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Abstract – We study both analytically and numerically the robustness of n interdependent
networks with partial support-dependence relationship, which reflects real-world networks more
realistically. For a starlike network of n Erdős-Rényi (ER) networks, we find that the system
undergoes from second-order to first-order phase transition as coupling strength q increases.
Moreover, we notice that the region of the first-order transition becomes larger, while the region
of the second-order transition becomes smaller as the number of networks n increases. However,
for a starlike network of n scale-free (SF) networks, the system undergoes from second-order
through hybrid-order to first-order phase transition as q increases. Furthermore, we also observe
that the region of the first-order transition remains constant and appears only for q= 1, however,
the region of hybrid-order transition gradually becomes larger and the region of the second-order
transition becomes smaller as n increases. For a looplike network of n ER networks, we find
the giant component p∞ to be independent of the number of networks. Additionally, when the
average degree of networks increases, the region of the first-order transition becomes smaller and
the region of the second-order transition becomes larger. For the case of n ER networks with
partial support-dependence relationship, as average supported degree k̃→∞, n coupled networks
become independent and only second-order transition is observed, which is similar to q= 0.

Copyright c© EPLA, 2013

Introduction. – In the past years, the study of inter-
dependent networks attracted more and more attention
[1–16]. Recently, Buldyrev et al. [1] introduced a depen-
dency model with bidirectional links that defines one-
to-one correspondence between nodes of two networks.
Surprisingly, a broader degree distribution increases the
vulnerability of interdependent networks to random fail-
ure, which is opposite to how a single network behaves.
Two important generalizations have been proposed from
this model: i) Parshani et al. [2] discussed the case of
two partially interdependent networks. By analyzing this
model, their finding shows that reducing the coupling
between the networks leads to a change from first-order
transition to second-order transition at a critical point.
ii) Gao et al. [3] focused on studying the case of n inter-
dependent networks. Their result suggests that the clas-
sical percolation theory extensively studied in physics
and mathematics is a limited case of a general theory
of percolation in n interdependent networks with n= 1.

These studies on interdependent networks assume a one-
to-one correspondence dependency condition between the
nodes of any two networks. However, in the real world,
interdependency between two infrastructure networks is
usually not of this type. Quite recently, Shao et al. [4]
introduced a model with multiple support-dependence
between all nodes of two networks. They studied cascad-
ing failures in two fully coupled networks, where multiple
support-dependence relations are randomly built between
nodes of two networks. However, in many real systems,
more than two networks depend on each other. And,
when examining the features of real networks, we also
observe that not all nodes between any two networks of n
networks have a support-dependence relationship. Here,
based on these motivations, we generalize Shao et al.
model [4] by analyzing the robustness of n interdepen-
dent networks with partial support-dependence relation-
ship under random attack, which can model real networks
better.
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Fig. 1: (Colour on-line) Demonstration of cascading failures for
two networks A and B with support-dependence relationship.
Without loss of generality, we assume that the sizes of networks
A and B are NA =NB = 8. And, the fraction of dependent
nodes within networks A and B are qBA = 5

8 and qAB =
1
2 ,

which are represented by blue dots, while the other white
dots represent nondependent nodes. The blue curves repre-
sent connectivity links within the network, whereas directed
arrows represent support links connecting support nodes in one
network to dependent nodes in the other network. Correspond-
ingly, red arrows are from B to A and green arrows are from
A to B.

The model. – For each network of n networks,
there exists two types of nodes: dependent nodes and
nondependent nodes. Dependent nodes in one network
might be supported by nodes of other networks. On
the contrary, nondependent nodes do not need nodes
from other networks to support them. Furthermore, a
functional node of dependent nodes within one network
should satisfy both of the following conditions: i) to have
at least one functional support node in other networks
and ii) to belong to the giant component of functional
nodes in the network it belongs to [4]. A functional
node of nondependent nodes within one network just
needs to satisfy condition ii). For the case of any two
networks A and B with number of nodes NA and NB of
n networks, nodes are connected by connectivity links
within each network, with degree distributions PA(k) and
PB(k). We assume that nodes of network B support a
fraction qBA of nodes in network A, which are dependent
nodes within network A. And, nodes of network A
support a fraction qAB of nodes in network B, which are
dependent nodes within network B, as shown in fig. 1(a).
The support-dependence relationship is randomly built
between dependent nodes of A (or B) and all of the nodes
of network B (or A). In addition, support links, which
connect support nodes in one network to dependent nodes

