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Recently it was shown that financial time series are not completely random process but exhibit long-term or
short-term dependences, which offer promises for predictability. However, we do not clearly understand the
potential relationship between serial structure and predictability. This paper proposed a framework to magnify
the correlations and regularities contained in financial time series through constructing accumulative return
series. This method can help us distinguish the real world financial time series from random-walk process
effectively by examining the change patterns of volatility, Hurst exponent, and approximate entropy. Further-
more, we have found that the predictable degree increases continually with the increasing length of accumu-
lative return. Our results suggest that financial time series are predictable to some extent and approximate
entropy is a good indicator to characterize the predictable degree of financial time series if we take the
influence of their volatility into account.
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I. INTRODUCTION

Can we obtain excess profits from financial market by
forecasting financial time series? This question is directly
related to whether the financial market prices are predictable.
After running several tests, many financial economists have
accepted the random-walk hypothesis, which states that fi-
nancial market prices are completely random because of the
efficiency of the market and thus the prices of the financial
market cannot be predicted �1�. However, other economists
and investors believe that prices may move in trends and past
prices can be used to forecast future price changes to some
degree �2�. Empirical studies have provided some evidences
that there are long-term or short-term dependent relation-
ships in financial time series, which offer promises for pre-
dictability �3,4�. As a model-independent measurement, ap-
proximate entropy �ApEn� has been proposed to characterize
the irregular degree of financial time series. ApEn assigns a
nonnegative number to a given sequential data, with larger
values corresponding to greater apparent serial randomness
or lower predictability and with smaller values correspond-
ing to more regularity or higher predictability �5�. As shown
in Ref. �5�, ApEn values of Dow Jones index and Hang Seng
�Hong Kong� index are significantly different from that of
random series. From the viewpoint of investment, large num-
ber of models has been proposed to provide investors with
more accurate forecasts. Time-series models, based on con-
ventionally statistical methods, were very popular in con-
structing various kinds of financial market prediction models
in the past �6�. Without relying too much on specific assump-
tions and error distributions, artificial neural networks
�ANNs� have been demonstrated to be successful research
models to forecast, detect, and summarize the structure of
financial variables �7�. Recent years, results of some forecast
exercises suggested that support vector machine �SVM�
might be the most promising method for predicting financial
time series �8,9�. Though there are a great number of papers
investigating the predictability of financial market, we still
do not fully understand the relationship between the predict-
able degree and the information structure of financial time
series. Different from those studies emphasized on detecting

the existence of correlated relationships, characterizing de-
gree of randomness, and developing better forecast models,
this paper proposed a simple but effective method to magnify
the correlations and regularities contained in financial time
series through constructing accumulative return series. By
examining the change patterns of volatility, long-term
memory property, and irregularity, we found that �1� the
standard deviation increases convexly, �2� the Hurst �H� ex-
ponent increases monotonically and, �3� the approximate en-
tropy decreases continually with the length of accumulative
return, which are fundamentally different from random-walk
process. Then, we investigated the predictability of accumu-
lative return series and showed that the predictable degree
increases with the increasing length of accumulative return.
Our results suggest that we can obtain a deeper and clearer
understanding of the predictability of financial market by
magnifying the correlations and regularities contained in
time-series data.

