various applied
fields [43]. However, networkswith clusteringwere studied onlywith respect to random failures or high degree
attacks [44, 45], while the effect of LAs on clustered networks has not been studied earlier.

In this paperwe study the percolation behavior due to LAs in two types of clustered networksmodels in
single clustered network, as well as in network of interdependent networks with clustering. The twomodels are:
(a)we generate networks forwhich the degree distribution of the clustered network follows double Poisson
distribution (DPD) [46]. (b)Wegenerate networkswith fixed degree distribution having a Poisson distribution
(FDD) [45, 47]. The results for single networks and real networks are described in section 2. The robustness of
NONwith clustering are analyzed in section 3.

2. Single networkswith clustering

In a network, the clustering feature can be characterized by specifying the fraction of nodes connected to s single
links and having t triangles (clustering). As a special case, we consider an Erdős–Rényi (ER) type networkwith
clustering having a probability density which obeys aDPD [46]
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where á ñs and á ñt are the average numbers of single links and triangles per node, respectively. The average degree
of a node is thus, á ñ = á ñ + á ñk s t2 . The generating function of theDPD can be expressed as [46],
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2 2 , which implies the average of the clustering coefficient of all

nodes by using the probability that two edges share a node in the network. For c=0, the network does not have
clustering, which is the limit of the ERnetwork.

The LA is performed as follows.We randomly choose a node as a ‘root’node and denote all nodes distances
from this root, shell by shell according to increasing distance. Next, the LA is performed by the following two
stages.We first remove around the root node all nodes shell by shell according to increasing distance, and
remove all the links connecting all pairs of the removed nodes until a fraction of 1−pnodes from thewhole
network is removed. In this stagewe keep the links between the removed nodes and the remaining nodes. The
distribution of nodes with s single links and t triangles in the remaining network is [35, 38]
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whereAp(s, t) denotes the number of nodes with s single links and t triangles.When onemore node is being
removed, we get
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where á ñ º å +( )( )k P s t s t, 2p p . As l ¥N , equation (4) can be presented by differentiatingAp(s, t)with
respect to p,
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By differentiating equation (3)with respect to p and substituting it in equation (5), we get,
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The solution of equation (6) can bewritten as,
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whereG0(h, h
2)=p. The generating function of the residual network is
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The probability of a link to end at an unremoved node in the remaining network can be expressed as [38],
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In the second stagewe remove all remaining links from the removed nodes, which are connected to the
remaining non removed nodes. The generating function of the remaining network is
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If wefind a clustering network Ã of generating function ˜ ( )G x y,0 , after a RA of removing 1−p fraction of nodes
than the generation function of the remaining network becomes = - + - +˜ ˜ ( )G G p px p py1 , 1p

0 0 [45, 47].
Next, wemap the LAproblemonnetwork A to aRAproblemonnetwork Ã. By using =˜ ( )G G x y,p p
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equation (10), we deduce
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Thus, the fraction of the giant component of the remaining clustered network is
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Figure 1(a) presents both the numerical solution of ¥P in equation (13) and simulations for several values of c,
which support well the theory. In addition, when comparing different c, we find that pc increases with c and ¥P
increases continuously from zero at the critical threshold pc to afinite value, whichmeans that the system
undergoes a second order phase transition. As l( )f p 1c , the critical threshold of the second order phase
transition pc can be found as [38],

=
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Moreover, the dependence of pc on c and á ñk are shown infigures 1(b) and (c). As can be seen, pc increases as c
increases and á ñk decreases. Thus, the network becomesmore vulnerable with increasing clustering coefficient.
This is inmarked contrast to RA,where the system robustness does not changewith increasing clustering
coefficient, as seen infigures 1(b) and (c).