in the other network, are represented by unidirectional
arrows. The support degree k̃A (or k̃B) of a node in
network A (or B) denotes that the node is supported
by k̃A (or k̃B) nodes in network B (or A), where k̃A (or
k̃B) satisfies the support degree distribution P̃A(k̃A) (or
P̃B(k̃B)).
For the process of cascading failures, initially, both

networks are attacked and a fraction 1− pA and 1− pB of
nodes in network A and B, are randomly removed, respec-
tively. As shown in fig. 1(b), at step 1, the connectivity
and dependency links of the attacked nodes are removed
in both networks. When treating nodes in network A at
step t, we assume that all their support nodes in network
B, which are found to be functional at step t− 1, are still
functional [4]. At step 2 of network A, according to condi-
tion i), the nodes in network A, which do not receive any
support from remaining nodes of network B at step 1 are
removed. Then, according to condition ii), the nodes which
do not belong to the giant component of network A are
also removed, as shown in fig. 1(c). All the failed nodes
of network A will lead to failures of support links start-
ing from them. Similarly, when treating nodes in network
B at step t, we assume that all their support nodes in
network A, which are found to be functional at the current
step t, are still functional [4]. Therefore, nodes in network
B, which neither receive any support from the remaining
functional nodes of network A nor belong to giant compo-
nent of network B, are also removed at step 2, as shown in
fig. 1(d). This process of cascading failures will continue
until no further nodes and links removal occurs, as shown
in fig. 1(f).

Theoretical framework. – In this section, we will
demonstrate the theoretical framework for cascading fail-
ures of n networks. For network i, we assume that there
are l neighbor networks j1, · · · , jm, · · · , jl supporting it.
Without loss of generality, we study cascading failures of
network i and one of its neighbor networks, jm. For one
node in network i, there are k̃jmi support nodes randomly
chosen from network jm, the probability of having no func-
tional support nodes in network jm at step t is

βjmit = qjmi

∞∑

k̃jmi=0

P̃ jmi(k̃jmi)(1− p
(jm)
t−1 )

k̃jmi

= qjmiG̃
jmi(1− p(jm)t−1 ), (1)

where a fraction of nodes qjmi in network i directly depend

on nodes of network jm, a fraction of nodes p
(jm)
t−1 in

network jm are functional nodes of network jm at step
t− 1, and G̃jmi is the generating function of the support
degree distribution P̃ jmi(k̃jmi). Therefore, the remaining
fraction of nodes in network i at step t is

x
(i)
t = pi(1−β

jmi
t ), (2)

where pi denotes the remaining fraction of nodes in
network i, after initially removing a fraction of 1− pi
nodes. By analyzing cascading failures between network
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i and all of its neighbor networks, when Ni→∞, the
fraction of remaining functional nodes in network i is

x
(i)
t = pi

l∏

m=1

[1− qjmiG̃jmi(1− p
(jm)
t−1 )], m= l. (3)

For the neighbor network jm, we assume that there are
r+1 neighbor networks i, s1, · · · , sh, · · · , sr supporting it.
Therefore, we randomly choose k̃ijm support nodes in
network i, and the probability that a node in network jm
has no support nodes in network i at step t is

β
(ijm)
t = qijm

∞∑

k̃ijm=0

P̃ ijm(k̃ijm)(1− p
(i)
t )
k̃ijm

= qijmG̃
ijm(1− p(i)t ). (4)

From the above analysis, the probability that a node in
network jm has no functional support nodes in network sh
(h= 1, · · · , r) at step t is

