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Dimension of spatially embedded networks
Li Daqing1*, Kosmas Kosmidis2,3, Armin Bunde2 and Shlomo Havlin1

The dimension of a system is one of the most fundamental
quantities to characterize its structure and basic physical
properties. Diffusion1 and vibrational excitations2, for example,
as well as the universal features of a system near a critical
point depend crucially on its dimension3,4. However, in the
theory of complex networks the concept of dimension has been
rarely discussed. Here we study models for spatially embedded
networks and show how their dimension can be determined.
Our results indicate that networks characterized by a broad
distribution of link lengths have a dimension higher than that
of the embedding space. We illustrate our findings using the
global airline network and the Internet and argue that although
these networks are embedded in two-dimensional space they
should be regarded as systems with dimension close to 3 and
4.5, respectively. We show that the network dimension is a
key concept to understand not only network topology, but also
dynamical processes on networks, such as diffusion and critical
phenomena including percolation.

Networks consist of entities (nodes) and their connections
(links)5. Usually, networks are embedded either in two- or in three-
dimensional space. For example, airline and Internet networks, as
well as friendship networks where the nodes are the residences
of friends, are embedded in the two-dimensional surface of the
earth, whereas the neuronal network in the brain is embedded in a
complex three-dimensional structure. If in a d-dimensional lattice,
the links connect only neighbouring nodes (in space), then the
dimension of the network is trivially identical to the dimension of
the embedding space. In most cases, however, links are not short
ranged, their length distribution is broad, connecting also distant
nodes. The question we pose here is: Is there a finite dimension
that characterizes such a spatially embedded network and how can
we determine it? The knowledge of the dimension6,7 is not only
important for a structural characterization of the network, but is
also crucial for understanding the function of the network, as the
dimension governs the dynamical processes in the network.

In network theory, the dimension of a network has been rarely
considered. Research8–13 has focused on two types of networks
where the links between the nodes are either short range, connecting
only nearby nodes (like a lattice), or long range, connecting any
two nodes with the same probability. In the short range case, the
dimension d of the network is identical to the dimension of the
embedding space, whereas in the long range case the embedding
space is irrelevant and the network can be regarded as having an
infinite dimension. As a consequence, the mean distance between
two nodes scales with the number of nodes N as N 1/d in the short
range case, and as log N (ref. 14) or log log N (ref. 15) in the
long range case, reflecting its ‘small world’ or ‘ultra small world’
character, respectively. Examples of long range networks include the
classical Bethe and Erdös–Rényi16,17 networks and the more recent
Watts–Strogatz18 and Barabási–Albert models19.
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Figure 1 | Spatially embedded real and model networks. a, The airline
network in the USA region. The airports are linked together by direct flights.
For clarity, only flights with more than 200,000 seats for the summer of
2008 are shown. b, Model network with the same parameters as the airline
network (� = 3 and ↵ = 1.8). Note the similarity between model and
real data.

Many real networks, however, do not fall into these categories,
and the lengths of their links are characterized by a broad power
law distribution. For example, in a mobile phone communication
network, the probability P(r) to have a friend at distance r decays
as P(r) ⇠ r�2 (ref. 20), and in the global airline network, the
probability that an airport has a link (direct flight) to an airport at
distance r , decays as P(r)⇠ r�3 (ref. 21) (see Fig. 1a). By definition,
short range and long range networks correspond to P(r)⇠ r�� , with
� =1 and � = 0, respectively.

A fundamental open question is whether also spatially embedded
networks with 0<� <1 can be characterized by a dimension. Here
we show how the dimension of those networks can be determined
and that it plays a basic role, not only in characterizing the structure,
but also in determining the dynamical properties on the network
and its behaviour near a critical point.
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Figure 2 |Determination of the network dimension. a for a regular lattice
and b for a complex network. The figures show, around a randomly chosen
node (open circle), shell 1 (black), shell 2 (dark grey) and shell 3 (light
grey). On the right-hand side, the number of nodes M is plotted versus the
mean spatial distance r of each shell from the origin site. From the scaling
relation M ⇠ rd (equation (1)), we obtain the network dimension d.

To construct a model of spatially embedded networks, we start
with a network whose nodes are the sites of a d-dimensional regular
lattice. To generate the links between them, we choose a node i
and determine its number of links (degree) ki from a given degree
distribution P(k). Then we select, for each of these links, a distance
r from a given probability distribution P(r), pick randomly one
of the available nodes at Euclidean distance r from node i and
connect both. We repeat this process for all nodes and available
links in the network and remove multiple connections22. A typical
realization of such a network, with the same parameters as for the
airline network in Fig. 1a, is shown in Fig. 1b. In contrast to lattices,
all length scales of links occur.

