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h i g h l i g h t s

• The robustness of clustered networks with partial support–dependence relations is studied by adopting two attack strategies.
• The first order region becomes smaller as average degree or clustering coefficient increases.
• The second order region becomes larger as average degree or clustering coefficient increases.
• Clustering coefficient has a significant impact on robustness of the system for strong coupling strength.
• For weak coupling strength, clustering coefficient has little influence, especially for attacking both networks.
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a b s t r a c t

We carry out a study of percolation behaviors of clustered networks with partial
support–dependence relations by adopting two different attacking strategies, attacking
only one network and both networks, which help to further understand real coupled
networks. For two different attacking strategies we find that the system changes from
a second-order phase transition to a first-order phase transition as coupling strength q
increases. We also notice that the first-order region becomes smaller and the second-
order region becomes larger as average degree or clustering coefficient increases. And,
as the average supported degree approaches infinity, coupled clustered networks become
independent and only the second-order transition is observed, which is similar to q = 0.
Furthermore, we find that clustering coefficient has a significant impact on robustness
of the system for strong coupling strength, but for weak coupling strength it has little
influence, especially for attacking both networks. The study implies that we can obtain a
more robust network by reducing clustering coefficient and increasing average degree for
strong coupling strength. However, for weak coupling strength, a more robust network
is obtained only by increasing average degree for the same support average degree.
Additionally,we find that for attacking bothnetworks the systembecomesmore vulnerable
and difficult to defend compared to attacking only one network.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The study of complex networks is a young and active area of scientific research and appears in almost every aspect
of science and technology [1–17]. Robustness of networks is a very important topic in many contexts: in communication
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networks, where equipment failures may disrupt the network and prevent users from communicating; in distribution
networks, breakdowns can prevent service to customers and so on [18–22]. The robustness of network structure mainly
concerns failure nodes being removed to induce a topological change, the measure of network function is given by the
size of the giant component (the largest connected subnetwork) and calculating the value of critical threshold analyzed by
percolation theory [23–27]. In 2009, M.E.J. Newman proposed a random-graph model of a clustered network that is exactly
solvable for many of its properties including component sizes, existence and size of a giant component, and percolation
properties [28]. The model forms the basis for future investigations, including epidemic processes, network resilience, and
dynamical systems on networks [29–33]. Then, J.C. Miller introduced a class of random clustered networks with the same
preferential mixing. He found that percolation in the clustered networks reduces the component sizes and increases the
epidemic threshold compared to the unclustered networks [29]. By comparing the threshold in an unclustered network
with the same degree distribution and correlation structure, J.P. Gleeson et al. found that clustering increases the epidemic
threshold or decreases resilience of the network to random edge deletion [33]. Previous works have been focused on single,
isolated networks where no interaction with other networks is considered, i.e., the behavior of the system is independent
of any other, coupled with it. Such conditions rarely occur in nature or in technology. Typically, systems are interdependent
and events taking place in one are likely to affect the others [34–41]. For instance, email and e-commerce networks rely on
the Internetwhich in turn relies on the electric grid. In biological systems, activated genes give rise to proteins some ofwhich
go back to the genetic level and activate or inhibit other genes [42–47]. Because infrastructures in our modern society are
becoming increasingly interdependent, understanding how systemic robustness due to partial interdependency is affected
is one of themajor challenges for designing resilient infrastructures. Recently, Buldyrev et al. developed a framework, based
on percolation theory, to study the robustness of interdependent networks [34]. The studies in coupled networks highlighted
the vulnerability of tightly coupled infrastructures and showed the need to considermutually dependent network properties
in designing resilient systems. Parshani et al. studied a system composed from two partially interdependent networks [35].
For two interdependent Erdos–Renyi (ER) networks, their results showed that there exists a critical threshold, belowwhich
the system shows a second-order percolation transition, while above the threshold a first-order discontinuous percolation
transition occurs. Zhou et al. studied percolation behavior of two interdependent scale-free (SF) networks under random
failure of a 1 � p fraction of nodes [45]. They found that coupling strength between the two networks q reduces from 1 to
0, there exist two critical coupling strengths q1 and q2, which separate three different regions with different behavior of the
giant component as a function of p by introducing a new analytical method. Huang et al. developed an analytical method for
studying how clustering within the networks of a system of interdependent networks affects the system’s robustness. They
found that clustering significantly increases the vulnerability of the system [48]. Shao et al. introduced themodel in coupled
network systems with fully multiple support–dependence relations, which can help to further understand real-life coupled
network systems,where complex dependence–support relations exists [49]. Forn clusterednetworks, Shao et al. generalized
the study of clustering of a fully coupled pair of networks and studied the robustness of a partially interdependent network
of networks with clustering. Their findings highlight that interdependent networks become more vulnerable by increasing
clustering coefficient for two types of model of clustered networks, which are proposed by Newman and Hackett et al.
respectively [50].

