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We study a system composed of two partially interdependent networks; when nodes in one network fail, they
cause dependent nodes in the other network to also fail. In this paper, the percolation of partially interdependent
networks under targeted attack is analyzed. We apply a general technique that maps a targeted-attack problem
in interdependent networks to a random-attack problem in a transformed pair of interdependent networks. We
illustrate our analytical solutions for two examples: (i) the probability for each node to fail is proportional to its
degree, and (ii) each node has the same probability to fail in the initial time. We find the following: (i) For any
targeted-attack problem, for the case of weak coupling, the system shows a second order phase transition, and for
the strong coupling, the system shows a first order phase transition. (ii) For any coupling strength, when the high
degree nodes have higher probability to fail, the system becomes more vulnerable. (iii) There exists a critical
coupling strength, and when the coupling strength is greater than the critical coupling strength, the system shows
a first order transition; otherwise, the system shows a second order transition.
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I. INTRODUCTION

Complex networks exist in many different areas in the real
world and have been studied in the past 15 years. However,
almost all researchers have been focused on properties of a
single network that does not interact with or depend on other
networks [1–11]. Such situations rarely, if ever, occur in reality
[12–16]. In 2010, Buldyrev et al. [12] developed a theoretical
framework for studying the process of cascading failures in
fully interdependent networks caused by random initial failure
of nodes. Surprisingly, they found a first order percolation
transition and that a broader degree distribution increased the
vulnerability of interdependent networks to random failure, in
contrast to the behavior of a single network. Recently, five
important generalizations of the basic model [13–20] have
been proposed sequentially. (i) Parshani et al. [13] presented
a theoretical framework for studying the case of partially
interdependent networks. Their findings showed that reducing
the coupling strength lead to a change from a first to second
order percolation transition. (ii) Because in the real world a
network is not always attacked randomly, Huang et al. [14]
investigated the robustness of fully interdependent networks
under targeted attack. The result implied that interdependent
networks are difficult to defend. (iii) In real scenarios, the
assumption that one node in a network depends only on
one node in the other network is not valid. Shao et al.
[17] investigated a framework to study the percolation of
two interdependent networks with multiple support-dependent
relations. (iv) Hu et al. [18] studied the percolation of a pair
of coupled networks with both interdependency links and
connectivity links. They found unusual discontinuous changes
from second order to first order transition as a function of
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the dependency coupling between the two networks. (v) In
the real word, for more than two networks coupled together,
Gao et al. [15,19,20] proposed a framework to study the
robustness of a network of networks (NON). Their results
showed that for a treelike Erdös-Rényi (ER) NON the robust-
ness decreases with the number of networks and for a looplike
ER NON the giant component is independent of the number
of networks. However, for real scenarios, two infrastructures
are always partially coupled together [21,22], such as energy
and communications, power stations and transportation, etc.,
and they might be attacked intentionally on high degree nodes.
Understanding the robustness due to partial interdependency
and under targeted attack is one of the major challenges for
designing resilient infrastructures.

Here we develop a generalized framework to study the per-
colation of partially interdependent networks under targeted
attack. We further develop a general technique [14] that maps
the targeted-attack problem in interdependent networks to the
random-attack problem in a transformed pair of interdependent
networks. We find the following: (i) For any targeted-attack
problem, for the case of weak coupling, the system shows
a second order phase transition, and for strong coupling,
the system shows a first order phase transition. (ii) For any
coupling strength, when the high degree nodes have a larger
probability to fail, the system becomes more vulnerable.
(iii) There exists a critical coupling strength, and when the
coupling strength is greater than the critical coupling strength,
the system shows a first order transition; otherwise, the
system shows a second order transition. In the following
two examples, the critical coupling strength can be explicitly
derived analytically: (i) the probability for each node to fail
is proportional to its degree, and (ii) each node has the same
probability to fail in the initial time. Although case (ii) was
solved in Ref. [15], we present here a more general case where
both interdependent networks are initially attacked randomly.
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II. THE MODEL

