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Abstract

Network systems with clustering have been given much attention due to their wide occurrence in the
real world. One focus of these studies has been on robustness of single clustered networks and
interdependent clustered networks under random attack (RA) or hub-targeted attack. However,
infrastructure networks could suffer from a damage that is localized, i.e. a group of neighboring nodes
attacked or fail, a topic that was not studied earlier on clustered networks. In this paper, we analytically
and via simulations study the robustness under localized attack (LA) of single Erd6s—Rényi clustered
network and interdependent clustered network. For generating networks with clustering we use two
models: (i) double Poisson distribution (DPD) and (ii) fixed degree distribution (FDD). For the LA
case, the DPD model shows a second order phase transition behavior for a single clustered network,
while for dependent networks, the system undergoes a change of percolation phase transition from a
first order (abrupt transition) to a second order (continuous) transition when the coupling strength g
decreases below a critical value g.. Our results imply that single networks become significantly more
vulnerable with increasing clustering coefficient c with respect to LA. This is in contrast to RA where
the robustness is almost independent of c. We obtain similar results when testing different real
networks. For LA on dependent networks, we also observe that the system becomes more vulnerable
as cincreases. This is again in contrast to RA, where for, g < g, the system robustness is almost
unaffected by increasing clustering. We also solved analytically the case of LA on random regular
networks which are clustered and interdependent and find that as m (the number of clustered
networks that each network depends on) or cincreases, the system becomes significantly more
vulnerable. We also analyzed via simulations the case of generating clustering in networks for the
model of keeping a FDD, and find that the influence of clustering on the robustness of two partially
interdependent networks under LA is smaller than for DPD, which is very different from these cases
under RA.

1. Introduction

Opver the past two decades, the study of complex networks has gained increasing attention. The main reason is
that many real systems in our daily life can be described and better understood when represented as complex
networks. Examples include the Internet and World Wide Web, food webs, social networks, transportation
systems, electricity distribution networks, genetic networks, brain networks and many others [1-11]. An
important concern in the study of complex networks is their robustness, which is important for many fields,
such as ecology, biology, economics and engineering [ 12—18]. Network robustness deals usually with the
question of the response of the network to random failures and targeted attacks. This question can be analyzed
and characterized using percolation theory by studying the critical thresholds or the integrated size of the largest
cluster during the attack process [19-23].
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Many useful results have been obtained by analyzing the robustness of single isolated networks. However,
in many real scenarios, critical infrastructures rarely appear in isolated state but usually depend on other
infrastructures for functioning. This has led to the emerging sub-field of research in network science, called
interdependent networks or more general, networks of networks (NON). Many constructive conclusions have
been obtained which improve our understanding of the robustness of interdependent networks. Buldyrev et al
[24] developed a framework for understanding the robustness of two fully interdependent networks under
random failures, and found that interdependent networks become, due to cascading failures, significantly more
vulnerable compared to their single networks counterparts and undergo an abrupt (first order transition)
collapse. Subsequently, a system of two partially interdependent networks (where a fraction of q nodes in both
networks depend on each other) under random failures has been studied by Parshani et al[25]. It was found,
both analytically and numerically that reducing the coupling strength below a critical value g,, yields to a change
from a first order to a second order percolation transition. Gao et al developed a general framework to study the
percolation behavior of n interdependent networks, suffering from random failures [26—28]. The above studies
reveal that dependency links between networks make the system highly vulnerable to random failures that may
yield cascading failures and understanding their mechanisms might help to design resilient infrastructures and
improve existing infrastructures.

Due to the broad degree distribution of real networks, it was proposed to analyze the vulnerability with
respect to a targeted attack on the high degree nodes. Such attacks have dramatic structural effects on single
networks and can lead easily to network fragmentation [18, 20, 29-33]. By introducing a probability function of
node degree to fail, Gallos et al found that for the targeted attacks case, even little knowledge of the highly
connected nodes can reduce significantly the robustness compared to the random attack (RA) case [34]. By
mapping the targeted-attack problem to the RA problem, Huang et al [35] studied the robustness of two fully
interdependent networks under targeted attack. Later, Dong et al 36, 37] studied the robustness of two partially
interdependent networks against targeted attack, and further proposed a general theoretical framework for
understanding the targeted-attack problem in a NON system.