Since the robustness of clustered networks with partial support–dependence relations is much more complex and
practical, the analysis of percolation behaviors remains challenging and meaning. Taking this into account, this paper is
organized as follows: we study the cascading failures of clustered networks with partial support–dependence relations
in Section 2. In Section 3, when a clustered network with partial support–dependence relations is subjected to two
different ways of attack, we analyze percolation behaviors of the system. In Section 4, our conclusions and summary are
given.

2. Cascading failures of clustered networks with partial support–dependence relations

The partial support–dependence relations between two networks A and B of sizes NA and NB are presented by unidirec-
tional support links, which connecting the support nodes in one network and the dependent nodes in the other network.
For a node of dependent nodes (qABNB) (or (qBANA)) in network B (or A), we randomly chooseekA (orekB) nodes in network A
(or B) to support it, whereekA (orekB) satisfies support degree distributionePA(ekA) (orePB(ekB)). We assume a functional node
of dependent nodes within one network should satisfy both of the following conditions: (i) must have at least one func-
tional support node in other networks and (ii) must belong to the giant component of functional nodes in the network it
belongs to [49]. When studying cascading failure dynamics between two networks, we assume that all their support nodes
in network B which are found to be functional at the previous (t � 1) step are still functional for nodes in network A at
step t , while all their support nodes in network Awhich are found to be functional at the current t stage are still functional
for treating nodes in network B at stage t [49]. Then, when initially a 1 � pA and 1 � pB fraction of nodes are randomly re-
moved from both networks, the probability that the node in network A at stage t has no functional support nodes in network
B is

�BA
t = qBA

1X

ekBA=0

ePBA(ekBA)(1 � p(B)
t�1)

ekBA = qBAeGBA(1 � p(B)
t�1), (1)



372 G. Dong et al. / Physica A 394 (2014) 370–378

whereeGBA is the generating function of the support degree distributionePA(ekA) and p(B)
t�1 is a fraction of functional nodes in

network B at stage t � 1. The probability that the node in network B at stage t has no functional support nodes in network
A is

�AB
t = qAB

1X

ekAB=0

ePAB(ekAB)(1 � p(A)
t�1)

ekAB = qABeGAB(1 � p(A)
t�1). (2)

Furthermore, according to condition (i), the fractions of nodes in network A which remain functional at step t is

x(A)
t = pA(1 � �BA

t ). (3)

Similarly, the fraction of functional nodes in network B at step t due to condition (i) is

x(B)
t = pB(1 � �AB

t ). (4)

The clustered network in this paper is defined by joint degree distribution, Pk = P1
s,t=0 Pst�k,s+2t , where �i,j is the Kronecker

delta and s, t design the numbers of single edges and triangles for every node. Then, k = s + 2t is the node’s degree for a
clustered network [48,50]. Accordingly, the generating function for the joint degree distribution is

G0(x, y) =
1X

s,t=0

Pstxsyt . (5)

By the definition of clustering coefficient [28,50], we get the clustering coefficient

c = 3N4
N3

=
N

P
st

tPst

N
P
k

✓
k
2

◆
Pk

. (6)

After a fraction of (1 � p) nodes is randomly removed from one clustered network, the corresponding generating function
becomes according to Ref. [48]

G0(x, y, p) = G0(xp + 1 � p, yp2 + 2xp(1 � p) + (1 � p)2). (7)

And, we also get

g(p) = 1 � G0(u, v2, p) (8)

where u = Gq(u, v2, p), v = Gr(u, v2, p) and Gq(x, y, p) = 1
hsi

@G0(x,y,p)
@x ,Gr(x, y, p) = 1

hti
@G0(x,y,p)

@y . hsi and hti are defined as
the average number of single links and triangles for each node [48]. We consider a network that has the joint Poisson degree
distribution [28,48,50]

Pst = e�µ µs

s! e�⌫ ⌫t

t! (9)

where µ and ⌫ are the average numbers of single edges and triangles per node. For construction of a clustered network, we
adopt Newman’s model [28,48,50]. When average degree hki, c , and the number of nodes N are fixed, we get numbers of
nodes with single links and trianglesNs andNt from Eq. (9). We firstly randomly choose two nodes, which are not connected
and have no common connected node, to connect until the number of nodes with single links within the network is equal to
Ns. Secondly, we randomly choose three nodes, which are not connected with each other, to connect with each other until
the number of nodes with triangles within the network is equal to Nt . From Eq. (6), we get the clustering coefficient

c = 2⌫
2⌫ + (µ + 2⌫)2

. (10)

