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Although detecting and characterizing community structure is key
in the study of networked systems, we still do not understand
how community structure affects systemic resilience and stability.
We use percolation theory to develop a framework for studying
the resilience of networks with a community structure. We find
both analytically and numerically that interlinks (the connections
among communities) affect the percolation phase transition in a
way similar to an external field in a ferromagnetic– paramagnetic
spin system. We also study universality class by defining the anal-
ogous critical exponents δ and γ, and we find that their values in
various models and in real-world coauthor networks follow the
fundamental scaling relations found in physical phase transitions.
The methodology and results presented here facilitate the study
of network resilience and also provide a way to understand phase
transitions under external fields.

resilience | community structure | percolation | universality | external field

Network science has opened new perspectives in the study
of complex networks in social, technological, biological,

and climatic systems (1–7). System resilience (robustness) plays
a crucial role in reducing risk and mitigating damage (8, 9).
Percolation theory is a useful tool for understanding and evalu-
ating resilience in terms of topological and structural properties
(10–14). It analyzes the connectivity of network components
and has been applied to many natural and man-made sys-
tems (15). Critical phenomena in social and complex networks
have attracted the attention of researchers in a number of dif-
ferent disciplines (16). In particular, researchers have studied
the existence of phase transitions in connectivity (percolation)
(3, 4), stringent k -core percolation (17, 18), epidemic spread-
ing (19–21), condensation transitions, and the Ising model in
complex networks (22). A random network undergoes a con-
tinuous percolation phase transition as the fraction of random
node failures increases (23). The question of whether there are
discontinuous percolation transitions in networks has attracted
much attention (24–26). Buldyrev et al. (27) developed an
interdependent network model and found analytically that cas-
cading failures among networks cause the percolation transi-
tion to be discontinuous. A framework for understanding the
robustness of interdependent networks was then developed,
and it was found that a system of interdependent networks
undergoes an abrupt first-order percolation phase transition
(27–34).

In addition to these advances in understanding network
resilience, much work has focused on such interconnected net-
works (35) as those formed by connecting several communi-
ties (or modules) (36, 37). This community structure is ubiq-
uitous in many real-world networks, including brain (38–40),
infrastructure (41, 42), and social networks (43–45), among oth-
ers (46–49). Despite these advances, we still do not understand

how a small fraction of nodes can sustain intermodule connec-
tions in real-world networks. This feature dramatically affects
network resilience. The small fraction of interconnecting nodes
often provide special resources and infrastructure support. For
example, only some airports have the longer runways, customs
administration, and passport control required for international
flights (41), and when an airport node already has interconnec-
tions, the cost of adding additional interconnections is signifi-
cantly lower. Similarly, only some individuals in social networks
are able to bridge between communities (50), and only some
power stations in a power grid are able to supply distant sta-
tions. We use here the methods of statistical physics to develop a
model that incorporates these realistic features, and we develop
an analytic solution that demonstrates that these interconnec-
tions have effects analogous to those of an external field on a spin
system. This gives us a fundamental understanding of the effects
of adding interconnections and enables us to predict systemic
resilience.

Model
Our model is based on the modular structure present in many
real-world networks, where a number of well-connected groups
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Fig. 1. (A) Demonstration of two interconnected modules from the coau-
thor collaboration network (dblp). Nodes are authors, and a link between
two nodes exists if two authors have published at least one paper together.
(B) Demonstration of the model. We assume two modules i and j and con-
nect a fraction r of nodes. Red nodes denote interconnected nodes, and the
fraction of interconnected nodes here is r = 1/2.

of nodes (modules) have only some nodes with connections to
other modules, as shown in Fig. 1A. We show here that these
“interconnected nodes” act in a manner analogous to an external
field from physics (51–53). For simplicity, we demonstrate this
with a network of two modules i and j with the same number of
nodes N. Our theory is general for m communities. Nodes within
module i [j] are randomly connected with a degree distribution
Pi(k) [Pj (k)], where the degree k is the number of links a node
has to other nodes in module i [j]. Between modules i and j, we
randomly select a fraction, r , of nodes as interconnected nodes
and randomly assign Minter interconnected links among pairs of
nodes (one in i and the other in j). A network generated from this
model can be seen in Fig. 1B. The generalization to m modules
is straightforward. To quantify the resilience of our model, we
study analytically and via simulations the size of the giant con-
nected component S(r , p) after randomly removing a fraction
1− p of the nodes.