II. DATA DESCRIPTIONS

We analyzed 22 financial time series, which covered bond
market, commodity market, stock market, and exchange mar-
ket. Specifically, the data sets are comprised of �1� daily
opening, highest, lowest, and closing interest rates of 10- and
30-yr treasury bond; �2� daily Reuters Jefferies CRB index;
�3� daily opening, highest, lowest, and closing prices of Dow
Jones index; �4� daily U.S. Dollar index; �5� daily opening,
highest, lowest, and closing prices of Nasdaq Composite in-
dex; and �6� daily opening, highest, lowest, and closing
prices of S&P 500 index. We obtained these historical data
from Board of Governors of the Federal Reserve System,
www.jefferies.com, and the finance section of Yahoo, respec-
tively. The whole data sets stretched from 1994 to 2009.
Each return series was calculated by the logarithmic change
of the corresponding price series, r�t�=ln P�t�−ln P�t−1�, in
which P�t� denotes the index price on day t. Table I presents
the name, simple description of all analyzed financial time
series, and some basic statistical properties of their return
series. As we can see from the third column in Table I, all
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mean returns are in the range of �0.0003, which is very
close to zero. Standard deviation is often taken as a measure-
ment to characterize the volatility of time series �5�, which
varies a lot with the least value less than 0.004 and the larg-
est value larger than 0.02. It is worth noting that our data sets
are very representative because their Hurst exponents �it is
often referred to as the “index of dependence” and is the
relative tendency of a time series to either strongly regress to
the mean or “cluster” in a direction �10�� can be divided into
three parts: �1� Reuters Jefferies CRB Index has a Hurst ex-
ponent larger than 0.5 significantly; �2� Hurst exponents of
U.S. Dollar index, interest rates of 10-yr treasury bond, and
Nasdaq Composite index fluctuate around 0.5; �3� other re-
mained Hurst exponents are far less than 0.5. Furthermore,
the correlation coefficients of standard deviation and Hurst
exponent, standard deviation and approximate entropy, Hurst
exponent and approximate entropy are −0.3398, −0.8909,
and 0.5713, respectively. It was reported that the Hurst ex-
ponent and the ApEn value are negatively correlated �11,12�,
but our data sets exhibit positive correlation. This is owing to
most Hurst exponents being less than 0.5 in our work, but
most of them larger than 0.5 in Refs. �11,12�. Therefore, the
correlated relationship between Hurst exponent and ApEn
depends on the specific data sets being analyzed.

III. CHANGE PATTERNS OF ACCUMULATIVE RETURN
SERIES

In this section, we propose a simple but effective method
to magnify structural information contained in financial time

series. Given return series r�t�, its accumulative return series
is defined as

Rl�t� = �
j=1

l

r�t + 1 − j� = ln�P�t�� − ln�P�t − l�� , �1�

where l denotes the length of the accumulative return. Evi-
dently, the accumulative return series is simply logarithmic-
return time series constructed by using overlapping time
windows, and it will be the same as the original return series
if l=1. It is reasonable to anticipate that Rl�t� contains more
information than r�t� does, at least the same, provided that
there are some long-term or short-term dependent relation-
ships in real world financial time series. In another word, we
believe Rl�t� would enlarge the correlated relationships and
regularities which already exist in r�t�. In this paper, we use
three methods to characterize the quantitative information
contained in a series data. The first one is volatility, which is
an implicit measurement of risk and grades the extent of
deviation from centrality. Large swings exhibit high standard
deviation and are often conceived as highly volatile. The
second one is Hurst exponent, which characterizes the degree
of interdependence and measures the relative tendency of a
time series to either strongly regress to the mean or cluster in
a direction �10�. The last one is ApEn, which reflects the
likelihood that similar patterns of observations will not be
followed by additional similar observations. Less repetitive
patterns contained in a time series corresponds to higher

TABLE I. Name and description of the analyzed financial time series. The mean, standard deviation �SD�,
Hurst �H� exponent, and ApEn of each corresponding return series are also reported.

Serial name Simple description Mean SD H ApEn

BOND10_O Opening prices of 10-yr treasury bond −0.00026905 0.012646 0.48803 1.8586

BOND10_H Highest prices of 10-yr treasury bond −0.00027001 0.011399 0.48919 1.8267

BOND10_L Lowest prices of 10-yr treasury bond −0.00027115 0.012029 0.49105 1.8103

BOND10_C Closing prices of 10-yr treasury bond −0.00026719 0.011807 0.48887 1.8202

BOND30_O Opening prices of 30-yr treasury bond −0.00019896 0.020444 0.35742 1.2778

BOND30_H Highest prices of 30-yr treasury bond −0.0001982 0.02005 0.35629 1.1636

BOND30_L Lowest prices of 30-yr treasury bond −0.00019899 0.020162 0.35965 1.1746

BOND30_C Closing prices of 30-yr treasury bond −0.00019574 0.020267 0.35707 1.2413