Clustering has an important effect in epidemic processes, information spread, network resilience,
and dynamical systems on the networks. For example, in a social network, two friends of an individual
have a high probability to become friends. From above, we analyze and compare the robustness of several
real networks under LA and RA, and analyze themwhile changing the actual clustering in the real network
using rewiring algorithm [48–52]. Figure 2 demonstrates that S as a function of p for several real networks
with different clustering c under LA and RA. For real networks, we use a small Scutoff to find pc. Simulation
results suggest that pc is almost unchanged for RA but pc dramatically increases for LA, as seen in figure 3.
Thus again, clustering coefficient almost have no effect on system robustness for the case of RA, but it
has a significant effect on system robustness for LA. As clustering coefficient increases, the system
becomesmore andmore vulnerable and significantlymore difficult to protect for LA, similar with
above theoretical results. Note that the effect of clustering in the real networks (figure 3) on their
vulnerability is significantlymore than found in our theory (figure 1(b)). The reason is that themodel we
solved analytically is for Poisson degree distribution (equation (1)) but the real networks shown in figure 3
are of scale free type, where we expect a stronger effect in LA. This since neighbors of nodes in scale free
networks are usually high degree and a LAwill remove them in the first stages [53]while RA removesmostly
low degree nodes.

Nextly, we consider the FDDmodel for single clustered networks, which preserves the total degree
distribution P(k) for different c using themethod proposed byHackett et al as given by equation (15) below, i.e.
changing c but keeping a FDD [45]
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where = á ñ -á ñ( ) !P k k e kk k , Î [ ]f 0, 1 and⌊ ⌋. is the floor function [45, 47, 54]. According to above expression,
equation (15), clustered network are assumed to have joint distribution Pst from a given degree distribution P(k)
by randomly choosing a fraction f of nodes to be connected tomaximumpossible number of triangles while the

Figure 1. (a) Size of giant component ¥P , as a function of p for á ñ =k 4 and different values of c, where solid lines are from
equations (12) and (13) and symbols are from simulationswith a network of number of nodesN=105. All simulation results are
obtained by averaging over 100 realizations. (b) pc as a function of c for different á ñ =k 4, 6 from equation (14). Results are also
compared to RA. (c) pc as a function of kwith different c=0, 0.1 and 0.15 from equation (14). Results are also compared to RA.
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remaining fraction 1−f of nodes are attached to single edges only. From this definition, we can get the above
equation (15) for the clustering coefficient c as a function of f[45].

From figure 4, one can observe the peaks of the second largest cluster, ¥P ,2 for different c corresponding to
the phase transition point from simulation results. It is also seen that pc under LA is almost unchangedwith
increasing c, but increases for RA as seen in bothfigures 4(b) and (c). Thismeans that changing clustering
coefficient for a single FDDhas a little effect for LA but increasing clustering coefficient canmake single network
under FDDmore vulnerable, which is inmarked contrast to the case ofDPD.

3.NONwith clustering

3.1. Two interdependent clustered networks
In this subsection, we study the robustness under LAs of two partially interdependent clustered networksA and
B, which obey theDPD P(s, t), with parameters á ñ = á ñ = á ñs s sA B , á ñ = á ñ = á ñt t tA B andNA=NB=N,
respectively.We assume a fraction qA (qB) of nodes in networkA (B) depends on nodes in networkB (A). This
means that a node in networkBwhich depends on a failed node in networkA, will also fail, and vice versa.We
start by removing a fraction 1−p of nodes fromnetworkA andB separately through LA, cascading failures
occur, until the system reaches a steady state. At this time, the remaining fraction of nodes in networkA and
networkB are equal toX andY [25, 36],

= - -
= - -

[ ( )]
[ ( )] ( )

X p q g p

Y p q g p

1 1 ,

1 1 . 16
A B

B A

The size of the giant components of networksA andB can be expressed as ¥P A, and ¥P B,

= =¥ ¥ ( )P Xg P Yg, , 17A A B B, ,

Figure 2.Comparison of S as a function of p under LA andRAwith different parameters c for real networks. (a)Undirected Brightkite
network [49], (b) undirected Epinions network [50], (c) undirectedOpenflight network [51], (d)undirectedHAMSTERster network
[51]. The parametersN,M, á ñk denote the number of nodes and links, average degree, respectively.
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where gA(X) and gB(Y) satisfy
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and p=G0(h, h
2). Figure 5(a) shows that simulation results for several values of c, are in good agreementwith

the theoretical results obtained from equations (16)–(18)Wecan see infigure 5(a) that ¥P A, continuously
increases from zero tofinite value at the second order critical threshold pc

II for q=0.2, but abruptly jumps from
zero to afinite value at thefirst order critical threshold pc