In this model, there are two networks, A and B, with
the number of nodes NA and NB , and within each network,
the nodes are connected with degree distributions PA(k) and
PB(k), respectively. We suppose that the average degree of
network A is a and the average degree of network B is b.
In addition, a fraction qA of A nodes depends on the nodes
in network B, and a fraction qB of B nodes depends on
the nodes in network A. That is, if node Ai of network A
depends on node Bj of network B and Bj depends on node
As of network A, then s = i, which satisfies the no-feedback
condition [19]. Consequently, when nodes in one network fail,
the interdependent nodes in the other network also fail, and
we suppose that only the nodes in the giant component remain
functional, which leads to further failure in the first network.
This dynamic process leads to a cascade of failures. In order to
study the cascading failure under targeted attack, we apply the
general technique that a targeted-attack problem in networks
can be mapped to a random-attack problem [14,23]. A value
Wα(ki) is assigned to each node, which presents the probability
that a node i with ki links becomes inactive by targeted attack.
We focus on the family of functions [24]

Wα(ki) = kα
i∑N

i=1 kα
i

, −∞ < α < +∞. (1)

When α > 0, nodes with a higher degree are more vulnerable
to the targeted attack, while for α < 0, nodes with a lower
degree have a higher probability to fail. For α = 0, all the
nodes in a network have the same probability to fail, which is
equivalent to the case of random attack.

Without loss of generality, we begin by studying the
generating function and the giant component of network A
after a targeted attack, which can be directly applied to network
B. Next we study the generating functions of network A at each
iteration step.

(i) The generating function of network A is defined as

GA0(x) =
∑

k

PA(k)xk. (2)

The generating function of the associated branching process is
GA1(x) = G′

A0(x)/G′
A0(1) [12,13,25,26]. The average degree

of network A is defined as a = k̄ =
∑

k PA(k)k.
(ii) We intentionally remove 1 − p1 fraction of nodes from

network A according to Eq. (1) and remove the links between
the removed nodes. Thus, we obtain that the generating
function of the nodes left in network A is [14,26,27]

GAb(x) =
∑

k

P
p1
A (k)xk = 1

p1

∑

k

PA(k)hkα

1 xk, (3)

where the new degree distribution of the remaining p1 fraction
of nodes P

p1
A (k) ≡ 1

p1
PA(k)hkα

1 , and h1 satisfies

p1 = Gα(h1) ≡
∑

k

PA(k)hkα

1 , h1 ≡ G−1
α (p1). (4)

The average degree of the remaining nodes in network A in
this step is k̄(p1) =

∑
k P

p1
A (k)k.

(iii) We remove the links between the removal nodes and the
remaining nodes. Thus we obtain that the generating function
of the network composed by the remaining nodes is [27]

GAc(x) = GAb(1 − p̃1 + p̃1x), (5)

where p̃1 is the fraction of the original links that connect to
the nodes that remain, which satisfies

p̃1 = p1NAk̄(p1)
NAk̄

=
∑

k PA(k)khkα

1∑
k PA(k)k

. (6)

Then we can find the equivalent network A′ with generating
function G̃A0(x), such that after a fraction 1 − p1 of nodes
is randomly removed, the new generating function of nodes
left in A′ is the same as GAc(x). By solving the equation
G̃A0(1 − p1 + p1x) = GAc(x) and Eq. (5), we can get

G̃A0(x) = GAb

(
1 − p̃1

p1
+ p̃1

p1
x

)
. (7)

And the generating function of the associated branching
process G̃A1(x) = G̃′

A0(x)/G̃′
A0(1).

(iv) Thus, the targeted-attack problem on network A can
be mapped to the random-attack problem on network A′.
For network A, a 1 − p1 fraction of nodes in network A is
intentionally removed according to Eq. (1), and the fraction of
nodes that belongs to the giant component is [14,27,28]

pA(p1) = 1 − G̃A0[1 − p1(1 − fA)], (8)

where fA ≡ fA(p1) satisfies a transcendental equation,

fA = G̃A1[1 − p1(1 − fA)]. (9)

For network B, a 1 − p2 fraction of nodes in network B is
intentionally removed according to Eq. (1), and the fraction of
nodes that belongs to the giant component pB(p2) is similar
to Eq. (8), but p1 changes to p2 and A changes to B.