However, in many real scenarios, attacks are neither random nor targeted, but localized, which means a
group of neighboring nodes in a network are attacked or fail due to natural disasters like earthquakes or floods.
For example, when an earthquake occurs, it releases energy in the form of seismic waves that spread from the
epicenter in all directions. According to local amplification effect, even for low-intensity earthquakes, local
geological features can induce high levels of shaking ground surface in a certain radius around the center, which
can destroy locally the infrastructures. Only few studies on such localized attacks (LAs) strategy have been
reported. Shao et al developed a theoretical and numerical approach to study the robustness of complex
networks against LA [38]. Berezin et al described and predicted the effects of LA on spatially embedded systems
with dependencies, and found that a LA can cause substantially more damage compared to an equivalent RA
[39]. By mapping the LA problem to a RA problem, Yuan et al showed how the broadness of the degree
distribution affects the fragility of interdependent networks due to LA [40]. Zhao et al finds a mapping between
overload failures and dependency links [41]. Dong et al proposed a modified partially LA strategy, and studied
the network robustness against this attack analytically and numerically [42].

As one of the key issues in complex networks, clustered networks, which is a realistic feature appearing
frequently in real network, have attracted much attention in both theoretical research and in various applied
fields [43]. However, networks with clustering were studied only with respect to random failures or high degree
attacks [44, 45], while the effect of LAs on clustered networks has not been studied earlier.

In this paper we study the percolation behavior due to LAs in two types of clustered networks models in
single clustered network, as well as in network of interdependent networks with clustering. The two models are:
(a) we generate networks for which the degree distribution of the clustered network follows double Poisson
distribution (DPD) [46]. (b) We generate networks with fixed degree distribution having a Poisson distribution
(FDD) [45, 47]. The results for single networks and real networks are described in section 2. The robustness of
NON with clustering are analyzed in section 3.

2. Single networks with clustering

In a network, the clustering feature can be characterized by specifying the fraction of nodes connected to s single
links and having ¢ triangles (clustering). As a special case, we consider an Erd6s—Rényi (ER) type network with
clustering having a probability density which obeys a DPD [46]

pGs, 1) = e L e 8 .
s! !
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where (s) and (t) are the average numbers of single links and triangles per node, respectively. The average degree
ofanodeisthus, (k) = (s) + 2(t). The generating function of the DPD can be expressed as [46],

Golx, y) = 3 P(s, D)xy' = el Do, @)

s,t=0

The clustering coefficient is defined as ¢ = ﬁ, which implies the average of the clustering coefficient of all
nodes by using the probability that two edges share a node in the network. For ¢ = 0, the network does not have
clustering, which is the limit of the ER network.

The LA is performed as follows. We randomly choose a node as a ‘root’ node and denote all nodes distances
from this root, shell by shell according to increasing distance. Next, the LA is performed by the following two
stages. We first remove around the root node all nodes shell by shell according to increasing distance, and
remove all the links connecting all pairs of the removed nodes until a fraction of 1 — p nodes from the whole
network is removed. In this stage we keep the links between the removed nodes and the remaining nodes. The
distribution of nodes with s single links and ¢ triangles in the remaining network is [35, 38]

Ap(s, 1)

B(s, 1) = N 3

where A,(s, ) denotes the number of nodes with s single links and ¢ triangles. When one more node is being
removed, we get

Py(s, t)s 2B, (s, 1)t

Ap—1/n)(ss 1) = Ap(s, t) — , 4
(K ()
where (k), = >>B,(s, t)(s + 2t). As N — 00, equation (4) can be presented by differentiating A,(s, t) with
respect to p,
dA, (s, 1) _ P,(s, t)(s + 21) )
dp (k)p
By differentiating equation (3) with respect to p and substituting it in equation (5), we get,
dP,(s, t) P,(s, t)(s + 2t)
L=+ Bt - L = (6)
dp (k)p
The solution of equation (6) can be written as,
sp2t
P,(s, t) = P(s, t)——, 7
W6 D) = P D %)
where Gy(h, h*) = p. The generating function of the residual network is
Go(hx, h%) &ls) (hx=1) o(1) (WPy—1)
> = P 5 syt = = .
Gulo ) = 2 B 03y = =2 G TRy i g ©
The probability of alink to end at an unremoved node in the remaining network can be expressed as [38],
. Gy(h, h?
p=e) L ©)
Gy(1, )h  h

