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Abstract. A new method of estimating the critical percolation threshold is proposed, 
based on Stauffer’s cluster number scaling hypothesis and the universality with respect to 
lattice structure of the corresponding Stauffer scaling function. This method is illustrated 
by obtaining estimates of the site percolation threshold for the honeycomb lattice, pc  = 
0.6962+0.0006, and for the square lattice, p c =  0.5923*0.0007. The error bars or 
‘confidence limits’ of our estimates are substantially smaller than previous series estimates, 
and-for the honeycomb lattice-would have to be multiplied by the factor 18 to include 
the value, pE = 2-”2, recently proposed by Kondor to be exact. An additional result is 
R = 4.95 f 0.15, where R = limS+- R,, and R, is the ratio of the cluster number scaling 
function at its maximum to its value at pc  for clusters of size s. 

Studies of percolation phenomena are of interest not only for their potential utility 
in understanding a range of physical phenomena where connectivity is a dominant 
feature, but also because the geometric critical phenomena exemplified by percolation 
possess many striking parallels with the thermal phenomena exemplified by the Ising 
model. Despite the apparent simplicity of percolation, comparatively few exact results 
are known, even for a two-dimensional system; e.g. there is no analogue in percolation 
of the Onsager solution of the zero-field king model. In fact, the percolation threshold 
p c  is known exactly for only four cases: triangular lattice site percolation (TS), triangular 
lattice bond percolation (TB), honeycomb lattice bond percolation (HB), and square 
lattice bond percolation (sB). Therefore, considerable interest has arisen as a result 
of a recent letter by Kondor (1980), which produces an argument supporting the 
possibility that the site percolation threshold for the honeycomb lattice is given by 
the simple relation 

c -  -2-1/2= 0.707107.. . . 
Kondor’s exact value lies slightly outside the most reliable current series estimates 

(Sykes et a1 1976), p c  = 0.698 f 0.003, obtained from extrapolations to s = 00 (e.g. by 
Pad6 approximants) of low-density series expansions, which are calculated to a finite 
order by exact enumeration of finite clusters up to site size s = 20. However since 
the ‘error bars’ are, in reality, somewhat subjective ‘confidence limits,’ it seemed quite 
possible that Kondor could be right if the confidence limits were made larger by a 
factor of three. Higher-precision numerical work is called for to test the possible 

t Supported in part by grants from ARO, ONR, and NSF. 
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validity of his exact result more reliably, and the present letter is a response to this 
need. Specifically, we propose a new method of estimating the site percolation 
threshold. We first present the method and then use it to calculate p ,  for the honeycomb 
lattice. We shall see that the necessary increase in precision is indeed obtained, the 
new estimates we present being about five times more precise than previous estimates. 
This increased precision strongly suggests that Kondor's 'exact value' is not correct 
(see also Enting and Wu 1982). We also show that the method works for the square 
lattice, and obtain an estimate whose confidence limits are also about five times smaller 
than those of previous estimates based on low-density expansions (Sykes et al 1976). 

Our method has as its starting point the assumed validity of the cluster number 
scaling hypothesis (Stauffer 1975, 1979): for sufficiently small values of E = ( p c - p ) / p c  
and l/s, the mean number of s-site (or s-bond) clusters per lattice site, n(s ,  p), obeys 
the asymptotic relation 

n (s, p )  - s-'fO(ss"). (2) 
Here U and 7 are critical exponents related to the usual percolation exponents through 
U = l /pS and r = 2 +  1/S. The validity of (2) has been tested for small s by exact 
enumeration methods (Stauffer 1975), and for large s by Monte Carlo simulations 
(Hoshen et al 1979, Nakanishi and Stanley 1980,1981). Moreover, the scaling 
function f o ( x )  defined in (2) has been found to be 'universal' in that it depends only 
on system dimensionality (d = 1,2 ,  . . .) and not on the individual lattice type. 