According to the definition of the fraction of nodes that
belongs to the giant component, we perform the dynamic of
cascading failures as follows: Initially, the 1 − p1 and 1 − p2
fractions of nodes are intentionally removed from network
A and network B, respectively. The remaining fraction of
network A nodes after an initial removal of 1 − p1 is ψ ′

1 = p1,
and the remaining fraction of network B nodes after an initial
removal of 1 − p2 is φ′

0 = p2. The remaining functional part
of network A contains a fraction ψ1 = ψ ′

1pA(ψ ′
1) of network

nodes. Accordingly, for the same reason, the remaining
fraction of network B is φ′

1 = p2{1 − qB[1 − pA(ψ ′
1)p1]}, and

the fraction of nodes in the giant component of network B
is φ1 = φ′

1pB(φ′
1). Then the sequence, ψn and φn, of giant

components and the sequence, ψ ′
n and φ′

n, of the remaining
fractions of nodes at each stage of the cascading failures are
constructed as follows:

ψ ′
1 = p1, ψ1 = ψ ′

1pA(ψ ′
1), φ′

0 = p2,

φ′
1 = p2{1 − qB[1 − pA(ψ ′

1)p1]}, φ1 = φ′
1pB(φ′

1),

ψ ′
2 = p1{1 − qA[1 − pB(φ′

1)p2]}, ψ2 = ψ ′
2pA(ψ ′

2),

φ′
2 = p2{1 − qB[1 − pA(ψ ′

2)p1]}, φ2 = φ′
2pB(φ′

2), (10)

· · ·
ψ ′

n = p1{1 − qA[1 − pB(φ′
n−1)p2]}, ψn = ψ ′

npA(ψ ′
n),

φ′
n = p2{1 − qB[1 − pA(ψ ′

n)p1]}, φn = φ′
npB(φ′

n).
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FIG. 1. (a) The giant component of both networks A and B, ψn

and φn, after time n cascading failures for the case when a = b =
3, p1 = 0.8, p2 = 0.9 > pc

2, qA = 0.45, α = 1, and qB = 0.15. The
simulation results show excellent agreement with the theory, system
(10). All estimates are the results of averaging over 40 realizations.
(b) The giant component of network A, ψn, after time n cascading
failures for the case when a = b = 3, p1 = 0.9, qA = 0.65, qB = 0.7,
α = 0, and p2 = 0.6726 < pc

2 = 0.673. The simulation results show
excellent agreement with the theory, system (10). In both (a) and (b),
NA = NB = 2 × 105.

Figure 1 shows the giant components ψn and φn as func-
tions of time step n for different values of a = b, p1,
p2, qA, qB , and α. The simulation results show excel-
lent agreement with the theory, system (10). Figure 1(a)
shows that a finite giant component exists for p2 > pc

2, and
Fig. 1(b) shows for the case when p2 < pc

2, the two networks
collapse.

Next, we study the steady state of system (10) af-
ter the cascading failures, which can be represented by
ψ ′

n,φ
′
n at the limit of n → ∞. The limit must satisfy

the equations ψ ′
n = ψ ′

n+1,φ
′
n = φ′

n+1 since eventually the
clusters stop fragmenting and the fractions of randomly
removed nodes at steps n and n + 1 are equal. Denoting
ψ ′

n = x, φ′
n = y, we arrive at a system of two symmetric

equations:

x = p1{1 − qA[1 − pB(y)p2]},
(11)

y = p2{ 1 − qB[1 − pA(x)p1]}.

III. ANALYTICAL SOLUTION

In this section we present two examples that can be
explicitly solved analytically: (i) α = 1 and (ii) α = 0 for
two interdependent ER networks. Case (ii) is similar to
that of Parshani et al. [13] but more general. For the
ER [29,30] networks, characterized by the Poisson degree
distribution, GA0(x) = GA1(x) = exp[a(x − 1)], GB0(x) =
GB1(x) = exp[b(x − 1)].