In the second stage we remove all remaining links from the removed nodes, which are connected to the
remaining non removed nodes. The generating function of the remaining network is

Gl y) = Gl — p + px, 1 — p + py). (10)

Ifwe find a clustering network A of generating function Gy(x, y), after a RA of removing 1 — p fraction of nodes
than the generation function of the remaining network becomes G/ = Go(1 — p + px, 1 — p + py)[45,47].
Next, we map the LA problem on network A to a RA problem on network A. By using G = G (x, y) and
equation (10), we deduce

Go(x, y) = el =D () h(y—1) an
Thus, the fraction of the giant component of the remaining clustered network is
g(p) =1 — Go[l — p(1 — F(P)), (1 — p(1 — F(PI)H] = 1 — eFIPU@=DIel)hI-pU=F(PIF-1} (1)

where f(p) satisfies £ (p) = Gi[1 — p(1 — f(p), (1 — p(1 — f(p)})] = O PI=Dlel)hllI=pA=f(pIF~1)

and G, (x, y) = g,z ET T )) = Gy(x, y). The fraction of the giant component with respect to the original clustered

network is
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Figure 1. (a) Size of giant component P, asa function of p for (k) = 4 and different values of ¢, where solid lines are from
equations (12) and (13) and symbols are from simulations with a network of number of nodes N = 10°. All simulation results are
obtained by averaging over 100 realizations. (b) p. as a function of ¢ for different (k) = 4, 6 from equation (14). Results are also
compared to RA. (c) p.as a function of k with different ¢ = 0, 0.1 and 0.15 from equation (14). Results are also compared to RA.

P = pg(p). (13)

Figure 1(a) presents both the numerical solution of P, in equation (13) and simulations for several values of c,
which support well the theory. In addition, when comparing different ¢, we find that p. increases with cand P,
increases continuously from zero at the critical threshold p, to a finite value, which means that the system

undergoes a second order phase transition. As f (p) — 1, the critical threshold of the second order phase
transition p, can be found as [38],

1
CREEE AT o
Moreover, the dependence of p. on cand (k) are shown in figures 1(b) and (c). As can be seen, p.increases as ¢
increases and (k) decreases. Thus, the network becomes more vulnerable with increasing clustering coefficient.
This is in marked contrast to RA, where the system robustness does not change with increasing clustering
coefficient, as seen in figures 1(b) and (c).
Clustering has an important effect in epidemic processes, information spread, network resilience,
and dynamical systems on the networks. For example, in a social network, two friends of an individual
have a high probability to become friends. From above, we analyze and compare the robustness of several
real networks under LA and RA, and analyze them while changing the actual clustering in the real network
using rewiring algorithm [48-52]. Figure 2 demonstrates that S as a function of p for several real networks
with different clustering c under LA and RA. For real networks, we use a small Sofrto find p.. Simulation
results suggest that p, is almost unchanged for RA but p, dramatically increases for LA, as seen in figure 3.
Thus again, clustering coefficient almost have no effect on system robustness for the case of RA, but it
has a significant effect on system robustness for LA. As clustering coefficient increases, the system
becomes more and more vulnerable and significantly more difficult to protect for LA, similar with
above theoretical results. Note that the effect of clustering in the real networks (figure 3) on their
vulnerability is significantly more than found in our theory (figure 1(b)). The reason is that the model we
solved analytically is for Poisson degree distribution (equation (1)) but the real networks shown in figure 3
are of scale free type, where we expect a stronger effect in LA. This since neighbors of nodes in scale free
networks are usually high degree and a LA will remove them in the first stages [53] while RA removes mostly
low degree nodes.
Nextly, we consider the FDD model for single clustered networks, which preserves the total degree
distribution P(k) for different c using the method proposed by Hackett et al as given by equation (15) below, i.e.
changing cbut keeping a FDD [45]

P(s, t) = P(k) b s42¢ [(1 — 010 + fOr, 155200 /2)]
B fzkk[P(zk) + P2k + 1)]

c =
k
()P
where P (k) = (k)ke=®) /k!, f € [0, 1]and |.]|is the floor function [45, 47, 54]. According to above expression,

equation (15), clustered network are assumed to have joint distribution P, from a given degree distribution P(k)
by randomly choosing a fraction fof nodes to be connected to maximum possible number of triangles while the