βshjmt = qshjm

∞∑

k̃shjm=0

P̃ shjm(k̃shjm)(1− p
(sh)
t−1 )

k̃shjm

= qshjmG̃
shjm(1− p(sh)t−1 ). (5)

Therefore, for Ni→∞, the fraction of remaining func-
tional nodes in network jm at step t is

x
(jm)
t = pjm(1− qijmG̃ijm(1− p

(i)
t ))

·
l∏

h=1

[1− qshjmG̃shjm(1− p
(jm)
t−1 )]. (6)

Then, we analyze cascading failures within networks
by applying condition ii). The generating function of the
degree distribution P i(k) of network i (i= 1, 2, . . . , n) is
[4,7]

Gi0 =
∞∑

k=0

P i(k)xk. (7)

The generating function of the underlying branching
process is

Gi1 =
G′i0(x)

G′i0(1)
. (8)

After removing a fraction of 1− pi nodes from network i,
new generating functions of the degree distribution and of
the underlying branching process are

{
Gi0(x, pi) =Gi0(1− pi(1−x)),

Gi1(x, pi) =Gi1(1− pi(1−x)).
(9)

At step t, the fraction of nodes which belong to the giant

component of remaining nodes in network i, x(i)t , is

g(i)(x(i)t ) = 1−Gi0(f
(i)
t , x

(i)
t ), (10)

where f (i)t satisfies the transcendental equation

f
(i)
t =Gi1(f

(i)
t , x

(i)
t ). (11)

Thus, the fraction of nodes in the giant component of
network i is

p
(i)
t = x

(i)
t g

(i)(x(i)t ). (12)

From eqs. (3), (6) and (12), as t→∞, x(i)t and p
(i)
t−1 both

reach constant values, x(i)∞ and p
(i)
∞ . Thus, the expressions

of x(i)∞ and p
(i)
∞ are





x
(i)
∞ = pi

∏l
j=1[1− qjiG̃ji(1− p

(j)
∞ ],

p
(i)
∞ = x

(i)
∞ gi(x

(i)
∞ ).

(13)

Especially, as l= 1 and qji = 1, we observe that eq. (13) is
consistent with Shao’s results [4].

Robustness of a starlike network of n networks.
– For n ER networks with partial support-dependence
relationship, the generating functions of the degree distri-
bution and of the underlying branching process of network
i (i= 1, 2, . . . , n) are [7,10,17–25]

Gi0 =Gi1 = e
〈ki〉(x−1), i= 1, 2, . . . , n. (14)

From eqs. (10), (11) and (14), we obtain the following
equations:





g(1)(x(1)∞ ) = 1− f (1)∞ = 1− e−〈k1〉p

(1)
∞ ,

g(j)(x(j)∞ ) = 1− f (j)∞ = 1− e−〈kj〉p
(j)
∞ ,

(15)

where p(1)∞ and p(j)∞ denote the fractions of the giant
component of the central network and surrounding
networks j (j = 2, . . . , n) at the end of the cascading
process. In this letter, we choose the support degree
distributions P̃ j1(〈k̃j1〉) and P̃ 1j(〈k̃1j〉) to be Poisson
distributions. Then, we get





qj1G̃j1(1− p(1)∞ ) = qj1e−〈k̃j1〉p

(1)
∞ ,

q1jG̃1j(1− p(j)∞ ) = q1je−〈k̃1j〉p
(j)
∞ .

(16)

And, eq. (13) becomes






x
(1)
∞ = p1

∏n
j=1[1− qj1e−〈k̃j1〉p

(j)
∞ ],

p
(1)
∞ = p1

∏n
j=1[1− qj1e−〈k̃j1〉p

(j)
∞ ](1− e−〈k1〉p(1)∞ ),

x
(j)
∞ = pj [1− q1je−〈k̃1j〉p

(1)
∞ ],

p
(j)
∞ = pj [1− q2e−〈k̃2〉p

(1)
∞ ](1− e−〈kj〉p(j)∞ ).