(i) For the case of α = 1, substituting α = 1 into
Eqs. (3)–(7), we obtain that GAb(x), GAc(x), and G̃A0(x)
can be represented by GA0(x), which reflects the mapping
from a targeted-attack problem to random-attack problem.
Then we get G̃A0(x) = G̃A1(x) = exp[ah2

1(x − 1)], G̃B0(y) =
G̃B1(y) = exp[bh2

2(y − 1)]. Thus, from Eq. (9) we obtain

fA =exp
[
−ah2

1x(1 − fA)
]
, fB =exp

[
− bh2

2y(1 − fB)
]
.

(12)

Substituting Eqs. (8), (9), and (11) into Eqs. (12), by eliminat-
ing x and y, we obtain

fA = e−ap1h
2
1(1−fA)[1−qA+p2qA(1−fB )],

(13)
fB = e−bp2h

2
2(1−fB )[1−qB+p1qB (1−fA)].

According to the definition of ψ∞ = pA(x)x and φ∞ =
pB(y)y, we obtain the giant component of networks A and B,
respectively, at the end of the cascading failure as

ψ∞ = p1(1 − fA)[1 − qA + p2qA(1 − fB)],
(14)

φ∞ = p2(1 − fB)[1 − qB + p1qB(1 − fA)].

Solving the Eqs. (13), we obtain fA and fB , and then we
obtain ψ∞ and φ∞ by substituting fA and fB into Eqs. (14).

The numerical simulation results of system (14) are shown
in Fig. 2. As shown in Fig. 2, for fixed a, b, and qB , there
exists a critical pc

2; when p2 < pc
2, φ∞ = 0, and when p2 > pc

2,
φ∞ > 0. For the weak coupling case, i.e., when qA is small
(qA = 0.1 in Fig. 2), φ∞(pc

2) = 0, which shows a second order
phase transition, and the transition threshold is defined as
pII . For strong coupling, i.e., when qA is large (qA = 0.7 in
Fig. 2), φ∞(pc

2) > 0, which represents a first order percolation
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FIG. 2. (a) The giant component φ∞ of network B as a function of the initial attack on network B, 1 − p2, when p1 = 0.7, a = 3, b = 4,
qB = 0.7, and α = 1 for two different qA. (b) The giant component φ∞ of network B as a function of the initial attack on network B, 1 − p2,
when p1 = 0.9, a = 3, b = 4, qB = 0.7, and α = 1 for two different qA. For the weak coupling strength (qA = 0.1), the system shows a second
order phase transition, and for the strong coupling strength (qA = 0.7), the system shows a first order phase transition. From (a) and (b), we
find that the changes in the critical threshold depend on the changes in p1. (c) The coupling strength 1 − qA as a function of 1 − pc

2 for different
values of the remaining fraction of nodes after the initial attack on network A, p1, when a = 3, b = 4, qB = 0.7. For each p1, 1 − qA as a
function of 1 − pc

2 is divided into two regions by an open circle. The dash-dotted curve above an open circle represents the second order phase
transition, and the solid curve below the open circle represents the first order phase transition. All the circles are connected to form a critical
line, which represents 1 − qc

A as a function of 1 − pc
2. It also shows that qc

A increases as p1 increases.

016112-3



DONG, GAO, TIAN, DU, AND HE PHYSICAL REVIEW E 85, 016112 (2012)

phase transition, and the transition threshold is defined as pI .
Figures 2(a) and 2(b) indicate that there exists a critical qc

A,
which corresponds to the condition when pI = pII ; when
qA < qc

A, the system shows a second order phase transition,
and when qA > qc

A, the system shows a first order phase
transition. Furthermore, Figs. 2(a) and 2(b) indicate that the
critical threshold changes with p1, i.e., qc

A also changes with
p1. In Fig. 2(c), we studied by numerical simulation 1 − qA

as a function of 1 − pc
2 for different values of p1 when a = 3,

b = 4, qB = 0.7. As shown in Fig. 2(c), for each p1, there
exists a critical qc

A (open circles), which corresponds to the
condition pI = pII . Moreover, qc

A increases as p1 increases,
which is represented by the curve connecting the circles in
Fig. 2(c) and indicates that the two networks become more
robust as qA decreases.