15)
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Figure 2. Comparison of S as a function of p under LA and RA with different parameters c for real networks. (a) Undirected Brightkite
network [49], (b) undirected Epinions network [50], (c) undirected Openflight network [51], (d) undirected HAMSTERSster network
[51]. The parameters N, M, (k) denote the number of nodes and links, average degree, respectively.

remaining fraction 1 — fofnodes are attached to single edges only. From this definition, we can get the above
equation (15) for the clustering coefficient c as a function of f [45].

From figure 4, one can observe the peaks of the second largest cluster, P, , for different c corresponding to
the phase transition point from simulation results. It is also seen that p. under LA is almost unchanged with
increasing ¢, but increases for RA as seen in both figures 4(b) and (c). This means that changing clustering
coefficient for a single FDD has a little effect for LA but increasing clustering coefficient can make single network
under FDD more vulnerable, which is in marked contrast to the case of DPD.

3. NON with clustering

3.1. Two interdependent clustered networks

In this subsection, we study the robustness under LAs of two partially interdependent clustered networks A and
B, which obey the DPD P(s, t), with parameters (s)y = (s)s = (s), (t)a = (t)p = (t)andN, = Np = N,
respectively. We assume a fraction g, (qp) of nodes in network A (B) depends on nodes in network B (A). This
means that a node in network Bwhich depends on a failed node in network A, will also fail, and vice versa. We
start by removinga fraction 1 — p of nodes from network A and B separately through LA, cascading failures
occur, until the system reaches a steady state. At this time, the remaining fraction of nodes in network A and
network Bare equal to X and Y[25, 36],

X =pll —q,( — gp)l,
Y =p[l —g5(1 — g,p)] (16)

The size of the giant components of networks A and B can be expressed as P, 4 and Py, 5

Poo,A - XgA) Poo,B - YgB) (17)
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Figure 3. Comparison of p. as a function of c under LA(circles) and RA(squares) with different parameters ¢ in real networks for
Secutott = 0.001. (a) Brightkite network, (b) Epinions network, (c) Openflight network, (d) HAMSTERster network.

where g4(X) and gz(Y) satisfy

g=1—f4
B=1—fp

— o {1=[p(0—q,A=A=fpNIA—f)—1} () {1 =[p(A—q (1= (A =fRpNI (1 —=f )} =1}
fA ¢ € >

fB — eM1=[p( =g = =fPNIA~f) =1} o) H{{1=[p(1 =g (1 = (A =f P11 = f)}* =1} , (18)

andp = Go(h, h*). Figure 5(a) shows that simulation results for several values of ¢, are in good agreement with
the theoretical results obtained from equations (16)—(18) We can see in figure 5(a) that P, 4 continuously
increases from zero to finite value at the second order critical threshold pcH for g = 0.2, but abruptly jumps from
zero to a finite value at the first order critical threshold pcI for g = 0.8. These results suggest that the phase
transition nature changes from second order to first order at a critical coupling strength g.. By combining
equations (16)—(18), we can obtain p_as a function of g, as shown in figure 5(b). The upper panel in figure 5(b)
shows that p.increases with increasing ¢, which means that increasing either clustering coefficient or coupling
strength makes the network more vulnerable to LA. In contrast, as seen in the lower panel, for RA, the system
robustness almost remains the same for g < g.and increasing cand becomes more vulnerable forg > g..In
figures 5(c) and (d), we see also that increasing c or/and decreasing (k) will enlarge p,, which means increasing
clustering coefficient make networks more vulnerable. From comparing the two kinds of attacking strategies in
figure 5(b), we can also see that g, is almost constant when changing clustering for RA, but increases as c increases
for LA.