(17)

Let pj = p2, qj1 = q1, q1j = q2, 〈k1〉=〈kj〉= 〈k〉, 〈k̃j1〉= 〈k̃1〉
and 〈k̃1j〉= 〈k̃2〉, from eqs. (15), (16) and (17), we get

68004-p3



Gaogao Dong et al.

x
(j)
∞ g(j)(x

(j)
∞ ) = x

(2)
∞ g(2)(x

(2)
∞ ), p

(j)
∞ = p

(2)
∞ and f

(j)
∞ =

f
(2)
∞ (j = 2, 3, . . . , n). Then eqs. (11) and (17) can be
transformed to






x
(1)
∞ = p1[1− q1e−〈k̃1〉p

(2)
∞ ]n−1,

p
(1)
∞ = p1[1− q1e−〈k̃1〉p

(2)
∞ ]n−1(1− e−〈k〉p(1)∞ ),

f
(i)
∞ = e−〈k〉p

(1)
∞ ,

f
(2)
∞ = e−〈k〉p

(2)
∞ ,

x
(2)
∞ = p2[1− q2e−〈k̃2〉p

(1)
∞ ],

p
(2)
∞ = p2[1− q2e−〈k̃2〉p

(1)
∞ ](1− e−〈k〉p(2)∞ ).

(18)

and 




p
(1)
∞ =−

ln f (1)∞
〈k〉 ,

p
(2)
∞ =−

ln f (2)∞
〈k〉 .

(19)

From eqs. (18) and (19), we have






p
(2)
∞ =−

ln





1
q1



1−
(

p
(1)
∞

p(1−e−〈k〉p
(1)
∞ )

) 1
n−1










〈k̃1〉
,

p
(1)
∞ =−

ln

{
1
q2

[

1− p
(2)
∞

p(1−e−〈k〉p
(2)
∞ )

]}

〈k̃2〉
.

(20)

From eqs. (19) and (20), f (1)∞ and f (2)∞ can be solved

f
(2)
∞ =





1

q1



1−
(

− ln f (1)∞
p〈k〉(1− f (1)∞ )

) 1
n−1









〈k〉
〈k̃1〉

,

f
(1)
∞ &= 1; ∀f (2)∞ , f (1)∞ = 1,

(21)

f
(1)
∞ =

{
1

q2

[

1+
ln f (2)∞

p〈k〉(1− f (2)∞ )

]} 〈k〉
〈k̃2〉

,

f
(2)
∞ &= 1; ∀f (1)∞ , f (2)∞ = 1.

(22)

We verify our theory, eq. (20), by comparing theoretical
predictions with simulation results for different coupling
strength q, as shown in fig. 2(a). Additionally, from
fig. 2(a), we observe that the giant component of the
central network undergoes from second- to first-order
phase transition as q increases. Furthermore, by analyz-
ing the graphical solution of eqs. (21) and (22), the crit-
ical fraction pc can be solved by finding the touching

point of curves f (2)∞ (f
(1)
∞ ) and f

(1)
∞ (f

(2)
∞ ). Thus, the crit-

ical fraction pc can be obtained from the tangential condi-

tion df
(2)
∞

df(1)∞

df(1)∞
df(2)∞

= 1. Therefore, we get the first-order tran-

sition point pIc for strong-coupling strength q! qc and
the second-order transition point pIIc for weak-coupling
strength q < qc for different n. Moreover, we notice that as
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Fig. 2: (Colour on-line) (a) For a starlike network of n ER

networks, comparison between simulations and theory of p(1)∞
as a function of p for different q, with parameters 〈k̃〉= 6,
〈k〉= 6, and n= 5. In simulation, Ni =N = 105 and the results
are averaged over 50 realizations. (b) Coupling strength q as a

function of p for different n with parameters 〈k̃〉= 6, 〈k〉= 6.
(c) The critical fraction pc as a function of 〈k̃〉 for different n
with parameters 〈k〉= 6 and q= 1.