Next, we study the transition threshold pI and pII an-
alytically when a = b = k̄, p1 = p2 = p, qA = qB = q. In
this case, from Eqs. (13) and (14), we obtain that the giant
components of networks A and B at the end of the cascading
failure ψ∞ = φ∞ satisfy

φ∞ = p
(
1 − e−k̄h2φ∞

)[
1 − q + pq

(
1 − e−k̄h2φ∞

)]
, (15)

and f ≡ fA = fB satisfies

f = e−k̄ph2(1−f )[1−q+pq(1−f )], (16)

where h = ln p/k̄ + 1. The condition for the first order
transition (p = pI ) is

1=f [k̄pIh2(1 − q) + 2k̄(pI )2qh2(1 − f )], 0 ! f < 1.

(17)

And solving Eq. (16) for f → 1 yields the condition for the
second order transition (p = pII ),

k̄pII (1 − q)h2 = 1. (18)

The analysis of Eqs. (17) and (18) shows the first order
transition at p = pI occurs for networks with strong coupling
(q > qc), whereas the second order transition at p = pII

occurs for networks with weak coupling (q < qc). This
behavior is shown in Fig. 3, where the solid curves show the
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1−pI,1−pII

1−
q

Second order
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First order

k = 10
k = 8

k = 5
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FIG. 3. The coupling strength 1 − q = 1 − qA = 1 − qB as a
function of the first order and second order phase transition thresholds,
1 − pI ,pII for different values of average degree k̄ = a = b when
α = 1. The curve connecting the circles shows the critical line, below
which the system shows a first order phase transition and above which
the system shows a second order phase transition. The simulation of
the critical line agrees well with the theory, Eq. (20).

case of first order phase transition and the dash-dotted curves
show the case of second order phase transition. The critical
value of qc (and pc) for which the phase transition changes
from first order to second order is obtained when the conditions
for both the first and second order transitions are satisfied
simultaneously. Applying both conditions, Eqs. (17) and (18),
we obtain

k̄

[
1 + ln

(
1 − qc

2qc

) /
k̄

]2

= 2qc

(1 − qc)2
. (19)

Solving Eq. (19), we obtain qc, and then we can get pc by

pc = 1 − qc

2qc

. (20)

(ii) For the case when α = 0, W0 = 1/N , the targeted-
attack problem is equivalent to the random-attack problem
studied in Ref. [13]. For the case of two ER [29,30] networks
with average degrees a and b, we can easily get pA(x) =
1 − fA, pB(y) = 1 − fB from the Eqs. (8) and (9), and system
(11) becomes

x = p1[1 − qA + p2qA(1 − fB)],
(21)

y = p2[1 − qB + p1qB(1 − fA)].

According to Eqs. (9) and (21), fA, fB satisfy

fA = e−ap1(1−fA)[1−qA+p2qA(1−fB )],
(22)

fB = e−bp2(1−fB )[1−qB+p1qB (1−fA)].

Thus, we obtain the fraction of nodes in the giant components
of networks A and B at the end of the cascading process,

ψ∞ = p1(1 − fA)[1 − qA + p2qA(1 − fB)],
(23)

φ∞ = p2(1 − fB)[1 − qB + p1qB(1 − fA)].

Our framework is equivalent to Ref. [13] when p2 = 1. In
detail, when p2 = 1, Eqs. (22) are the same as Eqs. (7)
in Ref. [13]. Here we study the more general case where
p2 < 1.