Then, according to Eqs. (7) and (8), we obtain [48]

G0(x, y) = eµ(x�1) e⌫(y�1), (11)

G0(x, y, p) = Gq(x, y, p) = Gr(x, y, p)e[µp+2p(1�p)⌫](x�1) e⌫p2(y�1), (12)

g(p) = 1 � e�[µp+2p(1�p)⌫]g(p) e⌫p2[g(p)2�2g(p)]. (13)

Then, according to condition (ii), the fraction of the giant component of network A and B at step t can be obtained
⇢
p(A)
t = x(A)

t g(x(A)
t ),

p(B)
t = x(B)

t g(x(B)
t ).

(14)
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Fig. 1. (a–b) When 1 � pA fraction of nodes are removed from network A, comparison between theory and simulation of p(A)
t and p(B)

t with NA = NB =
106, pB = 1, qBA = qAB = 0.8,ekBA = ekAB = 5, hki = 3 and c = 0.1. (a) and (b) demonstrate the fraction p(A)

t and p(B)
t of the giant component of both

networks at different steps of the cascade of failures for pA = 0.4618 (below critical threshold pAc = 0.465 (Fig. 1(a)) and pA = 0.466 > pAc (Fig. 1(b),
p(A)
t (�), p(B)

t (⇤)) respectively). (c–d) When 1 � p fraction of nodes are removed from both networks, comparison between theory and simulation of p(A)
t

and p(B)
t with the same parameters as (a) and (b). We choose parameter for p = 0.6305 < pc = 0.633 in Fig. 1(c) and p = 0.6341 (⇤) and p = 0.635 (�)

at Fig. 1(d).

Since support links between two networks are randomly connected, from Eqs. (1) and (2), we obtain
(
eGBA(1 � p(B)

t ) = e�eap(B)
t�1 ,

eGAB(1 � p(A)
t ) = e�ebp(A)

t .
(15)

(
x(A)
t = pA[1 � qBAeGBA(1 � p(B)

t�1)] = pA[1 � qBA e�eap(B)
t�1 ],

x(B)
t = pB[1 � qABeGAB(1 � p(A)

t )] = pB[1 � qAB e�ebp(A)
t ].

(16)

(
p(A)
t = pA[1 � qBA e�eap(B)

t�1 ]g(pA[1 � qBA e�eap(B)
t�1 ]),

p(B)
t = pB[1 � qAB e�ebp(A)

t ]g(pB[1 � qAB e�ebp(A)
t ]).

(17)

From Fig. 1, we compare simulation with theoretical prediction by applying Eqs. (13), (15) and (16), one can see that theory
and numerical simulations are consistent.

3. Analysis of percolation behaviors

In this section, when a clustered network with partial support–dependence relations is subjected to two different ways
of attack, the percolation transition behaviors are studied. As step t ! 1, both clustered networks reach a stable state
where no further cascading failures happen according to the above two conditions and we assume x(i)

t = x(i)
t+1 = x(i)

1, p(i)
t =

p(i)
t+1 = p(i)

1(i = A, B). Thus, as NA ! 1 and NB ! 1, from Eqs. (16) and (17), we get
(
x(A)
1 = pA[1 � qBAeGBA(1 � p(B)

1 )] = pA[1 � qBA e�eap(B)
1 ],

x(B)
1 = pB[1 � qABeGAB(1 � p(A)

1 )] = pB[1 � qAB e�ebp(A)
1 ].

(18)
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Fig. 2. (a–b) For two different ways of attack, comparisons between simulations and theory of the fraction of giant component as a function of
attacking strength for different coupling strength qBA = qAB = q from Eqs. (19) and (20) are shown. (a) p(A)

1 as a function of pA with parameters
pB = 1, hki = 3,ekBA = ekAB = 5, c = 0.1 and different q = 1 (}), q = 0.5 (⇤) and q = 0.2 (�). (b) p1 as a function of p with parameters
pA = pB = p, hki = 3,ekBA = ekAB = 5, c = 0.1 and different q = 1 (}), q = 0.5 (⇤) and q = 0.2 (�). In simulation, NA = NB = 106 and the
results are averaged over 50 realizations. (c–d) For two different kinds of attacks, NOI as a function of attacking strength for different coupling strength
qBA = qAB = q is shown. The parameters of (c) and (d) are the same as (a) and (b).