I for q=0.8. These results suggest that the phase
transition nature changes from second order tofirst order at a critical coupling strength qc. By combining
equations (16)–(18), we can obtain pc as a function of q, as shown infigure 5(b). The upper panel infigure 5(b)
shows that pc increases with increasing c, whichmeans that increasing either clustering coefficient or coupling
strengthmakes the networkmore vulnerable to LA. In contrast, as seen in the lower panel, for RA, the system
robustness almost remains the same for q<qc and increasing c and becomesmore vulnerable for q>qc. In
figures 5(c) and (d), we see also that increasing c or/and decreasing á ñk will enlarge pc, whichmeans increasing
clustering coefficientmake networksmore vulnerable. From comparing the two kinds of attacking strategies in
figure 5(b), we can also see that qc is almost constant when changing clustering for RA, but increases as c increases
for LA.

Next, we perform a LA by simulated removing a fraction 1−p of nodes fromnetworkA. Let ¥P ,1denote the
size of the giant component of networkA at the steady state. Figures 6(a) and (b) compare simulation results of
FDDwith theoretical results ofDPD from equations (16)–(17) of [45]. Figures 6(a) and (b) indicate that for LA,
second andfirst order phase transition behaviors can be observed, respectively, for weak (q=0.2) and strong
(q=0.8) coupling strengthwith different c. Note that pc increases with increasing c for both, FDDandDPD.
This suggests that robustness of both cases of clustered networks decreases with increasing clustering coefficient.
Note, however, that, pc ofDPD is larger than that of FDDexcept for c=0. As seen infigures 6(c) and (d), that the

Figure 3.Comparison of pc as a function of cunder LA(circles) andRA(squares)with different parameters c in real networks for
Scutoff=0.001. (a)Brightkite network, (b)Epinions network, (c)Openflight network, (d)HAMSTERster network.
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behavior in LA is in contrast with RA [45]. Additionally, for clustered networks of types FDDandDPD,
figures 6(c) and (d) compare the change of pcwith qunder LA andRA. The left panel offigure 6(c) for FDDunder
LA illustrates that increasing clustering coefficient has almost no effect on robustness for weak coupling
strength. But forDPD,we notice that the systembecomemore vulnerable as c increases for all coupling strengths
as seen in the right panel offigure 6(c). Inmarked contrast, if the FDD system suffers fromRA, it becomesmore
vulnerable as c increases for bothweak and strong coupling strength as shown in the left panel offigure 6(d).
However forDPD, the system gradually becomes vulnerable as c increases only for strong coupling strength as
seen in right panel offigure 6(d).

3.2. Star-likeNONof ERnetworkswith clustering
Wegeneralize our results for two interdependent networks with clustering analyzed in above subsection, to a
systemwhose dependence structure is a network and each node is a clustered network, i.e. NON [26]. For
simplicity, we assume that all clustered networks satisfy a joint degree distributionwith the same á ñs and á ñt .
Here, we adopt the non-feedback condition [27] for dependency structure like in the above section. In this
subsection, we study the cases of a star-likeNON formed of ER networkswith clustering (as demonstrated in
figure 7(a)) and random regular (RR) of ERnetworks with clustering (as shown infigure 7(b)).

Here we study star-likeNON formed of n clustered networks, inwhich a central network is linked via
dependency linkswith other n−1 networks. I.e. the n−1 networks aremutually dependent on the central
network but do not depend on each other, seefigure 7(a).We assume that a fraction qi,1 (i=2, 3,K, n) of nodes
in networkAi and vice versa. depends on nodes in the central networkA1. If one of a pair of interdependent
nodes fail, the other node that depends on it also fail to function. The initial attack is exerted on each network by
removing locally a fraction 1−p of nodes and this damage spreads in this systemback and forth until no node
depends on a disabled node, and the remaining network is stable or fully collapsed. For simplicity, butwithout
loss of generality, we set q2,1=q3,1=...=qn,1=q. The fraction of left nodes inA is equal toX and in the other
n−1 networksAi (i=2, 3,K, n) is equal toY, following the expressions [27, 37],

Figure 4. (a) and (b) show that ¥P (circles) and ¥P ,2 (squares) as functions of pwith different cunder LA andRA, respectively, for a
single FDDnetwork, where ¥P ,2 is the size of the second largest component of the single clustered network after attack. (c) pc as a
function of cwith k=4 and 6 under LA andRA for single clustered network. Simulation results are obtained by averaging over 100
realizations withN=105.
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and p=G0(h, h
2).