CRB Reuters Jefferies CRB Index 0.00014146 0.008834 0.60794 1.9704

DJI_O Opening prices of Dow Jones index 0.00020161 0.010608 0.4018 1.7824

DJI_H Highest prices of Dow Jones index 0.00020566 0.0086197 0.42424 1.8152

DJI_L Lowest prices of Dow Jones index 0.00020177 0.0098965 0.4003 1.6998

DJI_C Closing prices of Dow Jones index 0.00020454 0.0107 0.40057 1.8041

USDI U.S. Dollar index −0.00002044 0.0039965 0.50658 1.8604

NCI_O Opening prices of Nasdaq Composite index 0.00022315 0.01805 0.50863 1.5354

NCI _H Highest prices of Nasdaq Composite index 0.00022751 0.014429 0.53292 1.5924

NCI _L Lowest prices of Nasdaq Composite index 0.00022185 0.017282 0.49775 1.4945

NCI _C Closing prices of Nasdaq Composite index 0.00022649 0.01725 0.50789 1.5785

S&P _O Opening prices of S&P 500 index 0.0001716 0.010916 0.40832 1.7474

S&P _H Highest prices of S&P 500 index 0.00017609 0.0088251 0.43118 1.7413

S&P _L Lowest prices of S&P 500 index 0.00017215 0.010427 0.4034 1.6915

S&P _C Closing prices of S&P 500 index 0.0001754 0.010933 0.407 1.7532
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FIG. 1. �Color online� Measured the standard deviation in a function of the length of accumulative return. �a� Accumulative return series
of random-walk process. The random return series is constructed with zero mean and standard deviation 0.01. �b� Accumulative return series
of 10- and 30-yr treasury bond. Considering that the standard deviations of the daily opening, highest, lowest, and closing return series are
roughly collapsed onto a single curve, only the results on closing return series are presented. �c� Accumulative return series of Reuters
Jefferies CRB index and U.S. Dollar index. �d� Accumulative return series of Dow Jones index. �e� Accumulative return series of Nasdaq
Composite index. �f� Accumulative return series of S&P 500 index. As we can see from this figure, the standard deviation of real world
accumulative return series increases convexly with the length of accumulative return, which is completely different from that of random
accumulative return series.
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FIG. 2. �Color online� Measured the Hurst exponent in a function of the length of accumulative return. �a� Accumulative return series of
random-walk process. �b� Accumulative return series of 10- and 30-yr treasury bond. �c� Accumulative return series of Reuters Jefferies CRB
index and U.S. Dollar index. �d� Accumulative return series of Dow Jones index. �e� Accumulative return series of Nasdaq Composite index.
�f� Accumulative return series of S&P 500 index. Hurst exponent increases monotonically with the increasing length of accumulative return
in all 22 financial time series. This pattern does not appear in random accumulative return series.
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ApEn value and lower predictable degree. Therefore, ApEn
can be an effective technology to measure the degree of ir-
regular or unpredictable �13�. Considering it is very easy to
compute volatility �i.e., standard deviation�, we only describe
the methods to compute Hurst exponent and ApEn in the
latter.

There are a variety of techniques that exist for estimating
Hurst exponent. Considering that the detrended fluctuation
analysis �DFA� is one of the most efficient methods �14–16�,
we utilize the DFA method to compute Hurst exponent in this
work. Given time series X�i� with length N, we first compute

the accumulative sum y�k�=�i=1
k �X�i�− X̄�, where X̄ is the

average value of X�i�. Next, we divide y�k� into time win-
dows of length n samples and estimate the trend lines yn�k�
by using the ordinary least-squares principle in each window.
Then, the root-mean-square deviation from the trend, the
fluctuation, is calculated over every window at every time
scale:

F�n� =� 1

N
�
k=1

N

�y�k� − yn�k��2. �2�

Typically, a linear relationship F�n� increasing with n on a
double logarithmic graph indicates the presence of scaling
relationship F�n��nH, where H is the Hurst exponent. H

=0.5 corresponds to random-walk process which means no
memory in the time series. 0�H�0.5 indicates large and
small values of the time series are more likely to alternate. If
0.5�H�1, there are persistent long-range power-law corre-
lations in the time series.