the number of networks n increases, the critical threshold
qc decreases. This means that the region of the first-order
transition becomes larger, while the region of the second-
order transition becomes smaller as n increases. For aver-
age supported degree 〈k̃〉→∞, we see that the expressions
of p(1)∞ and p(2)∞ of eq. (18) are consistent with the single
ER network’s expression, which means that in a central
network only second-order phase transition occurs, like in
a single ER network. In fact, from fig. 2(c), one can also
see that pc approaches the percolation threshold

1
〈k〉 of the

single ER network, which is the same as q= 0.
For SF networks, the degree distribution is P (k) =
ck−λ,m< k <M , where λ is the width of the distribu-
tion, and k, M , m are the degree, maximum degree, mini-
mum degree, respectively. The generating functions of the
degree distribution and the underlying branching process
of network i are [26]






Gi0(x) =
∑M
m [(

m
k )
λ−1− ( mk+1 )

λ−1]xk,

Gi1(x) =
∑M
m [(

m
k )
λ−1−( mk+1 )

λ−1]kxk−1
∑M
m [(

m
k )
λ−1−( mk+1 )λ−1]k

.
(23)

To simplify the theoretical framework of SF networks,
we choose the parameters pj = p2, qj1 = q1, q1j = q2,

λ1=λj=λ, 〈k̃j1〉= 〈k̃1〉, 〈k̃1j〉= 〈k̃2〉 (j = 2, 3, . . . , n).
Thus, from eqs. (10), (11), (14) and (16), we get

x
(j)
∞ g(j)(x

(j)
∞ ) = x

(2)
∞ g(2)(x

(2)
∞ ), p

(j)
∞ = p

(2)
∞ and f (j)∞ = f

(2)
∞ ,

as follows:





f
(1)
∞ =

∑M
m [(

m
k )
λ−1−( mk+1 )

λ−1]k(1−x(1)∞ +x
(1)
∞ f

(1)
∞ )k−1

∑M
m [(

m
k )
λ−1−( mk+1 )λ−1]k

,

f
(2)
∞ =

∑M
m [(

m
k )
λ−1−( mk+1 )

λ−1]k(1−x(2)∞ +x
(2)
∞ f

(2)
∞ )k−1

∑M
m [(

m
k )
λ−1−( mk+1 )λ−1]k

;

(24)
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Fig. 3: (Colour on-line) (a) For a starlike network of n SF

networks, comparison between simulations and theory for p(1)∞
for different q, with parameters n= 5, 〈k̃〉= 5, λ= 2.7, Ni =
105, i= 1, 2, 3, 4, 5. The simulation results are averaged over
50 realizations. (b) q as a function of p for n= 2, 5, 8, 10 for a
starlike network of n SF networks, other parameters are the
same as (a). In this numerical solution, we choose NOI= t and

ξ = 10−30 for p(1)t − p
(1)
t+1 < ξ.






x
(1)
∞ = p1[1− q1e−〈k̃1〉p

(2)
∞ ]n−1,

x
(2)
∞ = p2[1− q2e−〈k̃2〉p

(1)
∞ ],

p
(1)
∞ = x

(1)
∞ (1− f (1)∞ ),

p
(2)
∞ = x

(2)
∞ (1− f (2)∞ ).

(25)

Here, we compare simulations with theory from eqs. (24)
and (25) for a starlike network of five SF networks as
shown in fig. 3(a). From fig. 3(a), we observe that the
central network undergoes from second-order through
hybrid-order to first-order phase transition as the coupling

strength q increases. For hybrid-order transition, p(1)∞
jumps at pjumpc from a large value to a small value and
then continuously decreases to zero as p decreases. We
get pjumpc from NOI, which is easily identified by the
sharp peak characterizing the first-order and hybrid-order
transition point [2,26]. Furthermore, the threshold qh,IIc

where second-order transition turns into hybrid-order
transition can be easily identified as shown in fig. 3(b) [26].
We also observe that the critical threshold qh,Ic , where
hybrid-order transition turns into first-order transition,
keeps constant at q= 1 and qh,IIc gradually decreases as
n increases. Therefore, as n increases, the region of first-
order transition only occurs at q= 1, the region of hybrid
transition becomes larger and the region of second-order
transition becomes smaller as n increases.

