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Supporting Information Text13

Dynamical model. Here, we give details on the four dynamical systems that are used in the main text, namely the biochemical14

(B), birth-death (BD), epidemic (E), and regulatory (R) dynamics.15

B: We consider protein-protein interactions (PPI), which include the process φ→ Xi describing the synthesis of a protein16

i at rate F , and the process Xi → φ describing protein degradation at rate B. Xi + Xj 
 XiXj represents the binding17

(unbinding) of a pair of interaction proteins at rate R(U). The hetero-dimer XiXj undergoes degradation XiXj → φ at rate Q.18

The dynamical equations for this system are19

dxi
dt

= F −Bxi +
N∑
j=1

Uxij−
N∑
j=1

AijRxixj ,

dxij
dt

= AijRxixj − (U +Q)xij ,

[1]20

where xi(t) is the concentration of i and xij(t) is the concentration of the hetero-dimer XiXj . Assuming a steady state21

condition for the hetero-dimer concentration, i.e. dxij/dt = 0, one has22

dxi
dt

= F −Bxi −
N∑
j=1

AijR̃xixj , [2]23

where the effective binding rate R̃ = QR/(U +Q).24

BD: Birth-death process has many applications in population dynamics, queuing theory, or biology. We consider a network25

in which the nodes represent sites, and each node i has a population xi. Population flow is allowed between neighboring sites.26

This process can be described by a dynamical equation as27

dxi
dt

= −Bxκi +
N∑
j=1

Aijx
ρ
j , [3]28

where the first term on the right-hand side represents the internal dynamical of site i, characterized by the exponent κ, while29

the second term describes the flow from i′s neighboring sites j into i, which is typically linear in xj , namely ρ = 1.30

E : In the susceptible-infected-susceptible (SIS) model each node may be in one of two potential states: infected (I) and31

susceptible(S). The dynamics is given by the two processes I + S → 2I, where a susceptible model is infected by one of32

its nearest neighbors, and I → S, where an infected node is recovered, becoming susceptible again. The activity of a node,33

0 ≤ xi ≤ 1 denotes the probability that the node is in the infected state. The dynamics of the system is governed by34

dxi
dt

= −Bxi +
N∑
j=1

AijR(1− xi)xj . [4]35

R: To mimick regulatory interactions we referred to the commonly used Michaelis-Menten dynamics which take the form of36

dxi
dt

= −Bxi +
N∑
j=1

RH(xj), [5]37

where H(xj) is the Hill function characterizing the activation/inhibition of xi by xj .38

Network robustness with cascading failure. We begin by describing the network robustness for a single network. We assume39

that all N nodes in a network G be randomly assigned a degree k from a probability distribution Pk (k). If we remove one40

node randomly, this node and its neighbors are nonfunctional. Our concern is that how many nodes are nonfunction when a41

fraction 1− p of nodes is removed randomly. In fact, this problem can be understood and mapped as the question of the node42

and its neighbor node being covered in a graph.43

The probability that the node with degree k is not initially selected is Pk (k) p. We can see the probability that any one of44

its neighbors will not be selected is Pk (k) pk, then the probability that the node in the network is not covered is
∞∑
k=0

Pk (k) pk+1.45

Hence, if a fraction 1− p of nodes is attacked, both the attacked node and its neighbor nodes fail (be covered) at the same46

time, the failure size ς(1− p) for the networks can be obtained as47

ς(1− p) = 1− p
∞∑
k=0

Pk (k) pk. [6]48

We then discuss the network robustness with cascading failures in the presence of general dynamical systems discussed in49

the main text. In the absence of perturbations, each node i of a pristine network reaches its asymptotic steady state x̃i. A50
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tolerance coefficient δ is introduced, and when perturbations are present the node i readjusts its asymptotic state into xi. If51

| 1− xi/x̃i |> δ, the node i is considered to fail and the value xi is permanently set to zero. Therefore, a perturbation affecting52

a given node j generates a readjustment of the network that may lead to the failure of other nodes, triggering a cascade of53

failures, which ends only when all the nodes in the final graph have values within the fixed network’s tolerance, δ. The cascade54

size Ci caused by one node is Ci ∼ ki
(
δk1−γ
i

)− 1
β+1 (1), where ki is the degree of the node i, and γ and β are parameters55

accounting, respectively, for the local impact and the propagation dynamics of the perturbation. Thus, when β + γ 6= 0, we56

obtain57

ki = αδ
1

β+γ Ci
β+1
β+γ . [7]58

Here, α is a mapping coefficient between the real cascading failure size and the node degree. We will discuss how to calculate α59

later on. Furthermore, the correspondence between the node connectivity and the cascading failure size is one to one (ki to Ci).60