Now we introduce the algorithm for computing ApEn.
Given a time series with N observations, Xh, h=1, . . . ,N,
creates embedding vector v�i�, each made up of m consecu-
tive values of X, v�i�= �Xi , . . . ,Xi+k� with k=1, . . . ,m−1. The
distance of vector v�i� and v�j� is computed as d�v�i� ,v�j��
=max�	Xi+k−Xj+k	 ,k=1, . . . ,m
. To quantify the regularity of
a particular pattern, count the relative frequency of distance
between the template vector v�i� to all the vectors v�j�,
which lie within the neighborhood r �13�:

Ci
m�r� = �N − m + 1�−1 �

j=0

N−m−1

��r − d�v�i�,v�j��� , �3�

where �� · � represents the binary Heaviside function. Let
�m�r�= �N−m+1�−1�i=1

N−m+1ln Ci
m�r�, we can obtain the ap-

proximate entropy of the time series: ApEn�m ,r�=�m�r�
−�m+1�r�. As shown in the computation process, we need to
choose values for two input parameters, m and r. In this
paper, we apply the embedding dimension m=2 and the tol-
erance of similarity r=20% of standard deviation of the
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FIG. 3. �Color online� Measured the approximate entropy in a function of the length of accumulative return. �a� Relationship between
ApEn and the length of accumulative return in random-walk process. �b� Relationship between ApEn and the length of accumulative return
in 10- and 30-yr treasury bond. �c� Relationship between ApEn and the length of accumulative return in Reuters Jefferies CRB index and
U.S. Dollar index. �d� Relationship between ApEn and the length of accumulative return in Dow Jones index. �e� Relationship between ApEn
and the length of accumulative return in Nasdaq Composite index. �f� Relationship between ApEn and the length of accumulative return in
S&P 500 index. The ApEn values of random accumulative return series are irrelevant to the length of accumulative return. However, the
irregular degree decreases continually with the increasing length of accumulative return in all 22 real world financial time series. This results
indicate that the constructing procedure of accumulative return can effectively magnify all kinds of regularities existed in financial time
series, regardless of the specified financial market.
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specified time series, similar to what has been used in previ-
ous works �5�. We have also applied m=1 to compute ap-
proximate entropy and found that the following analysis does
not change.

Let us now illustrate how the accumulative return method
can magnify the correlations and regularities in financial
time series. For each return series, we first construct 20 ac-
cumulative return series and then apply the above three mea-
surements to them. Considering that there is a common be-
lief of daily return being a random-walk process, we also
construct a simulated return series based on random-walk
model with zero mean and standard deviation 0.01. There-
fore, we can examine whether a systematically different
change patterns of accumulative return series exists between
real world financial time series and random return series. To
test the consistency of the results, we have run 100 trials for
each random-walk process and compute the corresponding
averages and deviations, which are plotted as the curves with
error bars in Figs. 1�a�, 2�a�, and 3�a�.

As shown in Fig. 1�a�, the standard deviation of random
return series increases linearly with the length of accumula-
tive return. However, we observed a completely different
function relationship in the real world accumulative return
series. As we can see from Figs. 1�b�–1�f�, the standard de-
viation increases convexly with the length of accumulative
return, which makes the magnitude of accumulative return
variations enlarge much slower than the one generated by

random-walk hypothesis. Therefore, our accumulative return
method can help us distinguish a real world financial time
series from a random series effectively even though these
two return series are very similar. This effect is achieved by
magnifying the existed correlations and regularities, which is
explained in Figs. 2 and 3. Our results confirm that the
random-walk hypothesis is not acceptable because it ignores
some structural information contained in real world financial
time series. Furthermore, our results also put forward a use-
ful standard to evaluate the performance of time-series
model. A good model should reproduce the above empirical
change pattern of standard deviation of real world financial
time series.