For the case α = 0, numerical simulation results of system
(23) are shown in Fig. 4. For given a = b, qB , p1, there exists
a critical pc

2; when p2 < pc
2, φ∞ = 0, and when p2 > pc

2,
φ∞ > 0. For weak coupling, i.e., when qA is small (qA = 0.1
in Fig. 4), φ∞(pc

2) = 0, representing a second order phase
transition, and the percolation threshold is defined as pII .
For strong coupling, i.e., when qA is large (e.g., qA = 0.65
in Fig. 4), φ∞(pc

2) > 0, representing a first order phase
transition, and the percolation threshold is defined as pI .
Similar to the case when α = 1, Fig. 4 indicates that there
exists a critical qc

A, which corresponds to the condition when
pI = pII . When qA < qc

A, the system shows a second order
phase transition, and when qA > qc

A, the system shows a first
order phase transition. Furthermore, Fig. 4 indicates that the
critical threshold changes with p1, i.e., qc

A also changes with
p1. In Fig. 4(c), we investigate, using numerical calculations,
1 − qA as a function of 1 − pc

2 for different values of p1 when
a = b = 3, qB = 0.7. As shown in Fig. 4(c), for each p1, there
exists a critical qc

A (open circles), which corresponds to the
condition pI = pII . Moreover, qc

A increases as p1 increases,
which is represented by the curve with circles in Fig. 4(c) and

016112-4



PERCOLATION OF PARTIALLY INTERDEPENDENT . . . PHYSICAL REVIEW E 85, 016112 (2012)

0 0.5 1
0

0.2

0.4

0.6

0.8

p
2

φ ∞

q
A
=0.1

q
A
=0.65

(a)

0 0.5 1
0

0.2

0.4

0.6

0.8

p
2

φ ∞

q
A
=0.1

q
A
=0.65

(b)

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

1−p
2
c

1−
q A

Second order
Critical line
First order

p =0.5

p =0.6

p =0.7

p =1

p =0.8

p =0.9

(c)

FIG. 4. (a) The giant component φ∞ of network B as a function of the initial attack on network B, 1 − p2, when p1 = 0.7, a = b = 3,
qB = 0.7, and α = 0 for two different qA. (b) The giant component φ∞ of network B as a function of the initial attack on network B, 1 − p2,
when p1 = 0.9, a = b = 3, qB = 0.7, and α = 0 for two different qA. For the weak coupling strength (qA = 0.1), the system shows a second
order phase transition, and for the strong coupling strength (qA = 0.65), the system shows a first order phase transition. (c) The coupling
strength 1 − qA as a function of 1 − pc

2 for different values of the remaining fraction of nodes after the initial attack on network A, p1, when
a = b = 3, qB = 0.7. For each p1, 1 − qA as a function of 1 − pc

2 is divided into two regions by open circles. The dash-dotted curve above an
open circle represents the second order phase transition, and the solid curve below an open circle represents the first order phase transition. All
the circles are connected to form a critical line, which represents 1 − qc

A as a function of 1 − pc
2. It also shows that qc

A increases as p1 increases.

indicates that the two networks become more robust as qA

decreases.
By substituting a = b = k̄, p1 = p2 = p, qA = qB = q

into Eqs. (22) and (23), we obtain that the giant components of
networks A and B at the end of the cascading failure ψ∞ = φ∞
satisfy

φ∞ = p(1 − e−k̄φ∞ )[1 − q + pq(1 − e−k̄φ∞ )], (24)

and f ≡ fA = fB satisfies

f = ek̄p(f −1)[1−q+pq(1−f )], 0 ! f < 1. (25)

Thus we obtain the condition for the first order transition
(p = pI ),

1 = f [k̄pI (1 − q) + 2k̄(pI )2q(1 − f )]. (26)

Solving Eq. (25) for f → 1 yields the condition for the second
order transition (p = pII ),

k̄pII (1 − q) = 1. (27)

Similar to the case of α = 1, the analysis of Eqs. (26) and
(27) shows that the first order transition at p = pI occurs for

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1−pI,1−pII

1−
q

Second order
Critical line
First order

k = 3

k = 4

k = 5

k = 8

k = 10

FIG. 5. The coupling strength 1 − q = 1 − qA = 1 − qB as a
function of the first order and second order phase transition thresholds,
1 − pI ,1 − pII , for different values of average degree k̄ = a = b

when α = 0. The curve with circles shows the critical line, below
which the system shows a first order phase transition, and above which
the system shows a second order phase transition. The simulation of
the critical line agrees well with the theory, Eq. (28).