Stauffer (1979) has focused attention on the ratio 

Rs E n (s, Pmax)/n (s, p c )  ( 3 a )  

where pmax(s) is the value of p for which n(s ,  p) achieves its maximum value for fixed 
s (figure l(a)), and on the limiting value 

R = lim R,. 
s-m 

As s +a, pmax(s)+pc, and we expect from (2) and (3) that 

R = fo(xmax)/fo(O) (4) 

where xmaX is the value of x for which the scaling function f o ( x )  achieves its maximum. 
If the scaling function f o ( x )  is universal, then the Stauffer ratio R is also universal. 

For 1 < d <CO, Rs can be calculated exactly only for small s and only for those 
four two-dimensional systems for which p c  is known exactly: TS, TB, HB, and SB. The 
requisite functions n (s, p) are calculated in Sykes and Glen (1976) and in Sykes et a1 
(1981). By extrapolating the small-s values of R, to infinite s, Wolff and Stauffer 
(1978) estimate R = 4.8. Stoll and Domb (1979) estimated R = 5.4 while Hoshen et 
a1 (1979) estimated R = 4.8 by using Monte Carlo methods to estimate R, for larger 
s-thereby facilitating the s = 00 extrapolation of (36) at the price of non-exact, and 
hence much less reliable, values of R,. Our own estimates of R, presented below, are 
consistent with these previous estimates: if the correction-to-scaling exponent is in 
the range 0.5-0.7, then R is in the range 4.95*0.15 (3% accuracy). 

If p c  is nof known exactly, the functions R, are difficult to estimate since n (s, p) 
varies rapidly in the vicinity of pc .  Thus R,, and hence also R, are sensitive functions 
of the assumed threshold p?'. What at first sight might seem to be a disadvantage 
is actually quite fortunate: if we can estimate R with an accuracy of 3%, we can 
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Figure 1. (a) Schematic behaviour of the n(s,  p ) ,  the number of s-site clusters per lattice 
site, indicating the crucial quantities entering into the calculation of the Stauff er ratios 
R, = n(s, p,..)/n(s, p?'). ( b )  Schematic plot of the Stauffer ratio R, against ( l / ~ ) ~  for 
an arbitrary lattice L and its match LM. (c) Behaviour of the limiting Stauffer ratio R 
defined in (4) plotted against pLn*' for lattices L and LM. 

determine pc to an accuracy of much better than 0.1 Oh by varying pg"' until R ( p y  ) = 
R (figure l(6)). Moreover, we have noted that the dependence of R on pg"' for 
certain pairs of lattices has opposite sign (figure l(c)). These are matching lattices, 
for which we know (Sykes and Essam 1974) 

p c + p F  = 1. 

Hence the point of intersection of the two curves represents the true pc, which can 
thereby be determined quite accurately. 

We now turn to the actual method of extrapolating the calculated values of R, to 
s = 00. We may be guided by the expected? form of the leading finite-s correction 

i See Margolina et al (1982) for more discussion of the form of equation (6). 
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(Nakanishi and Stanley 1980) to the asymptotic scaling relation (2) 

n (s, p )  - s -'[ f o b )  + s -*A ( x )  + . . .I 
-s-'fo(x)[l + s - * c ( x ) + .  * .I (6) 

where x -&sa, c ( x )  = f l ( x ) / f o ( x )  and R is termed the 'correction-to-scaling' exponent. 
Substituting (6) into ( 3 ~ ) '  we find 

R , = R [ l + c ( x , ) s - * + .  ..]/[1+c(O)s-*+.. . ]  

= R(1 +[c(x,)-c(O)]S-*+O(S-~*)}. (7) 

The form of (7) suggests plotting R, against s-*. If the coefficient of the s-* term is 
significantly larger than the coefficient of the C2* term, then the points R, should fall 
roughly on a straight line which may then be extrapolated to s = 00 to obtain a reliable 
estimate for R. 

It should be emphasised that the value of R depends on the value we assumed 
for R (figure 2). Uncertainty in R is the major cause for relatively broad range of R 
(4 .8-5 .1) .  Unfortunately it was hard to reduce the uncertainty in (0.5-0.7) since we 
work with small values of s where higher-order terms in s-* play an important role. 
Note also that A = c (x,) - c (0) is not a universal quantity and can even be very close 
to zero. That would make the s - ' ~  term dominant; i.e. the apparent R could be equal 
to 2R. Also, other irrelevant fields with different R can be important for our range 
of s. 