Hence, we can get the cascading failure size distribution PC (C) of each node from the degree distribution Pk (k) within an61

arbitrary network as62

PC (C) = Pk(αδ
1

β+γ C
β+1
β+γ ). [8]63

When examining the dynamical behavior on networks, the failure size triggered by perturbing a single node is C, the64

distribution of which is Eq.(8). When a fraction (1 − p) of nodes is perturbed, following the method of Eq.(6) (the failure65

nodes C can be seen as covered as well), the corresponding network failure size ω(1− p) is66

ω(1− p) = 1− p
∞∑
C=0

PC (C) pC . [9]67

Actually, Eq.(9) enables us to get the cascade failure size when a fraction 1 − p of nodes is perturbed just with the68

one-node-caused failure size distribution of PC (C).69

Robustness of single networks with dynamical behaviors. Here, we show details on the robustness of Erdös-Rényi (ER)70

networks in the presence of the four dynamical systems discussed in the main text (with parameters specified in Table S1),71

namely the biochemical (B), birth-death (BD), epidemic (E), and regulatory (R) dynamics. In the case of ER graphs with the72

degree distribution of Pk (k) = 〈k〉k
k! e

−〈k〉, from Eq.(8) one gets73

PC (C) = 〈C〉
αδ

1
β+γ C

β+1
β+γ

[αδ
1

β+γ C
β+1
β+γ ]!

e−〈C〉. [10]74

Substituting Eq. (10) into Eq. (9), one gets the cascade failure size of ER networks when a fraction 1 − p of nodes is75

perturbed76

ω(1− p) = 1− p
∞∑
C=0

〈C〉
αδ

1
β+γ C

β+1
β+γ

[αδ
1

β+γ C
β+1
β+γ ]!

e−〈C〉pC ,

= 1− pe−〈C〉
∞∑
C=0

〈C〉
αδ

1
β+γ C

β+1
β+γ

[αδ
1

β+γ C
β+1
β+γ ]!

e−〈C〉pC .

[11]77

Actually, Eq.(11) enables us to get the cascade failure size when a fraction 1 − p of nodes is perturbed just with the78

one-node-caused failure size distribution of PC (C).79

For simplification, we denote y = αδ
1

β+γ
C
β+1
β+γ , then get C = ( y

α
)
β+γ
β+1 δ

− 1
β+1 , so Eq.(11) becomes80

ω(1− p) = 1− pe−〈C〉
∞∑
y=0

〈C〉ypy

y! p−yp( y
α

)
β+γ
β+1 δ

−1
β+1

. [12]81

Here, p−yp( y
α

)
β+γ
β+1 δ

−1
β+1 = pC−αC

β+1
β+γ δ

1
β+γ . From Eq.(10), in ER networks the distribution of cascade failure size triggered by82

one node follows the Poisson distribution, it means the values of C are relatively homogeneous, so we can approximate it83

furthermore as84

pC−αC
β+1
β+γ δ

1
β+γ ≈ p<C>−α<C

β+1
β+γ >δ

1
β+γ

. [13]85

The term of
∞∑
y=0

〈C〉ypy
y! in Eq.(12) is the taylor expansion of ep〈C〉. Hence, with Eq.(13) one gets the cascade failure size86

ω(1− p) of ER networks when a fraction 1− p of nodes is perturbed as87

ω(1− p) ≈ 1− pe(p−1)〈C〉p<C>−α<C
β+1
β+γ >δ

1
β+γ

. [14]88
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Table S1. The parameters

Dynamics β γ

B 0 0
BD 0 3/2

E 1 1
R 1 0

Values of the parameters used in the considered dynamical models.