networks with strong coupling (q > qc), whereas the second
order transition at p = pII occurs for networks with weak
coupling (q < qc). This behavior is shown in Fig. 5, where
the solid curves show the case of first order phase transition,
and the dashed-dotted curves show the case of second order
phase transition. The critical values of qc (and pc) for which
the phase transition changes from first order to second order
are obtained when the conditions for both the first and second
order transitions are satisfied simultaneously. Applying both
conditions Eqs. (26) and (27), we obtain

qc = k̄ + 1 −
√

2k̄ + 1
k̄

, pc =
√

2k̄ + 1 + 1
2k̄

. (28)

IV. NUMERICAL SOLUTIONS OF THE
GENERAL CASE

Our theoretical study can be applied to any case of α. In
this section, we investigate the solutions for the general cases
of α. Figure 6 shows the giant component φ∞ of network
B as a function of the initial attack on network B, 1 − p2

0 0.5 1
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0.4

0.6

0.8

p
2

φ ∞

q
A
=0.1

q
A
=0.8

(a)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p
2

φ ∞

q
A
=0.1

q
A
=0.8

(b)

FIG. 6. (a) The giant component φ∞ of network B as a function of
the initial attack on network B, 1 − p2, when p1 = 0.8, a = 3, b = 4,
qB = 0.7, and α = 2 for two different qA. (b) The giant component φ∞
of network B as a function of the initial attack on network B, 1 − p2,
when p1 = 0.8, a = 3, b = 4, qB = 0.7, and α = −1 for two different
qA. For weak coupling strength (qA = 0.1), the system shows a second
order phase transition, and for strong coupling strength (qA = 0.8),
the system shows a first order phase transition.
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0.2 0.4 0.6 0.8 1
0
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1

1−p
2
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1−
q A

Second order
Critical line
First order

α=2

α=−3
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α=−0.5
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FIG. 7. The coupling strength 1 − qA as a function of 1 − pc
2 for

different values of α when a = 3, b = 4, qB = 0.7, and p1 = 0.8.
The curve connecting the circles shows the critical line, below which
the system shows a first order phase transition and above which the
system shows a second order phase transition.

for α = 2 [Fig. 6(a)] and α = −1 [Fig. 6(b)]. For given a,
b, qB , p1, there exists a critical pc

2; when p2 < pc
2, φ∞ = 0,

and when p2 > pc
2, φ∞ > 0. For weak coupling, i.e., when

qA is small (qA = 0.1 in Fig. 6), φ∞(pc
2) = 0, which shows a

second order phase transition. For strong coupling, i.e., when
qA is large (qA = 0.8 in Fig. 6), φ∞(pc

2) > 0, which shows a
first order phase transition. Figure 6 indicates that there exists
a critical qc

A; when qA < qc
A, it shows a second order phase

transition, and when qA > qc
A, the system shows a first order

phase transition. Furthermore, Fig. 6 indicates that the critical
threshold changes with α, i.e., qc

A also changes with α.
In Fig. 7, we investigate the numerical simulation of 1 −

qA as a function of 1 − pc
2 for different values of α when

a = 3, b = 4, p1 = 0.8, qB = 0.7. As shown in Fig. 7, for
each α, there exists a critical qc

A (circles). Moreover, 1 − qc
A

increases as α increases, which is represented by the curve

connecting the circles in Fig. 7 and indicates that the two
networks becomes more robust as α decreases.

V. CONCLUSIONS

In summary, we developed a framework for studying the
percolation of two partially interdependent ER networks under
targeted attack for the cases of a high degrees of attack, α = 1,
and a random attack, α = 0. For any value of α, the system
shows a second order phase transition when q is small, and a
first order phase transition when q is large. We find the critical
qc and critical threshold pc when the percolation of the system
changes from first to second order for the cases when α = 1
and α = 0. Moreover, we find that when α increases, i.e., the
high degree nodes have a larger probability to fail, the system
becomes more vulnerable.
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