Simplifying equations (19)–(21), we get
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Figure 8(a) shows that simulation results agree well with theoretical predictions obtained from
equation (22). Additionally, we observe infigures 8(a) and (b) that as q decreases, the system changes from an
abrupt first order phase transition to a continuous second order transition at a critical coupling strength qc. And,
the results show that the systembecomesmore vulnerable for larger c.Moreover, it is seen that for RA as q

Figure 5. (a) ¥P A, as a function of p for á ñ = á ñ = á ñ =k k k 4A B , where solid lines drawn from equations (16)–(18) and symbols
represent simulation results withN=105 for several q and c values. The simulation results are obtained by averaging over 100
realizations. (b)Critical threshold pc as a function of q (q=qA=qB) for c=0, 0.1 and 0.15with á ñ =k 4. Blue full triangles
indicate the critical value qc from equations (16)–(18). (c)Critical threshold pc as a function of c for q=0.2, 0.7 and 1 for á ñ = á ñ =k k A
á ñ =k 4B under LA andRAobtained from equations (16)–(18). (d) pc as a function of á ñk for different q=0.2, 0.7 and 1with c=0.1
under LA andRAobtained from equations (16)–(18).
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Figure 6.Parameters in all panels include different c=0, 0.1 and 0.2,N=105 and á ñ = á ñ = á ñ =k k k 4A B . All the simulation results
are obtained by averaging over 100 realizations. (a) and (b) ¥P ,1 as a function of p for q=0.2 and q=0.8, respectively, comparing
FDD andDPD. (c) pc as a function of qunder LA for both FDDandDPD. (d) pc as a function of qunder RA for both FDDandDPD.

Figure 7. (a) Star-likeNONwhere each network is clustered. Here, network 1 is the central network, which has interdependent
relationships with other n−1 networks. (b)Random regular network of clustered networks consist ofmER clustered networks
which aremutually interdependent [45].
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approaching to 0, pc lines for different c gradually become closer, while for LA, as c increases, pc becomes larger,
suggesting that increasing clusteringwithin networksmakes the systemmore vulnerable to LA. This is seen even
more clearly infigures 8(c) and (d) comparing pc as functions of c and á ñk for different qunder LA andRA. As
seen infigure 8(c) the systemunder LA andRA shows very different robustness as c increases for weak coupling
strength q=0.2, 0.5 and á ñ =k 4. The system is significantlymore robust under RA compared to LA for weak
coupling strength. But for strong coupling strength q=0.7, the system shows similar robustness for both
attacking strategies. Fromfigure 8(d), one can see that increasing á ñk enhances the robustness for both attack
strategies, but LAhas amore destructive power, thatmakes the systemmore vulnerable compared to RA.Note
that as á ñk increases, the robustness of system gradually shows differences for different attacking strategies even
for strong coupling strength, as shown infigure 8(d).

Figure 9 shows the dependence of the critical coupling strength qc on n from equation (22) for several c. The
results show that qcmonotonically decreases as n increases, implying that theNON systemmore easily shows
first order phase transition, when n increases. Additionally, qc increases as c increases for different n, which imply
that the region of occurring second phase transition becomes larger as clustering coefficient increases.

3.3. RRNONof clustered networks
Nextwe studyRRNON formed of ERnetworkswith clustering. The ERnetworks are clustered networkswhile
theNON is a RRnetworkwith same degreem for all the nodes, whichmeans that every ER clustered network is
partially dependent (with q dependency nodes) on otherm clustered networks, see figure 7(b) [55]. Assuming
that the initial attack is exerted on each ERnetwork through locally removing a fraction 1−p of nodes of the
network by removing all nodes shell by shell around a randomly chosen node. For simplicity, we let each
clustered network to have the same average number of single links á ñs , average number of triangles á ñt and
coupling strength q.When the cascading failures process reaches a stable state, the remaining fraction of nodes
in any clustered network isX [55]