Next, we perform a LA by simulated removing a fraction 1 — p of nodes from network A. Let P,, ; denote the
size of the giant component of network A at the steady state. Figures 6(a) and (b) compare simulation results of
FDD with theoretical results of DPD from equations (16)—(17) of [45]. Figures 6(a) and (b) indicate that for LA,
second and first order phase transition behaviors can be observed, respectively, for weak (¢ = 0.2) and strong
(g = 0.8) coupling strength with different c. Note that p, increases with increasing ¢ for both, FDD and DPD.
This suggests that robustness of both cases of clustered networks decreases with increasing clustering coefficient.
Note, however, that, p. of DPD is larger than that of FDD except for ¢ = 0. As seen in figures 6(c) and (d), that the

6
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Figure 4. (a) and (b) show that P, (circles) and Py, , (squares) as functions of p with different cunder LA and RA, respectively, for a
single FDD network, where P, , is the size of the second largest component of the single clustered network after attack. (¢) p.asa
function of cwith k = 4 and 6 under LA and RA for single clustered network. Simulation results are obtained by averaging over 100
realizations with N = 10°.

behavior in LA is in contrast with RA [45]. Additionally, for clustered networks of types FDD and DPD,

figures 6(c) and (d) compare the change of p. with g under LA and RA. The left panel of figure 6(c) for FDD under
LA illustrates that increasing clustering coefficient has almost no effect on robustness for weak coupling
strength. But for DPD, we notice that the system become more vulnerable as c increases for all coupling strengths
as seen in the right panel of figure 6(c). In marked contrast, if the FDD system suffers from RA, it becomes more
vulnerable as c increases for both weak and strong coupling strength as shown in the left panel of figure 6(d).
However for DPD, the system gradually becomes vulnerable as c increases only for strong coupling strength as
seen in right panel of figure 6(d).

3.2. Star-like NON of ER networks with clustering

We generalize our results for two interdependent networks with clustering analyzed in above subsection, to a
system whose dependence structure is a network and each node is a clustered network, i.e. NON [26]. For
simplicity, we assume that all clustered networks satisfy a joint degree distribution with the same (s) and (¢).
Here, we adopt the non-feedback condition [27] for dependency structure like in the above section. In this
subsection, we study the cases of a star-like NON formed of ER networks with clustering (as demonstrated in
figure 7(a)) and random regular (RR) of ER networks with clustering (as shown in figure 7(b)).

Here we study star-like NON formed of 1 clustered networks, in which a central network is linked via
dependency links with other n — 1 networks. L.e. the n — 1 networks are mutually dependent on the central
network but do not depend on each other, see figure 7(a). We assume that a fractiongq; ; (i = 2,3, ..., n) of nodes
in network A; and vice versa. depends on nodes in the central network A,. If one of a pair of interdependent
nodes fail, the other node that depends on it also fail to function. The initial attack is exerted on each network by
removinglocallya fraction 1 — p of nodes and this damage spreads in this system back and forth untilno node
depends on a disabled node, and the remaining network is stable or fully collapsed. For simplicity, but without
loss of generality, weset g1 = g3,1 = ... = q,,1 = q. The fraction of left nodes in A is equal to X and in the other
n — lnetworks A; (i = 2,3, ..., n)isequal to Y, following the expressions [27, 37],

7
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Figure 5. (a) P, 4 asafunction of p for (k) = (k)4 = (k) = 4, where solid lines drawn from equations (16)—(18) and symbols
represent simulation results with N = 10° for several g and ¢ values. The simulation results are obtained by averaging over 100
realizations. (b) Critical threshold p.as a function of g (¢ = g4 = ¢qp) forc = 0,0.1and 0.15 with (k) = 4. Blue full triangles

indicate the critical value g, from equations (16)—(18). (c) Critical threshold p. as a function of cfor g = 0.2,0.7 and 1 for (k) = (k)4 =

(k)s = 4 under LA and RA obtained from equations (16)—(18). (d) p. as a function of (k) for differentq = 0.2,0.7 and 1 withc_ 0.1
under LA and RA obtained from equations (16)—(18).