As we know, Hurst exponent is often used to characterize
the long-term dependent relationships in a time series. For a
random series, its Hurst exponent should be 0.5 and does not
change with the increasing length of accumulative return,
which is confirmed by our results �see Fig. 2�a��. However,
the Hurst exponent of real world financial time series in-
creases monotonically with the increasing length of accumu-
lative return. As shown in Figs. 2�b�–2�f�, all correlated re-
lationships will be magnified continually by increasing the
length of accumulative return. Furthermore, we have noted
that this trend is regardless of the Hurst exponent of the
original return series. For example, the Hurst exponent val-
ues of daily opening, highest, lowest, and closing interest
rates of 10-yr treasury bond and Nasdaq Composite index are
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FIG. 4. �Color online� Measured the MAE in a function of the length of accumulative return. �a� Relationship between MAE and the
length of accumulative return in 10-yr treasury bond. �b� Relationship between MAE and the length of accumulative return in 30-yr treasury
bond. �c� Relationship between MAE and the length of accumulative return in Reuters Jefferies CRB index and U.S. Dollar index. �d�
Relationship between MAE and the length of accumulative return in Dow Jones index. �e� Relationship between MAE and the length of
accumulative return in Nasdaq Composite index. �f� Relationship between MAE and the length of accumulative return in S&P 500 index. For
each financial time series, the mean and standard deviation of 200 MAEs are reported in the sixth and seventh columns of Table II. The
correlation coefficient between the mean value of MAEs and the standard deviation of original return series is 0.5113.
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very close to 0.5, but their accumulative return series exhibit
similar behaviors like other time series with Hurst exponent
larger or less than 0.5 significantly.

Figures 3�b�–3�f� show that the irregular degree of real
world accumulative return series decreases continually with
the increasing length of accumulative return. However, as a
comparative base, the approximate entropy of the accumula-
tive random return series swings up and down and exhibits
no systematic change pattern �see Fig. 3�a��. The construct-
ing procedure of accumulative return does not change the
random return series into a nonrandom series, thus the in-
creased regularities in the real world accumulative return se-
ries only come from the original return series. In another
word, the accumulative return method can enlarge the ex-
isted regularities effectively but not generate any new regu-
larity. As shown in Fig. 3, the empirical change patterns of
approximate entropy provide some evidences that financial
time series are predictable to some extent, because there is
some structural information contained in serial data.

As analyzed in the above, we have found that �1� the
standard deviation increases convexly, �2� the Hurst expo-
nent increases monotonically, and �3� the approximate en-
tropy decreases continually with the length of accumulative
return in real world financial time series. These patterns
might be observed in intraday return series because they ex-
hibit scaling and memory behaviors similar to daily return
series �17,18�. However, these empirical change patterns of

volatility, correlated dependence, and irregularity cannot be
observed in random-walk process. Therefore, we can con-
clude that �1� we can magnify the correlations and regulari-
ties contained in return series effectively by employing the
accumulative return method, �2� the random-walk hypothesis
is not acceptable for financial time series, and �3� we can
predict financial time series to some degree by exploiting
those correlations and regularities contained in serial data.
Furthermore, the accumulative return method can also be
used to evaluate time-series model. A good model should
reproduce the previously empirical change patterns observed
in real world financial time series.

IV. PREDICTABLE DEGREE OF ACCUMULATIVE
RETURN SERIES

In this section, we examine how the predictable degree of
accumulative return series changes with the length of accu-
mulative return. This paper mainly focuses on the predictable
degree of time series rather than on the predictability of fore-
cast model. Considering that prediction accuracy is the most
concerned issue for forecasters, we use prediction accuracy
measurements to characterize the predictable degree of
specified serial data. In order to exclude the influences of
parameters used in forecast model and the model itself on
prediction accuracy, we use a model-independent forecast
method to perform our forecast exercises. Given accumula-
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FIG. 5. �Color online� Measured the RMSE in a function of the length of accumulative return. �a� Relationship between RMSE and the
length of accumulative return in 10-yr treasury bond. �b� Relationship between RMSE and the length of accumulative return in 30-yr treasury
bond. �c� Relationship between RMSE and the length of accumulative return in Reuters Jefferies CRB index and U.S. Dollar index. �d�
Relationship between RMSE and the length of accumulative return in Dow Jones index. �e� Relationship between RMSE and the length of
accumulative return in Nasdaq Composite index. �f� Relationship between RMSE and the length of accumulative return in S&P 500 index.
For each financial time series, the mean and standard deviation of 200 RMSEs are reported in the fourth and fifth columns of Table II. The
correlation coefficient between the averaged RMSEs and the standard deviation of original return series is 0.9878.

WEN-QI DUAN AND H. EUGENE STANLEY PHYSICAL REVIEW E 81, 066116 �2010�

066116-6



tive return series Rl�t�, let the correspondingly predicted ac-

cumulative return series Rl
˜�t�=Rl�t−1�. This method is very

easy to implement and can be applied to any time series.
Another advantage is that we can compare the predictable
degree of different serial data. Following we introduce sev-
eral measurements to characterize the prediction accuracy.