Figure 8. (a) ¥P A, as a function of p for a star-likeNONwith á ñ = á ñ = á ñ =k k k 4A Ai andn=5, where solid lines are obtained from
equation (22) and symbols are simulation results withN=105 for different q and c. All results are obtained by averaging over 100
realizations. (b) pc as a function of q for c=0, 0.1 and 0.15with á ñ =k 4 and n=5 obtained from equation (22). (c) pc as a function of
c for different qwith á ñ =k 4 and n=5 obtained from equation (22). (d) pc as a function of k for different qwith c=0.1 and n=5
obtained from equation (22).
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equation (26). And, by equating the first derivative of both sides of equation (26)with respect to ¥P , we obtain
the critical threshold at qc. Thus, the critical coupling qc, where thefirst order phase transition changes to a
second order phase transition can be obtained analytically as follows
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Figures 10(a)–(c) show that simulation results and theoretical predictions obtained fromequation (26)
with á ñ =k 4 agreewell. In addition,weobserve infigures 10(a)–(c) that ¥P continuously increases at a critical
threshold pc

II for q=0.2 andm=2, 3 (secondorder phase transition). However, as seen infigures 10(a) and (b)
¥P changes abruptly at pc

I (first order phase transition) for q=0.5, and infigure 10(c) for q=0.35. Figures 10(a)–
(c) indicate that increasing coupling strength changes the phase transition fromsecondorder tofirst order, and pc
increases as clustering coefficient increases, as canbe seen infigure 10(d). Note that the systembecomesmore
vulnerable asm increases since thepc value increases.And, qc gradually increaseswithm as seen infigure 10(d).

Figure 11(a) shows that increasingm induce decrease of qc and implies that it ismore easy to have a first
order phase transition. The lower panel in figure 11(b) shows that for RA, the pc values for different c are
almost constant for small q, whichmeans changing clustering coefficient has little influence for RA, but, as
seen in the top panel, there exists obvious differences under LA. This illustrates that for LA, increasing
clustering coefficientmakes the networkmore vulnerable. Figures 11(c) and (d) show pc as a function of c and
á ñk for different q.

Figure 9.The critical coupling, qc, as a function of nwith á ñ =k 4 for different c values under LA from equation (21).
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4. Conclusions

Herewe study both theoretically and numerically the robustness of clustered networks under LA of three cases,
single clustered network, two interdependent clustered networks andNON (star-likeNONandRRof clustered
networks).We also studied, two types of clusteringmodels. One is theDPD and the second isfixed degree
distribution obeying Poisson distribution (FDD). For theDPD case, the LA on a single network shows a second
order percolation behavior.When considering several real networks, we alsofind that systembecomesmore
vulnerable and significantlymore difficult to protect against LA, but the system robustness does not almost
change in RA as clustering coefficient increases. For two interdependent clustered networks andRRNONof
clustered networks, increasing q leads to a change from a second order to afirst order phase transition. For the
case of a single clustered network, pc increases as c increases and k decreases. This is inmarked contrast to RA,
where pc almost keep constant. For the case of dependent networks, the results demonstrate that pc becomes
larger as c and q increase. Besides, for star-likeNON, as n increases, pc becomes larger and qc decreases gradually,
which indicates that the systembecomesmore vulnerable and is easier to show afirst order phase transition.
Furthermore, we studied two generalized cases forNONs and found that higher clustering coefficient causes the
system to bemore vulnerable. For FDDcase, by taking two interdependent networks as an example, we found
that pc is almost unaffected for q<qcwhen c increases, but for q>qc, pc increases as c increases, which is in
marked contrast to RA.

Figure 10. (a) ¥P as a function of p form=2 and n=6 for different q=0.2, 0.5 and c=0, 0.15. (b) ¥P as a function of p form=2,
c=0.1, 0.2 and q=0.2, 0.5. (c) ¥P as a function of p form=3, c=0.1, 0.15 and q=0.2, q=0.35. In (a)–(c), solid lines represent
the analytical results from equation (26)with á ñ =k 4, and symbols denote the simulation results withN=105. The simulation
results are obtained by averaging over 100 realizations. (d) pc as a function of q form=2, 4, 6 and c=0.1. Blue full triangles indicate
the critical value qc. Dashed lines and thick symbols denote second order phase transition, while solid lines and thin symbols denote
first order phase transition.
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