(
p(A)

1 = pA[1 � qBA e�eap(B)
1 ]g(x(A)

1 ) = pA[1 � qBA e�eap(B)
1 ]g(pA[1 � qBA e�eap(B)

1 ]),
p(B)

1 = pB[1 � qAB e�ebp(A)
1 ]g(x(B)

1 ) = pB[1 � qAB e�ebp(A)
1 ]g(pB[1 � qAB e�ebp(A)

1 ]).
(19)

From Eq. (19), we assume that two networks have the same hki,ek and c , then p(A)
1 = p(B)

1 = p1

p1 = p[1 � qe�ekp1 ]g(x1) = p[1 � qe�ekp1 ]g(p[1 � qe�ekp1 ]). (20)

For Eq. (19), the graphical solution of Eqs. (19) and (20) is shown in Fig. 3. From Fig. 3, we observe that the critical value of
the parameters can be obtained by finding the tangent point of the two curves p(A)

1 (p(B)
1 ) and p(B)

1 (p(A)
1 ) as follows

dp(A)
1

dp(B)
1

dp(B)
1

dp(A)
1

= 1. (21)

The graphical solution of Eqs. (19) and (20) can be easily solved and presented in Fig. 2(a) and (b). When clustered network
A is initially under random attack, p(A)

1 as a function of pA for the different coupling strength is shown in Fig. 2(a). When
1 � p fraction of nodes are initially removed from both clustered networks, p1 as a function of p for the different coupling
strength is shown in Fig. 2(b). For Fig. 2(a)–(b), we test the theoretical prediction with numerical simulations. The theory
agrees very well with the simulation results. By comparing Fig. 2(a)–(b), we see that the critical threshold pAc (Fig. 2(a)) is
smaller than pc (Fig. 2(b)) for the different coupling strength. The number of iterative failures (NOI) as a function of pA and
p is shown in Fig. 2(c) and (d) respectively. From Fig. 2(c) and (d), we observe that the transition point, where the size of
the giant component jumps, can be easily identified by the sharp peak characterizing the transition point. Thus, It is a useful
method for identifying the transition point by graphically presenting NOI as a function of attacking strength.

The robustness of a network is usually characterized by the value of the critical threshold, which is analyzed by
percolation theory. Without loss of generality, when network A is under random attack, from Eqs. (13) and (17), p(A)

1 as
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Fig. 3. Demonstration of the functional relation between p(A)
1 and p(B)

1 in Eq. (19) with qBA = qAB = q = 1, hki = 3,ekBA =ekAB = 5, c = 0.1 and different
pBA = pAB = p.

a b c

d e f

Fig. 4. The percolation behaviors are analyzed with different hki and c for two different ways of attack, only network A (shown on Fig. 4(a–c)) and both
networks (shown on Fig. 4(d–f)) are initially under random attack. (a) The size of the giant component, p(A)

1 , as a function of attacking strength, pA , for
different values of qAB = qBA = qwith parameters pB = 1, hki = 3,ekBA =ekAB = 5, c = 0.1. (b) pAc as a function of qwith the same parameters as Fig. 4(a)
but different hki. (c) pAc as a function of q with the same parameters as Fig. 4(b) but different c. (d) The size of the giant component, p1 , as a function of
attacking strength, pA = pB = p, for different values of qAB = qBA = q with parameters hki = 3,ekBA =ekAB = 5, c = 0.1. (e) pc as a function of q with the
same parameters as Fig. 4(d) but different hki. (f) pc as a function of q with the same parameters as Fig. 4(e) but different c.

a function of attacking strength and coupling strength are graphically presented in Fig. 4(a). From Fig. 4(a), we observe that
the network undergoes a first order transition for strong coupling q > qc, qc is critical coupling strength, at which p(A)

1 ,
where the fraction of nodes in the giant component of network A, abruptly changes from a finite value to zero. While for
weak coupling q > qc , the system undergoes a second order transition, where p(A)

1 continuously approaches zero. From
Fig. 4(b), one can see that the critical fraction pAc , including the first order phase transition line pIAc and second order phase
transition line pIIAc , increases as coupling strength q increases. This means that the system becomes more vulnerable as q
increases with the same hki. Moreover, we also notice that pAc decreases as hki increases for the same q, which means that
the system becomes robust by increasing the average degree of the clustered network for the same clustered coefficient.
Furthermore, pAc as a function of q is graphically described in Fig. 4(c) with the different c. We can see that the pAc increases,
and the system becomes more vulnerable as q increases for the same c. And, Fig. 4(c) also demonstrates that the value of pAc
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a b

Fig. 5. The critical threshold pc as a function ofekBA =ekAB =ekBA =ek for the different q (Fig. 5(a)) and c (Fig. 5(b)) with parameters pA = pB = p and the
same hki = 3.