The mean absolute error �MAE� and the root-mean-
squared error �RMSE� are two most common measurements
�19�, which are defined as follows:

MAE = �
t=2

N

	Rl�t� − Rl
˜�t�� �N − 1� , �4�

RMSE =��
t=2

N

�Rl�t� − Rl
˜�t��2��N − 1� , �5�

where N is the number of data points in Rl�t�. Furthermore,
financial forecasts should be tied to the profitability of virtual
investors’ decisions rather than to simple statistical measure-
ments such as the root-mean-squared error �RMSE�. Such
measurement aims at minimizing an unrelated to profitability
loss function rather than at getting a significant outcome
from the viewpoint of profit maximization. Therefore, we
further consider the third measurement which is related to
profitability: hit ratio, corresponding to the rate of consis-

tency between the direction of the actual price change and
that of the predicted one �20�.

We now apply the above forecast procedure and measure-
ments of predictable degree to all financial time series and
their accumulative return series. As shown in Fig. 4, 200
MAEs swing up and down with a downward trend in each
curve. Even though there are some differences, all curves
exhibit the same trend. We also observed similar fluctuating
patterns of RMSEs in Fig. 5. These results show that the
prediction errors do not increase with the length of accumu-
lative return though the standard deviation of accumulative
return series increase monotonically with that. Conversely,
we have observed a general trend of decreasing prediction
errors for all financial time series. Furthermore, as we can
see from Fig. 6, the hit ratio increases continually with the
length of accumulative return. Therefore, we can conclude
that the predictable degree will be improved to some degree
if we increase the length of accumulative return. Considering
that ApEn characterizes the irregular degree of serial data,
the previous results are not difficult to understand if we take
the decreasing ApEn of accumulative return series into ac-
count.

Let us now examine how the predictable degree of finan-
cial time series is related to its standard deviation, Hurst
exponent, and approximate entropy. We first compute the
correlation coefficients between the mean values of MAEs
and RMSEs �see the fourth and sixth columns in Table II�
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FIG. 6. �Color online� Measured the hit ratio in a function of the length of accumulative return. �a� Relationship between the hit ratio and
the length of accumulative return in 10-yr treasury bond. �b� Relationship between the hit ratio and the length of accumulative return in 30-yr
treasury bond. �c� Relationship between the hit ratio and the length of accumulative return in Reuters Jefferies CRB index and U.S. Dollar
index. �d� Relationship between the hit ratio and the length of accumulative return in Dow Jones index. �e� Relationship between the hit ratio
and the length of accumulative return in Nasdaq Composite index. �f� Relationship between the hit ratio and the length of accumulative
return in S&P 500 index. As shown in this figure, the directional accuracy of the predicted accumulative returns increases continually with
the length of accumulative return, though the directional accuracy of the predicted original returns fluctuates around 0.5.

VOLATILITY, IRREGULARITY, AND PREDICTABLE… PHYSICAL REVIEW E 81, 066116 �2010�

066116-7



and the corresponding standard deviations of 22 original re-
turn series �see the fourth column in Table I� and find that
they are 0.5113 and 0.9878, respectively. These results sug-
gest that standard deviation is also related to predictability
though it is often conceived as measuring the extent of de-
viation from centrality. Next, for each financial time series,
we compute the correlation coefficients of �standard devia-
tion, Hurst exponent� and �standard deviation, approximate
entropy� of its accumulative return series �see the second and
third columns in Table II�, and find that all values are very
close to 1. Furthermore, Hurst exponent characterizes corre-
lated relationship, which is only one kind of regularities con-
tained in serial data. Therefore, there might be some equiva-
lent or encompassing relationship between Hurst exponent
and approximate entropy. We further compute the correlation
coefficient between the mean values of MAEs and RMSEs
and ApEn �Hurst exponent�, and then find that they are
0.8306 �0.7860� and 0.9351 �0.8844�. In order to exclude the
influences of standard deviation on predictability, all the
mean values of MAEs and RMSEs in this computation pro-
cess are divided by their corresponding standard deviations
of the original return series. Combining the previous analy-
sis, we can conclude that �1� approximate entropy is a better
indicator of predictable degree than Hurst exponent; �2�

when we compare the predictable degrees of several different
financial time series based on ApEn, we need to exclude the
influences of their standard deviations.