Figure 3 shows such plots for the honeycomb site (HS) and honeycomb matching 
site (HMS) problems. In 3(a), pp" = 0.6962, which is the value of p?" for which the 
extrapolated value of R for HS is closest to R for HMS. In 3(b) ,  pp's' = 0.701, the 
largest value allowed by the confidence limits set by the most reliable previous 
estimates, p ,  = 0.698 f 0.003, obtained by Sykes et af (1976) using Pad6 approximants 
to low-density expansions. In 3(c ) ,  pp" = 0.707, the Kondor conjecture. It is clear 
that the present method is very sensitive indeed to p?. 

In figure 3, the correction-to-scaling exponent R is taken to be 0.6, which is roughly 
an average of previous literature estimates (the exponent R is notoriously difficult to 
evaluate-see e.g. the discussion in Stauffer (1979) and references therein, especially 
Gaunt and Sykes (1976), Houghton er a1 (1978), Hoshen er al (1979), Nakanishi and 
Stanley (1980), Margolina et al (1982) and Adler et af (1982). 

To determine how sensitively our estimate of p c  depends on the choice of R, we 
have calculated R(p?') for several values of R, and the results for R = 0.5, 0.6, and 
0.7 are shown in figure 4. We see that the conclusion that the best choice of p;"" is 
0.69615 is remarkably independent of the choice of R. 

To give confidence limits on our estimate pc=0.6962, we must ascertain the 
accuracy with which the sequences R,(p?"') can be extrapolated to s = 00. Therefore 
we plotted the corresponding values of R,( p,) for the four two-dimensional percolation 
problems for which p c  is known exactly (TS, TB, HB and SB) for a range of atrial. 

The limiting values of R vary slightly from lattice to lattice, giving us a measure 
of the 'confidence limits' that one can place on estimates of R. More important is 
the fact that the estimate R depends on the assumed value of the correction-to-scaling 
exponent R, which is also apparent from figure 4. However for each possible value 
of R, analysis of the four lattices for which p c  is known exactly gives rise to a fairly 
narrow range of permissible values of R-roughly *3%. Accordingly, we can interpret 
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Figure 2. We have calculated R, as a function of s-n for the eight d = 2 cases studied: 
V, honeycomb bond; A, honeycomb site; 0, honeycomb match, A, square bond; 0, 
square site; 0, square match; V, triangular bond; D, triangular site. The extrapolated 
values R for these lattices as functions of trial value R are given in this figure, indicating 
our most effective values Re, for each lattice: values of R far from ne, (for every lattice) 
produce curved plots with less accurate extrapolation for R. The range of acceptable values 
of R, around Re, for a certain lattice is set by eliminating values of R which produce 
appreciably curved plots. For such a range of uncertainty in 0, depicted by horizontal 
error bars, there corresponds an uncertainty in the respective value of R. This latter 
uncertainty is typically 1% for each lattice and weakly depends on R. We further assumed 
that the true, universal value R lies in the range determined by the union of the individual 
uncertainties for all analysed lattices, giving R = 4.95 kO.15, so that the confidence limits 
on R are *3%. 

the straight lines in figure4 as having an accuracy of 3%. This determines the 
confidence limits on p c  to be 

p c  = 0.6962 f 0.0006 (honeycomb). (8a 1 
Note that in order to include the Kondor conjecture, the confidence limits of our 
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Figure 3. Actual behaviour of the Stauffer ratios 
(plotted schematically in figure l(6)) for the honey- 
comb (HS) and honeycomb match (HMS) lattices. 
Shown is the case atrial = 0.6 for the three possible 
values of py', ( a )  0.6962, the best value in the 
sense of the method used here; (6) 0.701, the 
maximum value that is allowed by the confidence 
limits set by Sykes et a1 (1976) using low-density 
expansions; (c) 2-"*, the Kondor (1980) conjecture. 
It is clear that the Kondor conjecture is unlikely to 
be valid if the assumptions of the present method 
are accepted. Note that if we vary pp'a' from 0.695 
to 0.701, the range found for our estimates of R is 
4.5 to 6.0, much larger than the acceptable range. 

estimate (8) would have to be multiplied by a factor of 18. Thus we feel that our 
analysis safely excludes the Kondor value. 