Robustness of a looplike network of n networks.
– In this section, we study the robustness of a
looplike network of n ER networks with partial
support-dependence relationship. When a fraction of
1− pi (i= 1, 2, . . . , n) nodes are removed from network
i and t→∞, fi, xi and pi keep constant and equal
to f∞, x∞ and p∞ by setting parameters pi = p,

ql(l+1) = q(l+1)l = q1n = qn1=q, 〈k̃l(l+1)〉=〈k̃(l+1)l〉=〈k̃1n〉=
〈k̃n1〉= 〈k̃〉 and 〈k̃i〉= 〈k̃〉 (i= 1, 2, . . . , n). Then, by
eqs. (10), (11), (12), (13), (14) and (15), we get





x∞ = p(1− qe−〈k̃〉p∞)2,

f∞ = e−〈k̃〉p∞ .
(26)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p

p ∞

theory

simulation

(a)

q = 0.3 q = 0.6 q = 1q = 0.1

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

p

q

F irst order

Second order

Critical line

< k >= 20

< k >= 10

< k >= 5

< k >= 3

(b)

< k >= 30

Fig. 4: (Colour on-line) (a) For a looplike network of n ER
networks, comparison of theoretical results and simulations
for p∞ for different q, with parameters n= 5, 〈k̃i〉= 5, 〈k〉= 5
and Ni = 10

5, i= 1, 2, 3, 4, 5. (b) The coupling strength q as a

function of p for different 〈k〉 with 〈k̃〉= 5.

p∞ = p(1− e−〈k〉p∞)(1− qe−〈k̃〉p∞)2. (27)

From eqs. (26) and (27), we see that the giant component
of a looplike network of n ER networks is independent
of n. This is different from a starlike network of n ER
networks. In addition, from fig. 4(a), we see that the
network undergoes from second-order to first-order phase
transition as the coupling strength q increases. From
eqs. (26) and (27), we also obtain

p∞ =
−lnf∞
〈k〉 . (28)

From eqs. (27) and (28), we get

f∞ = e
−p〈k〉(1−f∞)



1−qf
〈k̃〉
〈k〉
∞




2

. (29)

From the above analysis, we obtain the critical fraction pIc
for the first-order transition:

pIc =
1− f∞+ f∞lnf∞

2q〈k̃〉f
〈k̃〉
〈k〉
∞ (1− f∞)2

(
1− qf

〈k̃〉
〈k〉
∞

) . (30)

By solving eq. (29) for f∞→ 1, we get the critical fraction
pIIc for the second-order transition:

pIIc =
1

〈k̃〉(1− q)2
. (31)

Applying both eqs. (30) and (31), we get the critical
threshold 





pc =
(〈k〉+4〈k̃〉)2

16〈k〉〈k̃〉2
,

qc =
〈k〉

〈k〉+4〈k̃〉
.

(32)

From fig. 4(b), we observe that the critical threshold
qc separating first-order and second-order transition
increases as the average degree 〈k〉 increases, i.e., as 〈k〉
increases, the region of the first-order transition becomes
smaller and the region of the second-order transition
becomes larger. Furthermore, from eq. (27), we observe

that as 〈k̃〉→∞, the expression of the giant component
of the looplike network of n networks changes into the
expression of the single ER network, which is consistent
with the above analysis.
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Summary. – For n networks with partial support-
dependence relationship, we analyze the robustness of two
cases, a starlike network of n ER, SF networks and a
looplike network of n ER networks. For the case of a
starlike network of n ER networks, the region of the first-
order transition becomes larger, while the region of the
second-order transition becomes smaller as the number of
networks n increases. For the case of a starlike network
of n SF networks, the region of the first-order transition
remains constant and is only at q= 1, however, the region
of the hybrid-order transition gradually becomes larger
and the region of the second-order transition becomes
smaller as n increases. For the case of a looplike network
of n ER networks, we find that p∞ is independent of n.
Moreover, as 〈k〉 increases, the region of the first-order
transition becomes smaller and the region of the second-
order transition becomes larger.
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