Next we show how the dimension d of the network can be
obtained in the general case. We use the fact that the mass M
(here: number of nodes) of an object within an hypersphere of
radius r scales with r as

M ⇠ rd (1)

where the exponent d represents the dimension of the network. If
we use this relation without taking into account the way the nodes
are linked, we trivially find the incorrect result that the dimension
of the network is identical to the dimension of the embedding space.

To properly take into account the connectivity of the network,
we suggest the following procedure: we consider, for a node
chosen as origin (open symbols in Fig. 2a,b), its nearest neighbours
(referred to shell l = 1), its next nearest neighbours (l = 2), and
so on. Next we measure (1) the mean Euclidean distance r(l) of
the nodes in shell l from the origin and (2) the number of nodes
M (l) within shell l . By definition, l is the length of the shortest
path between the node in the origin and any node in shell l . This
procedure is illustrated in Fig. 2, for both a square lattice and a
general embedded network. To improve the statistics, we repeat
the calculations for many origin nodes, and then average r(l) and
M (l). From the scaling relation between the average M and the

average r , equation (1), we determine the dimension of the spatially
embedded network. One can easily verify that, for regular lattices,
this procedure gives the expected value of the lattice dimension d .
It can be also used tomeasure fractal dimensions7,23.

In the following, we apply equation (1) to determine the dimen-
sion of spatially embedded networks. Here we analyse two types
of spatially embedded networks. Erdös–Rényi networks with Pois-
sonian degree distribution (P(k)⇠ ⌦k/k!) and scale-free networks
with power law degree distribution (P(k) ⇠ k�↵). Representative
results of M (r) for spatially embedded Erdös–Rényi and scale-free
networks are shown in Fig. 3a,b. The straight lines in the double
logarithmic presentation support equation (1), and the slopes of
the lines yield the dimensions of the networks (see Table 1). It is
interesting to note that the dimension seems to be controlledmainly
by � and does not seem to be influenced by the degree distribution,
indicating a universal feature of the dimension. This feature is
further illustrated in the Supplementary Information, where we give
further evidence that the dimension does not depend on the size of
the network and is independent of the average degree hki.

Figure 3c,d shows that the network dimensions obtained in
Fig. 3a,b play a fundamental role in physical processes such as
diffusion2,24,25. The graphs show, for the same networks as in
Fig. 3a,b, the probability P0 that a diffusing particle, after having
traveled t steps, has returned to the origin. As we show below using
general arguments, P0 scales as

P0 ⇠ r�d (2)

where r = r(t ) in this case is the root mean square (r.m.s)
displacement of the particle at time t . The r.m.s. displacement
of a diffusing particle at time t , r(t ), characterizes the distance
from its position at t = 0. To derive equation (2), it is assumed
that the probability of the particle to be in any site in the volume
V = r(t )d visited by the particle is the same. From this it follows
that the probability of being at the origin is proportional to 1/V ,
which leads to the scaling relation, equation (2). Figure 3c,d shows
that this fundamental relation is indeed valid for both types of
spatially embedded networks.

Next we consider how the critical behaviour of the network
depends on the dimension. As an example we choose percolation26,
which is perhaps the most important critical phenomenon, with
applications ranging from oil recovery and transport properties
of materials to the robustness of networks and the spreading of
epidemics. In percolation, a fraction q of nodes is removed from the
network. At a critical fraction qc, the network disintegrates and finite
clusters of all sizes, s, are formed. A general result of percolation
theory is that, at criticality, the size distribution, n(s), obeys a power
law, n(s)⇠ s�⌧ , where the exponent

⌧ = 1+ d
df

(3)

is related to the dimension d of the network (obtained from
equation (1), see Fig. 3a,b) and the fractal dimension df of the
network clusters at qc (ref. 26).

Figure 3e shows, for two representative networks, the fractal
dimensions df of these percolation clusters, obtained from the slopes
ofM (r) in the double logarithmic presentation. Figure 3f shows, for
the same networks, the cluster size distribution, n(s), at criticality,
again in a double logarithmic presentation. From the slopes of the
straight lines we obtain the values of ⌧ (see Table 1). The results
show that the fundamental relation (3) is only valid when, for d , the
values of the network dimension obtained above are substituted (see
Table 1). This reveals the important role of the network dimension
in the percolation process.