Now we apply the method to calculate the cascade failure size approximately for single networks into the dynamical models89

above. For R dynamics, substituting β= 1, γ= 0 into Eq.(14), we get the cascade failure size of ER networks when a fraction90

1− p of nodes is perturbed for R dynamics as91

ωR(1− p) = 1− pe(p−1)〈C〉p<C>−αδ<C
2>. [15]92

For BD dynamics, substituting β= 0, γ = 3
2 into Eq.(14), we get the cascade failure size of ER networks when a fraction93

1− p of nodes is perturbed for BD dynamics as94

ωBD(1− p) = 1− pe(p−1)〈C〉p〈C〉−αδ
2
3 <C

2
3 >. [16]95

For E dynamics, substituting β= 1, γ= 1 into Eq.(14), we get the cascade failure size of ER networks when a fraction 1− p96

of nodes is perturbed for E dynamics as97

ωE(1− p) = 1− pe(p−1)〈C〉p〈C〉−αδ
1
2 〈C〉. [17]98

To calculate the cascade failure size of the R, BD, and E dynamics from Eqs.(15)-(17), we should get the mapping coefficient99

α between the real cascading failure size and the node degree. It should be noted that for B dynamics the cascade failure size100

ωB is not about the mapping coefficient α, we can calculate the failure size by Eq.(9). We here give two ways to calculate the101

mapping coefficient α.102

The first way is an approximate computational method based on the relationship between 〈C〉 and moments of k from103

Eq.(7). According to the relationship between degree distribution of ER networks and cascade failure size of general dynamical104

behaviors, we can get105

〈C〉 =
∑

k
α
− β+γ
β+1 δ

− 1
β+1 k

β+γ
β+1 · e

−〈k〉〈k〉k

k! , [18]106

from which, one obtains the average failure size caused by one perturbed node for R, BD, and E dynamics respectively. Hence,107

we can estimate the mapping coefficient α correspondingly as108

α = δ
− 1
β+γ < k

β+γ
β+1 >

β+1
β+γ 〈C〉−

β+1
β+γ . [19]109

Here, the parameters of the four models are listed in Table S1. For B dynamics, the average failure size caused by one node is110

〈C〉 ∼ δ−1.111

The second way is a least-square method of the degree sequence {ki} and the cascade size sequence {δ
1

β+γ Ci
β+1
β+γ }, which112

can be seen from Eq.(7). It should be noted that we estimate the mapping coefficient α with first order linear regression, and113

there is no constant term with our least-square method. Hence, the mapping coefficient α can be written as114

α =

n∑
i=1

kiδ
1

β+γ C
β+1
β+γ
i

n∑
i=1

δ
2

β+γ C
2· β+1
β+γ

i

. [20]115

The cascade failure size ω(1− p) vs the fraction 1− p of perturbed nodes in ER networks for R, BD, E , and B dynamics116

respectively are presented in Fig.S1. We compare the results of the above two methods with the theoretical solutions (from117

Eq.(9)) and simulation results, found that the solutions of our method match well with the simulation results. However, we118

emphasize that the Eq.(9) is based on the assumption that the failure size of each node is independent with each other. The119

dynamical behaviors are always coupled together, especially when a fraction of 1− p of nodes is perturbed simultaneously. We120

should also see that too large or too small values of tolerance coefficient, δ, may lead to the relationship between Ci and ki not121

valid, causing our method out of effect. Notice that the effective range of our method should be explored furthermore in our122

future works so that the best estimation of the mapping coefficient α is to be picked. Despite this, our method to estimate123

the cascade failure size caused by a fraction of 1− p of nodes in single networks can help us to explore more complex failure124

situations in interdependent networks.125
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Universality of spreading dynamics in interdependent networks. When considering ER-ER interdependent-networks, the126

fraction of nodes in the giant components of A and B at the end of the cascade process are given by127