X=pd—q+pgg)"

Y =pll —q+pag(l — q+ pqg,)"*1. (19)

The size of the giant components of network A and the other (n — 1) networks A;, can be expressed as P, ;
and P ,

Poo,l = Xgp Poo,Z = Ygz) (20)
where g; and g, satisfy
g=1-f
&H=1- fzi

fi = e OPU=atpaQ=RI A—f) ) Rl —pll—g+paQ =1 A=) ~1],
f,= e~ (0P (1=q+pa( =1 —q+pq(1—=L)1 2} A=f) o) h{[1—p{1-q+pg(1—f[1—g+pa(1-L)I" >} A~ -1} , (1)
andp = Go(h, h).
Simplifying equations (19)—(21), we get
Poc,l — p{ 1 — q + P4 [1 — e<t>hP§o,2*(<5)+2<t>h)Poo,z] }"*1 [1 _ e<t>hP§o,1*(<5>+2<t>h)Poo,lL
Po,=p {1 - q+ pq [1 — e<f>tho,l*(<5>+2<f>h)Px,l] {1-— q + pq 1— e(t)tho,r((s)JrZ(t)h)Px,z] }nfz }
X [1 — efthPxa=({&)+2() WP, (22)
Figure 8(a) shows that simulation results agree well with theoretical predictions obtained from
equation (22). Additionally, we observe in figures 8(a) and (b) that as g decreases, the system changes from an

abrupt first order phase transition to a continuous second order transition at a critical coupling strength q.. And,
the results show that the system becomes more vulnerable for larger c. Moreover, it is seen that for RA as g
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Figure 6. Parameters in all panels include different ¢ = 0,0.1and 0.2, N = 10°and (k) = (k)4 = (k)z = 4. All the simulation results

are obtained by averaging over 100 realizations. (a) and (b) Py, ; asa function of p forg = 0.2and q = 0.8, respectively, comparing
FDD and DPD. (c) p.as a function of g under LA for both FDD and DPD. (d) p. as a function of g under RA for both FDD and DPD.

(a) (b)

Figure 7. (a) Star-like NON where each network is clustered. Here, network 1 is the central network, which has interdependent
relationships with other n — 1 networks. (b) Random regular network of clustered networks consist of m ER clustered networks

which are mutually interdependent [45].
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Figure 8. (a) P, 4 asafunction of p for a star-like NON with <k5> = (k)4 = (k)4; = 4andn = 5, where solid lines are obtained from
equation (22) and symbols are simulation results with N = 10 for different g and c. All results are obtained by averaging over 100
realizations. (b) p.as a function of g for ¢ = 0,0.1and 0.15with (k) = 4 and n = 5 obtained from equation (22). (c) p. as a function of
cfor different g with (k) = 4 and n = 5 obtained from equation (22). (d) p. as a function of k for different gwithc = 0.l andn = 5
obtained from equation (22).

approachingto 0, p. lines for different ¢ gradually become closer, while for LA, as cincreases, p.becomes larger,
suggesting that increasing clustering within networks makes the system more vulnerable to LA. This is seen even
more clearly in figures 8(c) and (d) comparing p, as functions of cand (k) for different g under LA and RA. As
seen in figure 8(c) the system under LA and RA shows very different robustness as cincreases for weak coupling
strengthq = 0.2,0.5and (k) = 4. The system is significantly more robust under RA compared to LA for weak
coupling strength. But for strong coupling strength g = 0.7, the system shows similar robustness for both
attacking strategies. From figure 8(d), one can see that increasing (k) enhances the robustness for both attack
strategies, but LA has a more destructive power, that makes the system more vulnerable compared to RA. Note
that as (k) increases, the robustness of system gradually shows differences for different attacking strategies even
for strong coupling strength, as shown in figure 8(d).

Figure 9 shows the dependence of the critical coupling strength g, on # from equation (22) for several c. The
results show that g. monotonically decreases as n increases, implying that the NON system more easily shows
first order phase transition, when # increases. Additionally, g. increases as c increases for different n, which imply
that the region of occurring second phase transition becomes larger as clustering coefficient increases.

3.3. RRNON of clustered networks

Next we study RR NON formed of ER networks with clustering. The ER networks are clustered networks while
the NON is a RR network with same degree m for all the nodes, which means that every ER clustered network is
partially dependent (with g dependency nodes) on other m clustered networks, see figure 7(b) [55]. Assuming
that the initial attack is exerted on each ER network through locally removing a fraction 1 — p of nodes of the
network by removing all nodes shell by shell around a randomly chosen node. For simplicity, we let each
clustered network to have the same average number of single links (s), average number of triangles (¢) and
coupling strength q. When the cascading failures process reaches a stable state, the remaining fraction of nodes
in any clustered network is X [55]
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X =plq¥Yg(X) — q + 11",