Finally, we demonstrate that the network dimension plays a
major role in real systems such as the global airline network27
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Figure 3 |Dimension and its relation to diffusion and percolation. The scaling relations between the mass M and the metric distance r for a Erdös–Rényi
(ER) networks with a Poissonian degree distribution and b scale-free (SF) networks with a power law degree distribution (P(k) ⇠ k�↵). In a, the distance
exponent � varies between 2.5 and 4.5. In b, � = 3 and the degree exponent ↵ varies between 1.8 and 3.5. The figures show that the network dimension for
Erdös–Rényi networks increases monotonically with decreasing �. For � = 3, the network dimensions in Erdös–Rényi and scale-free networks seem to
coincide. c,d show for the same networks as in a,b respectively, the probability that a diffusing particle is at its starting site, after travelling an average
distance r. The figure shows that the negative slopes representing the dimension in equation (1) in the double logarithmic plots agree with the network
dimension obtained by equation (2). e,f, show, for two representative scale-free and Erdös–Rényi networks at the percolation threshold, the fractal
dimension df (obtained from the slopes in e) and the exponent ⌧ (obtained from the slopes of the cluster size distribution in f). The figures show that df and
⌧ are related via the network dimension d: ⌧ = 1+d/df.

and the Internet. The Internet we study here has been mapped
into a city network where a node represents a city and a link is
established when there is a direct router connection between two
cities28. Both networks are embedded in two-dimensional space.
The airline network is characterized by � ' 3 and has a scale-free
degree distribution P(k)⇠ k�↵ with ↵ ' 1.8 (ref. 29), whereas the
Internet is characterized by � ' 2.6 and has a power law degree
distribution with ↵ ' 2.1 (see Supplementary Information). Model
networks with these features are shown in Fig. 3, predicting a
dimension close to 3 for the airline network and close to 4.5 for
the Internet. Indeed, when measuring directly the dimension of
the airline network and the Internet using equations (1) and (2) we
obtain d ' 3 for the airline network (see Fig. 4a,b) and d ' 4.5 for
the Internet (see Fig. 4c,d).

In summary, our results indicate that spatially embedded
networks have an underlying dimension that characterizes relevant
physical processes. Throughout the paper we have studied networks
that are embedded in two-dimensional space, with a power law
distribution of link lengths, P(r) ⇠ r�� . Prominent examples are
the global airline network and the Internet, which are characterized
by � ' 3 and 2.6, respectively. We find that the exponent �
plays an important role in determining the network dimension.
For � > 4, the link lengths are mainly short and the dimension
of the network is two, the same as the embedding lattice (see
Table 1). Networks with an exponential distribution of link lengths
fall into the same universality class; an example is the European

Table 1 | Network dimensions and critical exponents for
Erdös–Rényi networks.

� d (equation (1)) d (equation (2)) d (equation (3)) ⌧ df

4.5 2.0 2.0 2.0 2.05 1.9
3.5 2.3 2.3 2.3 2.16 2.0
3.3 2.5 2.5 2.5 2.21 2.1
3.0 3.0 3.1 3.0 2.36 2.2
2.8 3.3 3.4 3.3 2.38 2.4
2.5 5.5 5.7 5.6 2.48 3.8

The values of d in the second column have been obtained by direct measurement of d using
equation (1). The values of d in the third column have been obtained from equation (2) by
measuring the probability P0 of being at the origin after travelling a distance r. The values of d in
the fourth column have been obtained from equation (3) by measuring ⌧ and df at the percolation
threshold. Note that, within the error bars, the three methods yield the same result for dimension
d. The error bars, which have been analysed by simulating many realizations, are of the order of
the last specified digit.

power grid (see Supplementary Information). On the contrary,
for � < 2, the network dimension becomes infinite with no
constraints of the embedding space. In between, for � between
two and four, the spatial constraints lead to a dimension of the
network that increases monotonically with decreasing �, from
d = 2 to 1. Our results for the global airline network, the
Internet and the European power grid are in agreement with these
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Figure 4 |Dimension and its relation with diffusion in the global airline network and the Internet. a,c, The number of nodes M as a function of the metric
distance r in a the global airline network for different regions: worldwide, USA, North America, Europe and Asia and in c the Internet (August 2009 to
December 2009). b,d, The diffusion process on the airline network and the Internet, respectively. Measured is the probability of being at the origin P0, as a
function of the root mean square displacement r of the diffusing particles. The sharp decay for large r is due to the finite size of the considered networks,
which is also seen in the model network (see Supplementary Fig. S5).

conclusions. We have focused here on link length distributions
P(r) that follow a power law, but other possibilities could also
be considered. However, it is clear that, if the second moment
of P(r) is finite (as for the exponential distribution of the
power grid), the network is well constrained and has the same
dimension as its embedding space. In some cases, the assumption
of a hyperbolic geometry instead of the Euclidean space may
also be applicable30.
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