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We study the evolution of interfaces for a generalization of a diffusion-limited aggregation pro-
cess in two dimensions, where the walkers are launched from any unoccupied site and have a life-
time 7. For r=1, the model reduces to variant B of the Eden model. However, Eden model B
does not respond to noise reduction in the same way as the other forms of the Eden model (4 and
C). As 7 increases, stable cellular patterns emerge that resemble the patterns in directional

solidification.

I. INTRODUCTION

There have been numerous studies of the surface of the
Eden model in various space dimensions d.!'”!! We re-
strict ourselves to the two-dimensional (2D) case in the
“strip geometry.” We start from a one-dimensional line
of length L of seed particles on a square lattice; periodic
boundary conditions are used on the sides of the strip.

Although the Eden model produces nonfractal clusters,
the surfaces are fractal. The usual definition of the sur-
face width is

N 1/2
w= [—11\7 Y (B —'(h))zl ,

i=1

(1a)

where N is the number of perimeter sites, 4; the y coordi-
nate of the perimeter site #, and (k) the mean height,

1 N
(h)=—1\72h,~ . (1b)

The time ¢ is chosen to be the mass of the cluster and w is
a function of ¢ and L. Since {(h)~t/L, we can write
w=w((h),L). w({h),L) obeys the scaling relationship '’

(h)
Lz

w~L*f , )

where z=% and y= % exactly’ for the 2D Eden model.

However, large crossover regions and finite-size effects
make direct numerical computations of the exponent z
difficult. If noise reduction is used,'? then these large
crossover regions become smaller and the exponents z and
7 can be obtained much more easily. !>

The width of diffusion-limited aggregation'® (DLA) in
strip geometry has also been extensively studied.'®~'® In
contrast to the Eden model, DLA growth is governed by a
diffusion field and proceeds in a nonlocal fashion. We
study the roughening of the surface for a variation of a
model previously introduced in Refs. 19 and 20 which in-
terpolates between DLA deposition and the Eden model.
In regular DLA deposition, 6 '8 the principle is to send
walkers from infinity; when the walker touches a perime-
ter site, this perimeter site becomes part of the cluster.?!
In this model, one launches a walker from any empty lat-
tice site. The number of time steps the random walker has

a8

performed is recorded. If the walker touches the cluster
before t time steps, then the previously visited perimeter
site becomes a cluster site [this is the dielectric breakdown
(DBM) boundary condition].!? If the walker has not
touched the cluster after time 7, it is killed and another
random walker is launched from an empty site chosen at
random. Thus a walker starting from a distance greater
than 7 from the cluster will always be killed before touch-
ing the cluster. In fact, most of the walkers that will
touch the cluster will have been launched in a layer of
thickness of order v/ from the perimeter of the cluster.

In our simulations, we chose a site at random in the
launch strip defined as follows. The ordinate of the bot-
tom line of the strip is the highest ordinate such that all
sites below that line are occupied. The ordinate of the top
line of the launch strip is Amax+ 7+ 1 where hnax is the
highest point of the cluster. If the site chosen in this
launch strip happens to be occupied, then another site is
chosen until an empty (and thus acceptable) site has been
found. This is equivalent to choosing a walker at random
anywhere except on the cluster and allowing it to walk un-
til it touches the cluster or dies.

II. SCALING BEHAVIOR FOR 7 =1

For 7=1, the only way the cluster can grow is when a
walker is created on a perimeter site and steps on the clus-
ter at the first time step. Open bonds are defined as bonds
that join a cluster site to a perimeter site. In variant B of
the Eden model,* an open bond is chosen at random and
the corresponding perimeter site is occupied. Consequent-
ly, for r=1, our model reduces to variant B of the Eden
model. Some perimeter sites are more likely to grow than
others, but the ratio of the maximum probability for a
perimeter site to become a cluster site to the minimum
probability is bounded from above (Fig. 1). The “active
perimeter” P, is defined as the inverse of the maximum
growth probability ITya.x. By definition, dmax, the fractal
dimension of the active perimeter, is defined as Ppax
~t% Using Refs. 22 and 23, we have dr=1+dmax.
Here dmax™=1, since the maximum growth probability
scales as L ~!. Hence, the present model has fractal di-
mension dy =2.