P∞,A = e−fBqA〈C〉(1− fBqA)<C>−α<C
$>δ

1
β+γ +1 (1− fA) p′, [21]128

P∞,B = e−qB(1−p′(1−fA))〈C〉(1− qB (1− p′ (1− fA)
))<C>−α<C$>δ 1

β+γ +1 (1− fB) . [22]129

Here, $ = β+1
β+γ , kA and kB represent the average degree of network A and B. fA and fB can be solved by130

e−fBqA〈C〉(1− fBqA)<C>−α<C
$>δ

1
β+γ +1 − τA

p′
= 0, [23]131

e−qB(1−p′(1−fA))〈C〉(1− qB (1− p′ (1− fA)
))<C>−α<C$>δ 1

β+γ +1 − τB = 0. [24]132

By comparing the results of Figs. S2, S3 and S4, one concludes that the systems are more vulnerable (first order transitions133

occur for a smaller fraction of initially perturbed nodes) when we consider the spreading dynamics. The average degree 〈k〉 and134

the critical value δ are positively correlated to the robustness in Figs. S2(b), S3(b), S4(b), S2(d), S3(d) and S4(d). When135

decreasing either the connectivity of the networks or the value of δ, first order phase transitions occur more frequently. Figs.136

S2(c), S3(c), and S4(c) show that when qB increases, less removed nodes or weaker dependency strengths are needed for the137

occurrence of first order phase transitions.138

For different dynamical models (in ER-ER interdependent-networks), Eqs.(21) and (22) suffer the following adjustments:139

P∞,A = e−fBqA〈C〉(1− fBqA)<C>−α<C
$A>δ

1
βA+γA +1 (1− fA) p′, [25]140

P∞,B = e−qB(1−p′(1−fA))〈C〉(1− qB (1− p′ (1− fA)
))<C>−α<C$B>δ 1

βB+γB +1 (1− fB) . [26]141

Here, fA and fB can be solved by142

e−fBqA〈C〉(1− fBqA)<C>−α<C
$A>δ

1
βA+γA +1 − τA

p′
= 0, [27]143

e−qB(1−p′(1−fA))〈C〉(1− qB (1− p′ (1− fA)
))<C>−α<C$B>δ 1

βB+γB +1 − τB = 0. [28]144

Here, $A and βA are the parameters used in network A, $B and βB are the parameters used in network B (see Table S1).145

Finally, in Fig. S5 we report simulative results of interdependent networks displaying different dynamical behaviors and146

structures. The size of the network is 500 in all our simulations. The average degree of ER networks is 5, whereas the average147

degree of Barabási-Albert (BA) networks is 4. The results show that first order percolation transitions not only occur in148

ER-ER configurations but also occur in ER-BA, BA-ER, BA-BA arrangements. At the same time, in all cases, incorporation149

of the nodes’ dynamics always accelerates the change from a second to a first order percolation transition.150
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Fig. S1. The cascade failure size ω(1− p) vs the fraction 1− p of perturbed nodes in ER networks forR, BD, E , and B dynamics respectively. (a1),(b1),(c1),and (d1)
Comparison of simulation results and theoretical solutions for the four models with different values of tolerance coefficient δ. The theoretical solutions are calculated from Eq.(9)
with the distribution PC (C) of cascade failure size caused by one node. (a2), (b2), and (c2) Comparison of simulation results and approximate theoretical results forR, BD,
and E dynamics. The approximate theoretical solutions are calculated from Eqs.(15)-(17), in which the mapping coefficient α is estimated with the relationship between 〈C〉
and moments of k in Eq.(19). It should be noted that we found this approximate method is effective when the tolerance coefficient δ in some certain ranges. For example, forR
dynamics with < k >= 5 in ER networks the approximate method works well with 0.0005 < δ < 0.1; for BD dynamics with < k >= 2 in ER networks it works well with
0.002 < δ < 0.25; and for E dynamics with < k >= 5 in ER networks it works well with 0.0005 < δ < 0.03. The reason lies in that the tolerance coefficient δ which is too
large or too small will lead to the relationship between Ci and ki not valid, which enables the approximate method out of effect. (a3), (b3), and (c3) Comparison of simulation
results and approximate theoretical results forR, BD, and E dynamics. The approximate theoretical solutions are calculated from Eqs.(15)-(17) as well, but in which the

mapping coefficient α is estimated with the least-square method (LSM) of the degree sequence {ki} and the cascade size sequence {δ
1

β+γ Ci
β+1
β+γ } from Eq.(20). As for

B, there is not the parameter of α, so LSM can not apply to B dynamics.
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Fig. S5. Simulation results for interdependent networks with different dynamical behaviors and structures. Green lines for the weak interdependent cases and pink lines for the
results of the strong interdependent cases.
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