becomes smaller, and the system becomes more robust as clustering coefficient decreases for the same coupling strength.
Similarly, when both networks are under random attack, p1 as a function of q and p is graphically presented (Fig. 4(d)
from Eqs. (13) and (17)). From Fig. 4(d), we also notice that the system undergoes a change from second order to first order
phase transition when coupling strength q increases. And, we can see that the critical fraction pc decreases, and the system
becomesmore robust as hki increases for the same c and q from Fig. 4(e). Additionally, the system becomesmore vulnerable
as q increases for the same c and hki as shown in Fig. 4(f). When the system is subject to two different ways of attack, by
comparing Fig. 4(b) with Fig. 4(e), we find that pAc > pc for the same hki, which suggests that the system becomes more
vulnerable and difficult to defend for attacking both clustered networks compared to attacking only one clustered network.
And, for the two different ways of attack, by comparing Fig. 4(c) and (f), we find that the difference in critical fraction,
pAc or pc , between different c increases as q increases. This implies that clustering has a significant impact on robustness
for strong coupling strength. However, for weak coupling strength, clustering coefficient has little influence on robustness
of the clustered network. Thus, when random clustered networks with partial support–dependence relations, for strong
coupling strength, we can obtain a more robust clustered network by reducing clustering coefficient and increasing average
degree. But for weak coupling strength, we can obtain more robust network only by increasing average degree for the same
support average degree.

Moreover, the critical threshold as a function ofek for the different q and c are shown in Fig. 5. From Fig. 5(a), as support
average degree increases and approaches infinity for different q, pc gradually decreases and finally coincides with values at
q = 0. This means that the giant component of the clustered network does not depend on the other network and behaves
similarly to the single clustered network, which is similar to q = 0. And, we give pc as a function of c in Fig. 5(b). Similarly,
whenek ! 1, pc is the same as the critical threshold’s value of site percolation of single clustered networks.

From the above analysis, for two different ways of attack, there exist critical coupling strengths qc , which separate two
different regionswith different behaviors of the giant component as a function of attacking strength.When only one network
is under randomattack, Fig. 6(a) and (b) demonstrate the regions of twodifferent behaviors change as hki and c change.When
both networks are under random attack, Fig. 6(c) and (d) show that two different regions change as hki or c changes. From
Fig. 6,we notice that the region of first order transition becomes smaller, while the region of second order transition becomes
larger as hki or c increases. By comparing Fig. 6(a) with Fig. 6(c), for the same range of average degree, one can see that the
first-order region for attacking only one network is bigger than that for attacking both networks; however, the second-order
region for attacking only one network is smaller than that for attacking both networks. Meanwhile, by comparing Fig. 6(b)
with Fig. 6(d), for the same range of clustering coefficient, we find that the first-order region for attacking only one network
is smaller than that for attacking both networks; however, the second-order region for attacking only one network is bigger
than that for attacking both networks.

4. Conclusions

In this paper, we study percolation behaviors of random clustered networks with partial support–dependence relations.
We choose two kinds of different attacking strategies, only one clustered network (pB = 1) and both clustered networks
(pA = pB = p) are under random attack. For the above two attacking strategies, we find that the system shows behaviors
of first order and second order phase transition. And, we observe that the region of first order phase transition becomes
smaller, while the region of second order phase transition becomes larger as hki or c increases. As average supported
degree k̃ ! 1, coupled clustered networks become independent and behave similarly to a single clustered network. And,
the system becomes robust as hki increases for the different clustered coefficients. For strong coupling strength, pAc or pc
increases and the system becomes vulnerable as c increases. However, as c changes, pAc or pc has not changed significantly
for weak coupling strength, which means that clustering has no discernible impact on robustness of the system for weak
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a b

c d

Fig. 6. For two different ways of attack, the phase diagram shows the first-order and second-order phase transition regions and boundary. (a) qc as a
function of hki with parameters pB = 1, qAB = qBA = q,ekBA = ekAB = ekBA = 5, c = 0.1. (b) c as a function of qc with parameters pB = 1, qAB = qBA =
q,ekBA =ekAB =ekBA = 5, hki = 3. (c) qc as a function of hki with parameters pA = pB = p, qAB = qBA = q,ekBA =ekAB =ekBA = 5, c = 0.1. (d) c as a function
of qc with parameters pA = pB = p, qAB = qBA = q,ekBA =ekAB =ekBA = 5, hki = 3.

coupling strength. Additionally, the results imply that for attacking both networks the system becomesmore vulnerable and
difficult to defend, in contrast with attacking one of two clustered networks.
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