Since the calculation of the exponents z and y [Eq. (2)]
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FIG. 1. The shaded sites are the cluster sites. In this model,
perimeter site P is four times more likely to grow than perime-
ter site P, which has only one nearest neighbor occupied. For
the Eden model A4, P, and P; have equal growth probability.

is hampered by large corrections to scaling, we applied
noise reduction. Figure 2 shows w as a function of time
for r=1, L=4000, and s =3, where s denotes the noise-
reduction parameter (the number of times a given perime-
ter site must be chosen to be occupied before it actually is
allowed to become occupied). First, when ¢ is less than a
few times L, we do not get scaling. In this time region,
when the noise-reduction parameter s is more than 10, we
obtained oscillations corresponding to the filling of lay-
ers. !4 Then, there is a scaling region ¢, <t <t, where
w~tP. From Eq. (1), B=2/z follows. For s=4, we ob-
tained f=0.32 *0.03 after averaging over 20 samples.
At large time, w saturates and we denote by W the limit of
the width as t — oo W(L,s)=lim,_. -w(z,L,s).

We now turn to the evaluation of . Figure 3 shows the
saturation width W as a function of the width of the strip
L for various values of the noise-reduction parameter s.
We obtained for s=3, y=0.50%0.02 and for s=10,
%=0.50%0.10. Thus, variant B of the Eden model
seems, at first sight, to behave like the other variants of
the Eden model.

Let us examine now what happens when the noise-
reduction is incorporated in the scaling. The scaling of
the width for models 4 and C (Ref. 14) was shown to be

wi(t,L,s)=[a(s)L*FGL ~%s ~)12+w?(s) , 3)
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FIG. 2. Log-log plot of w as a function of time for L =4000,

7=1, and s =3 after averaging over 20 samples. The quantity

Bes=0dlogw/dlogt first increases, then remains constant in the

range 10° <t <6x10° and finally decreases as w goes toward

saturation. The straight line is a fit in the range of constant Bes,
limited by the two heavy bars. We find f=0.32 +0.03.
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FIG. 3. Log-log plot of W as a function of L for model B for
various values of the noise reduction parameters: s=3 (A),
s=10 (0), s=20 (V), and s=40 (@). For model B, we ob-
tained: y=0.5+0.03 for s=3, y=0.5+0.12 for s=10. The
upper dashed line are data for s=1 from Ref. 8 for model A.
The lower dashed line is the formula obtained for s very large by
Wolf and Kertész (Ref. 14) for models 4 and C. The heavy
straight lines of slope 5 are a guide to the eye and not a fit to
the data. The heavy horizontal line is the plateau W =0.5.

where w; is the intrinsic width (and does not depend on L)
and y an exponent close to 1. F is a scaling function, and
a(s) is given by a(s)=+/1+2.3/s. As s increases, w; de-
creases and tends to zero as s becomes very large. In mod-
els A and C, noise reduction introduces time rescaling.
Consider w as a function of ¢ for fixed L. The time ¢, for
which the scaling region begins increases with s (as s”).
In variant B we also observed this effect.

However, in models 4 and C, for L fixed, when s is in-
creased, larger and larger times are required to reach the
saturation regime (1,— oo as s— o). For model B, this
is not the case, because, in addition to rescaling the time,
noise reduction also reduces the saturation width W(L,s).
If (3) was also applicable to variant B, we would have,
since y= %,

Wz(L,S) -2 2 WiZ(S)
7 a’(s)Fié+ —
where Fo ™=lim, . « F(x). To test Eq. (4), we plotted in
Fig. 4 W?/L as a function of 1/s. We obtain a straight
line but, contrary to the findings of Ref. 14, the extrapola-
tion to s— o seems to give 0. This means that a(s)
behaves as 1/+/s in our version of variant B.

For s =oo, the interface remains flat and the concept of
saturation width is meaningless. However, it makes sense
to consider the quantity

Wac(L) = lim lim w(t,L,s)
s

— 00— ©O

@)

in which the two limits do not commute.

For variants A4 and C, the quantity W4c(L) is given by
the approximate formula'*!* W,(L)=+0.052x-/L.
For any s, all the points [W(s,L),L] lic above the line
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FIG. 4. Plot of W?/L as a function of 1/s for L =200.