Y = plgYg(X) — q + 11"}, (23)
where
gX)=1-f(X),
fX) = e 1=plaYg Q0=+ 11" A==} () {1 —plgYe(X)—q+11"A=))Y ~1}
p = Go(h, h?). (24)

The size of giant component in each network is
P = Xg(X). (25)
Simplifying equations (23)—(25), we obtain,

_ — "
Poozp[l—e<f>hP§r((s>+2(z>h)Px] 1—q+(qg— 172+ 4qP_ |

2

(26)

The critical threshold of the second order phase transition pCII can be obtained from P, ( pEH) — 0in
equation (26). And, by equating the first derivative of both sides of equation (26) with respect to P,,, we obtain
the critical threshold at g.. Thus, the critical coupling gq,, where the first order phase transition changes to a
second order phase transition can be obtained analytically as follows

_ {[(s) + 2(t)h1* + 2(t)h}(A — q.)*

¢ 2m((s) + 2(t)h] ’

pII — 1 ,

© (1= gq)"(s) + 2(t)h]

Go(h, h?) = p!". (27)

Figures 10(a)—(c) show that simulation results and theoretical predictions obtained from equation (26)
with (k) = 4 agree well. In addition, we observe in figures 10(a)—(c) that P,, continuously increases at a critical
threshold p? forq = 0.2 andm = 2, 3 (second order phase transition). However, as seen in figures 10(a) and (b)
P, changes abruptly at pcI (first order phase transition) for g = 0.5, and in figure 10(c) for ¢ = 0.35. Figures 10(a)—
(c) indicate that increasing coupling strength changes the phase transition from second order to first order, and p.
increases as clustering coefficient increases, as can be seen in figure 10(d). Note that the system becomes more
vulnerable as m increases since the p. value increases. And, g, gradually increases with m as seen in figure 10(d).

Figure 11(a) shows that increasing m induce decrease of g.and implies that it is more easy to have a first
order phase transition. The lower panel in figure 11(b) shows that for RA, the p values for different care
almost constant for small g, which means changing clustering coefficient has little influence for RA, but, as
seen in the top panel, there exists obvious differences under LA. This illustrates that for LA, increasing

clustering coefficient makes the network more vulnerable. Figures 11(c) and (d) show pas a function of cand
(k) for different q.
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¢=10.1,0.2andg = 0.2,0.5.(c) Py asafunction of p form = 3,c = 0.1,0.15and g = 0.2,q = 0.35.In (a)—(c), solid lines represent
the analytical results from equation (26) with (k) = 4,and symbols denote the simulation results with N = 10°. The simulation
results are obtained by averaging over 100 realizations. (d) p.as a function of g for m = 2,4, 6 and ¢ = 0.1. Blue full triangles indicate
the critical value g.. Dashed lines and thick symbols denote second order phase transition, while solid lines and thin symbols denote
first order phase transition.

4. Conclusions

Here we study both theoretically and numerically the robustness of clustered networks under LA of three cases,
single clustered network, two interdependent clustered networks and NON (star-like NON and RR of clustered
networks). We also studied, two types of clustering models. One is the DPD and the second is fixed degree
distribution obeying Poisson distribution (FDD). For the DPD case, the LA on a single network shows a second
order percolation behavior. When considering several real networks, we also find that system becomes more
vulnerable and significantly more difficult to protect against LA, but the system robustness does not almost
change in RA as clustering coefficient increases. For two interdependent clustered networks and RR NON of
clustered networks, increasing q leads to a change from a second order to a first order phase transition. For the
case of a single clustered network, p. increases as c increases and k decreases. This is in marked contrast to RA,
where p.almost keep constant. For the case of dependent networks, the results demonstrate that p.becomes
larger as cand g increase. Besides, for star-like NON, as n increases, p. becomes larger and g decreases gradually,
which indicates that the system becomes more vulnerable and is easier to show a first order phase transition.
Furthermore, we studied two generalized cases for NONs and found that higher clustering coefficient causes the
system to be more vulnerable. For FDD case, by taking two interdependent networks as an example, we found
that p. is almost unaffected for ¢ < g.when cincreases, butfor g > q,, p.increases as c increases, which is in
marked contrast to RA.
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