Theory
We develop a theoretical framework for studying the robust-
ness of our interconnected community network model. To obtain
an analytic solution, we adopt the generating function frame-
work of ref. 4 and define the generating function of the degree
distribution for each module i to be

Gi(x)= (1− ri)Gii(xii)+ riGii(xii)

m∏
j 6=i

Gij (xij ), [1]

where Gii(xii) and Gij (xij ) are the generating functions of
the intraconnections in module i and the interconnections
between modules i and j , respectively, i , j =1, 2, . . . ,m , and
m is the number of modules. The generating functions of the
excess degree distribution are in SI Appendix, Eq. 1. After ran-
domly removing a fraction 1− p of nodes, the size of the giant
component within module i is

Si = p(1−Gi(1− p(1− fii), 1− p(1− fij ))), [2]

where xii =1− p(1− fii) and xij =1− p(1− fij ).
When m =2, the Erdős–Rényi (ER) (54) modules have an

average intradegree k and an interdegree K . Eq. 2 becomes

e−Sk (r − 1)+ 1− S

p
=

rexp

[
Kp(e−Sk (r − 1)+ 1− S

p
− r)

r
− Sk

]
, [3]

where K =2Minter/rN and N is the size of network. For r =0,
our model is equivalent to the ER model, and we obtain S =
p(1− e−kS ), in agreement with the well-known result (54). For
a single ER network [N →∞], the size of the giant component
is zero at the percolation threshold pc =1/k , yet for our model
with r > 0, we have a nonzero giant component at that point. We
obtain a percolation threshold for our model that is proportional
to r , which is assumed to be small (SI Appendix).

We also examine scale-free (SF) modules with power-law
degree distribution P(k)∼ k−λ. The same generating function
framework is used to obtain the giant component and percolation
threshold (SI Appendix).

Results
We analyze our analytical solution above, Eq. 3, and find that the
r interconnected nodes have effects analogous to those caused
by a magnetic field in a spin system. This is because (i) for
any nonzero fraction of interconnected nodes, the system no
longer undergoes a phase transition of the single module; and
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Fig. 2. (A) Comparison of analytical and simulation results for ER networks
for the size of the giant component S(r, p) as a function of p with r = 0 (red),
r = 0.0001 (blue), r = 0.0055 (purple), and r = 0.001 (magenta). Lines and
symbols denote analytical and simulation results, respectively. (B) S(r, pc) as
a function of r. (C) ∂S(r,p)

∂r as a function of pc − p with r = 0.0001. C, Left and
C, Right show the numerical and simulation results, respectively. The param-
eters are k = 4, Minter = N1, and for simulation results we chose the size of
modules to be N1 = N2 = 108, Minter =

N
2 = N1 and averaged over 1,000 real-

izations. The slopes of red dashed lines are equal to −γ. Similar results for
different parameters are given in SI Appendix, Fig. S4.

(ii) field-type critical exponents characterize the effect of r . Fig.
2A shows our analytic and simulation results for the giant com-
ponent in two ER modules with an average degree k =4 and
several r values. Note that although the percolation threshold
is pc =1/k =1/4 for a single ER module, the size of the giant
component is above zero at pc when r > 0. The theoretical and
simulation results are in excellent agreement. Fig. 3 A–C shows
a similar phenomenon in modules with a SF distribution with
different λ values.

We now investigate the scaling relations and critical exponents
of our model, with S(r , p), p, and r , serving as the analogues
of magnetization, temperature, and external field, respectively.
To quantify how the external field affects the percolation phase
transition, we define the critical exponent δ that relates the order
parameter at the critical point to the magnitude of the field,

S(r , pc)∼ r1/δ, [4]

and γ, which describes the susceptibility near criticality,(
∂S(r , p)

∂r

)
r→0

∼ |p− pc |−γ . [5]

We first measure δ. For ER modules, we obtain δ=2 from both
theory and simulations (Fig. 2B), which is the same as the known
value for mean-field random percolation (51). For SF modules,
we find that the value of δ varies with λ as shown in Fig. 3D.
When λ> 4 the critical exponents are the expected mean-field
values for regular percolation in infinite dimensions, and the uni-
versality class is the same as ER modules (55). When 2<λ< 3,
SF networks undergo a transition for p→ 0, and the critical expo-
nents depend on λ. When 3<λ< 4, it is known that pc > 0, and
the critical exponents vary with λ (55). We find analytically and
via simulations that δ changes with λ, i.e., δ=1.28 for λ=3.35
and δ=1.06 for λ=2.8.

We next examine the analogue of magnetic susceptibility,
which has the scaling relation Eq. 5. Fig. 2C presents the analyti-
cal (Left) and simulation (Right) results. For ER modules, we find
γ=1 for both p< pc and p> pc (see SI Appendix, Fig. S3A for
details). We find in both simulations and theory that in SF mod-
ules, γ depends on λ, with γ=1 for λ=4.5, γ=0.8 for λ=3.35,
and γ=0.3 for λ=2.8, as shown in Fig. 4.

In testing the scaling relations between the exponents, we find
that in a single network (m =1), the order parameter follows
S ∼ (p− pc)

β in the critical region with β=1 for ER networks.
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Fig. 3. The size of the giant component S(r, p) in SF networks as a func-
tion of p for different r. (A–C) λ= 4.5 with r = 0.0001 (blue), r = 0.0005
(green), and r = 0.001 (orange) (A); λ= 3.35 for which pc ≈ 0.149 with
r = 0.0001 (blue), r = 0.0005 (green), and r = 0.001 (orange) (B); and λ= 2.8
with r = 0.0005 (blue), r = 0.0007 (green), and r = 0.001 (orange) (C). Lines
and symbols denote analytical and simulation results, respectively, in which
a red line denotes a single SF network. (D) S(r, pc) as a function of r for differ-
ent λ. Numerical and simulation results are denoted by circles and squares,
respectively. The simulation results were averaged over 1,000 realizations
with kmin = 2, kmax = 106, N1 = N2 = 108, and Minter = N1.
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In SF networks, we find that β=1 for λ> 4, β=1/(λ− 3) for
3<λ< 4, and β=1/(3−λ) for 2<λ< 3 (55). These values for
β and the δ and γ values found above fulfill the well-known
universal scaling relation in physical phase transitions (51).