W 4c(L)=+0.052x /L [for L reasonably large such that
Eq. (3) holds].

For variant B, this is not the case, as can be seen in Fig.
3. For s =3, the points [W(s,L),L] fall below the line
Wac(L)=+0.052xL. For large values of s, the curves
logW as a function of logL have two parts. For L <L*
there is a plateau at W=0.5. For L>L* there is a

straight line of slope of ~ 3. L* tends to infinity as

§— oo,
Thus, for variant B, we propose the scaling relation
w~g(L/s) Q)

where g(L/s)~(L/s)"? as x— oo and g(L/s)~ %+ as
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FIG. 5. Log-log plot of W as a function of L/s for values of
s=3 (A), s=10 (0), s=20 (V), and s=40 (@). The upper
dashed line corresponds to the results of Ref. 8 for model 4 and
s=1. Our data seem to collapse on a single curve. For L/s
greater than 10, this curve is almost a straight line of slope x',
and the lower heavy line is a least-squares fit in this region. We
find x'=0.50 +0.03.

L/s— 0. Note that (5) implies L* ~s.

Since W ~+/L for large L, one expects y' =y =1 . Nu-
merically, we obtained x'=0.5%0.02. In order to test
this assumption, we plot W as a function of L/s (Fig. 5).
We find that the data obtained for values of s ranging
from 1 to 40 fall approximately on a single curve. For
L/s larger than 10, we have a scaling region where
g(L/s)~(L/s)¥. We obtained ' =0.50 % 0.02.

III. BEHAVIOR FOR 7> 1

When 1<V7<L, cellular patterns arise. Figure 6
shows such a pattern for s =10 and 7 =1000 at ¢ =50000.
Note that a wavelength of order v/7 appears, i.c., the typi-
cal “cell” width is of order V7. Though the model studied
here was not explicitly designed to describe the physics of
directional solidification, the patterns obtained do strongly
resemble directional solidification.?*~2® However, in the
simulations of Refs. 24-26, the random walkers have a

bias, which also introduces an effective length. It is
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FIG. 7. Log-log plot of W vs 7 [s=1, L=301 (*); s=60,
L=101(0)]. For > 20, we find W~ 7* with x =1.0 % 0.1.
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tempting to conclude that when a finite diffusion length is
introduced in a DLA deposition process, cellular patterns
are obtained.

As a function of time, the width increases and then sat-
urates to a value W. For t larger than 100, we had to
modify our original algorithm since it would consume too
much computer time and be very inefficient. The ordinate
of the top line of the strip where we launch walkers was
chosen to be hmax+4\/? instead of hpatt+1. We
checked that the results were not altered by changing this
ordinate to Amax+ 10V7.

A plot of W as a function of 7 (see Fig. 7) for different
values of s shows that W increases with z. When noise
reduction is applied, a scaling region seems to emerge
where W~ t* with x =1.0 £ 0.1.

In the limit 7— oo, the model should reduce to DLA.
The fact that the walkers are launched from everywhere is
immaterial since in the limit 7 very large, most of the
walkers that will contribute to the growth of the cluster
will have been created far from the cluster.

IV. DISCUSSION AND CONCLUSIONS

The purpose of this study was to show that the intro-
duction of noise reduction in Eden models can have
different consequences on the scaling properties of the

width, depending on the variant considered. In this paper
only d=2 is considered and the exponents x and z are not
changed by noise reduction (for s finite). However, we
find that the scaling properties of the width with respect to
s are model dependent (nonuniversal). The scaling law
(3), which was found by Kertész and Wolf'* for both vari-
ants A and C, is somewhat different for variant B. For
variant B, the width for large time W obeys a scaling law
W ~g(L/s). The fact that we have counters on the perim-
eter sites might be the reason why our version of variant B
responds to noise reduction in a way which is different
from variants 4 and C. Our version leads to a new way of
measuring the roughness exponent y accurately. Finally,
we show that, if in a diffusion-limited aggregation process
the walkers have a finite lifetime, cellular patterns emerge
with a characteristic wavelength given by the diffusion
length.
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