We can apply the same approach to site percolation on the square lattice, for 
which the n(s ,  p) have been calculated for the matching lattice. The analysis carries 
through with the same degree of reliability as for the honeycomb lattice, and we find 

p c  = 0.5923 f 0.0007 (square). ( 8 b )  
Our estimate (9) is safely within the confidence limits of the most accurate previous 
estimates (Sykes etal 1976), p c  = 0.593 f 0.002, obtained by series expansion methods, 
and p c  = 0.593 1 f 0.0006, obtained by large-cell Monte Carlo renormalisation group 
methods (Reynolds et a1 1980)t. 
f We note that our confidence limits are considerably smaller if we further restrict R. Specifically, if we 
require that values of R for the two matching lattices not only differ by less than 3% but also fall in the 
range 4.8-5.1, and if we restrict R to deviations of not larger than *0.05 from the most effective value 
for a given lattice, then we find (figure 2) pc = 0.5923 * 0.0004 (square), and p c  = 0.6962 i 0.0004 
(honeycomb). 
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Figure 4. Dependence of R on p y  for (a) the honeycomb (HS) and honeycomb match 
(HMS) lattices, (b)  the square (ss) and square match (SMS) lattices. Since the percolation 
thresholds are related by equation (6), the point of intersection of the two curves shown 
should represent p c .  Plots are shown for three values of the correction-to-scaling exponent 
fl, 0.5, 0.6 and 0.7. Crosses denote the matching lattice, while circles denote the lattice 
itself. 

We checked our methods in the cases TB and HB, which are matching to each 
other, and for which we know p c  exactly. If we analyse the behaviour of R against 
pFa’ we find that an uncertainty of 3% in R will produce the ‘estimates’ p c =  
0.3478 f 0.0007 (TB) and p c  = 0.6522 f 0.0007 (HB). We see that the exact values of 
p c  = 0.3473 (TB) and p c  = 0.6527 (HB) are consistent with our ‘estimates’. 

In summary, based on the assumed validity of the cluster number scaling hypothesis 
and the universality of the corresponding scaling function, we have proposed a new 
method for estimating the percolation threshold pc .  The estimates obtained by this 
method for most lattices are of roughly the same accuracy as those obtained by 
conventional series expansion methods, thereby providing an independent check on 
these other estimates. For the case of the honeycomb and square lattices, the quantities 
n(s ,  p )  have been calculated for the corresponding matching lattices, and we can use 
(5) to determine the estimate of p c  more accurately than heretofore. We find, in 
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particular, that for the honeycomb lattice our confidence limits in (8) would have to 
be multiplied by 18 to include the Kondor conjecture (equation (1)). 

After this work was completed, Professors F Y Wu and D Stauffer called our 
attention to two recent estimates of pc using quite different methods, both of which 
support our work. Monte Carlo analysis of the honeycomb lattice (Vicsek and KertCsz 
1981) suggests p c  = 0.6973 f 0.0008, which is consistent with (8a), and also excludes 
the Kondor conjecture. Phenomenological renormalisation analysis of the square 
lattice (Derrida and de Seze 1982) suggests pc = 0.5927 f 0.0002, which is also con- 
sistent with our estimate (86)t. 

We are deeply indebted to M F Sykes for sending us the perimeter polynomials for 
the honeycomb and square matching lattices prior to their publication (see also Peters 
et a1 1979). We also wish to thank I Kondor for having sent us a preprint of his work, 
and H Nakanishi and D Stauffer for many extremely helpful discussions throughout 
the course of this work. We thank R K P Zia, F Y Wu, A Coniglio and S Redner 
for useful comments on various subtle points of the analysis, and A C Brown, E T 
Gawlinski, H Nakanishi, S Redner, and D Stauffer for reading several drafts of this 
manuscript. 
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