The universality class of a system’s phase transition is charac-
terized by a set of critical exponents. Because the thermodynamic
quantities are related, these critical exponents are not indepen-
dent and can be expressed in terms of only two exponents (14,
51, 56). We find that this universal scaling hypothesis is also valid
for our community model, both in ER and SF modules, based on
the above values found for β, δ and γ. Specifically, note that our
values for these exponents are consistent with Widom’s identity
δ− 1= γ/β (14).

We now test our framework on two real-world examples, (i)
the coauthor collaboration network (dblp) (57, 58) and (ii) the
coauthorship MathSciNet (58–60) network built from the math-
ematical review collection of the American Mathematical Society
(for details, see Data and Methods). We use a greedy algorithm
to detect the community structure (61) and keep the largest
two communities with the same parameter λ (the degree dis-
tribution for each community is given in SI Appendix, Fig. S7).
Fig. 5 shows the numerical results for modules of real networks
with λ=2.8, 3.35, respectively. We find that the values of critical
exponents δ and γ for the real networks are also consistent with
theoretical results. One should note that pc of each of the real
modules are not identical, i.e., each real module has a different
value of pc (for r =0), as shown in SI Appendix.

Discussion
We have introduced a network model of community structure
and have shown that the fraction of nodes with interconnections
is analogous to an external field in a physical phase transition.
We solve the resilience of this system both numerically and ana-
lytically with excellent agreement. Our results show that a system
becomes more stable and resilient as the fraction of nodes with
interconnections increases. In particular, we find that by defining
critical exponents δ and γ based on S , p, and r , the scaling rela-
tions governing the external field are analogues to macroscopic
magnetization, temperature, and the external field, respectively,
near criticality. The values of the critical exponents are equiva-
lent to high-dimensional values of the magnetization transition
in infinite dimensions for communities with a degree distribution
that is Poisson or SF with λ> 4. For SF degree distributions and
λ< 4, we find that δ and γ depend on λ. Furthermore, we find
that these critical exponents obey the universal scaling relations

Fig. 4. ∂S(r,p)
∂r as a function of pc − p with r = 0.0001 for λ= 4.5, r = 0.0001

for λ= 3.35, and r = 0.0005 for λ= 2.8, Left and Right show numerical
and simulation results. The slopes of red dashed lines are equal to −γ.
The simulation results were averaged over 1,000 realizations with kmin = 2,
kmax = 106, N1 = N2 = 108, and Minter = N1.

A B

C D

Fig. 5. Critical scaling and exponents for two modules in each of two
real-world networks with λ= 2.8, Minter = 4× 105 (A and B) and λ= 3.35,
Minter = 5× 105 (C and D). (A and B) ∂S(r,p)

∂r as a function of pc − p (A) and
S(r, pc) as a function of r (B) for the coauthor dblp collaboration network.
(C and D) ∂S(r,p)

∂r as a function of pc − p (C) and S(r, pc) as a function of r
(D) for the coauthor MathSciNet collaboration network. The slopes of red
dashed lines are equal to −γ. The parameters of each community and net-
work are summarized in SI Appendix. We average over 2,000 realizations
for each network.

of physical systems near a phase transition. We also find similar
results for real social networks.

Our findings not only offer guidance on designing robust sys-
tems, but also make predictions about the nature of system
failures. Our theory and model provide understanding of how
to make the network more resilient by increasing the number of
interconnected nodes as well as predicting its robustness.

In addition, we have extended percolation theory on networks
by defining the critical exponents for an external field. Our goal
is to inspire further theoretical analysis and to identify additional
system properties that are analogous to external fields. Although
our theory is applied here to study the resilience of modules
within a single network, it can be extended to study resilience
of interdependent networks and multiplex networks.

Data and Methods
We apply the external field model on two real collaboration net-
works: (i) the coauthor collaboration network (DBLP) (57, 58)
and (ii) the coauthorship MathSciNet network of mathematical
review collections of the American Mathematical Society (58–
60). In both networks, nodes are authors, and an undirected
edge between two authors exists if they have published at least
one paper together. The community structure of the networks
is detected by using a fast greedy algorithm (61). General infor-
mation and statistical features of these networks are summarized
in SI Appendix, Table S1. To analyze the external field effects in
real networks with finite sizes, we choose the largest two modules
with the same scaling exponents and add nonduplicate inter-
connected links randomly among a fraction r of nodes in both
modules. The critical exponents of the external field for differ-
ent λ are analyzed in the critical region, as shown in Fig. 5. And
the values of pc are determined by Scutoff =0.0001 (the criti-
cal relationships for different Scutoff are shown in SI Appendix),
where S is smaller than or equal to Scutoff for each individual
module.
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