V. DISCUSSIONS AND CONCLUSIONS

This paper proposed a framework to explore the relation-
ship between the predictable degree of financial time series
and its statistical properties of standard deviation, Hurst ex-
ponent, and approximate entropy. By constructing accumula-
tive return series, the correlations and regularities contained
in the original return series can be magnified effectively,
which can help us distinguish the real world financial time
series from completely random series. Given a real world
return series, we would observe that �1� the standard devia-
tion increases convexly, �2� the Hurst exponent increases
monotonically, and �3� the approximate entropy decreases
continually with the length of accumulative return, which are
fundamentally different from that of random walk. These
founds set some limitations for developing better financial
time-series model, which should reproduce the previously
empirical change patterns of volatility, correlated depen-
dences, and irregularity. Furthermore, our results have dem-
onstrated that financial time series are predictable to some

TABLE II. Prediction accuracy and factors related to the predictable degree of financial time series. The
first column presents the name of each financial time series. Standard deviation, Hurst exponent, and ap-
proximate entropy are three measurements tightly connected to the predictable degree of time series. For each
return series, the correlated coefficients of �standard deviation, Hurst exponent� and �standard deviation,
approximate entropy� of corresponding accumulative return series are reported in the second and third
columns. For every analyzed financial time series, its mean value, standard deviation of 200 RMSEs and 200
MAEs are presented in the fourth, fifth, sixth, and seventh columns, respectively.

Serial name � �H, SD� � �ApEn, SD� Mean_RMSE STD_RMSE Mean_MAE STD_MAE

BOND10_O 0.99833 −0.99484 0.020083 0.00053543 0.01438 0.0002129

BOND10_H 0.99596 −0.99313 0.017915 0.00046531 0.012802 0.00019835

BOND10_L 0.99757 −0.99442 0.018954 0.00053564 0.013498 0.00021569

BOND10_C 0.99711 −0.99483 0.019087 0.00052976 0.013697 0.00021297

BOND30_O 0.98728 −0.97754 0.027584 0.00044388 0.011738 0.00017163

BOND30_H 0.9866 −0.97847 0.026726 0.00040157 0.010508 0.00014965

BOND30_L 0.98657 −0.96512 0.027024 0.00043798 0.010815 0.00016612

BOND30_C 0.98711 −0.98008 0.027243 0.00042155 0.011357 0.00015916

CRB 0.99379 −0.99401 0.014427 0.00031852 0.010816 0.00015213

DJI_O 0.99645 −0.99478 0.016529 0.00051123 0.011675 0.00020141

DJI_H 0.99428 −0.98803 0.012841 0.00030186 0.0093479 0.00014557

DJI_L 0.99324 −0.98868 0.015352 0.00048237 0.010641 0.00020425

DJI_C 0.99592 −0.99399 0.016702 0.00052078 0.011808 0.00020747

USDI 0.99801 −0.99379 0.0060032 0.0001164 0.0045062 5.5955e-005

NCI_O 0.99821 −0.99049 0.025265 0.00044943 0.01756 0.00023434

NCI _H 0.99624 −0.98262 0.020069 0.00033173 0.014205 0.00021111

NCI _L 0.99593 −0.98941 0.024073 0.00042899 0.016596 0.00025268

NCI _C 0.99734 −0.98903 0.024534 0.00047081 0.017331 0.00023697

S&P _O 0.99595 −0.99322 0.017134 0.00054322 0.012083 0.000219

S&P _H 0.99411 −0.98778 0.013474 0.00036353 0.009593 0.00016475

S&P _L 0.99303 −0.98963 0.016286 0.00052837 0.011242 0.00022255

S&P _C 0.99564 −0.99293 0.017467 0.00059761 0.012228 0.00023043
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extent and approximate entropy is a good indicator to char-
acterize the predictable degree of financial time series if we
take the influence of their volatility into account. Our method
can magnify the regularities contained in financial time se-
ries, but how to utilize this method to develop better forecast
model is still unknown and needs some further study.
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